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Abstract—Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link
virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing conditions, including
day-night changes, as well as weather and seasonal variations, while providing highly accurate six degree-of-freedom (6DOF) camera
pose estimates. In this paper, we extend three publicly available datasets containing images captured under a wide variety of viewing
conditions, but lacking camera pose information, with ground truth pose information, making evaluation of the impact of various factors
on 6DOF camera pose estimation accuracy possible. We also discuss the performance of state-of-the-art localization approaches on
these datasets. Additionally, we release around half of the poses for all conditions, and keep the remaining half private as a test set, in
the hopes that this will stimulate research on long-term visual localization, learned local image features, and related research areas.
Our datasets are available at visuallocalization.net, where we are also hosting a benchmarking server for automatic evaluation of
results on the test set. The presented state-of-the-art results are to a large degree based on submissions to our server.

Index Terms—Visual localization, relocalization, 6DOF pose estimation, benchmark, long-term localization.
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1 INTRODUCTION

E STIMATING the 6DOF camera pose of an image with re-
spect to a 3D scene model is key for visual navigation

of autonomous vehicles and augmented/mixed reality devices.
Solutions to this visual localization problem can also be used to
“close loops” in the context of SLAM or to register images to
structure-from-motion (SfM) reconstructions.

Work on 3D structure-based visual localization has focused
on increasing efficiency [42], [45], [52], [69], [86], improving
scalability and robustness to ambiguous structures [44], [67], [84],
[96], reducing memory requirements [14], [45], [67], and more
flexible scene representations [71]. All these methods utilize local
features to establish 2D-3D matches. These correspondences are
in turn used to estimate the camera pose. This data association
stage is critical as pose estimation fails without sufficiently many
correct matches. There is a well-known trade-off between discrim-
inative power and invariance for local descriptors. Thus, existing
localization approaches will only find enough matches if both the
query images and the images used to construct the 3D scene model
are taken under similar viewing conditions.

Capturing a scene under all viewing conditions is prohibitive.
Thus, the assumption that all relevant conditions are covered is
too restrictive in practice. It is more realistic to expect that images
of a scene are taken under a single or a few conditions. To be
practically relevant, e.g., for life-long localization for self-driving
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Fig. 1. Visual localization in changing urban conditions. We present
three new datasets, Aachen Day-Night, RobotCar Seasons (shown)
and Extended CMU Seasons for evaluating 6DOF localization against
a prior 3D map (top) using registered query images taken from a wide
variety of conditions (bottom), including day-night variation, weather, and
seasonal changes over long periods of time.

cars, visual localization algorithms need to be robust under varying
conditions (cf . Fig. 1). Yet, there has been little work in the
literature that actually measures the impact of varying conditions
on 6DOF pose accuracy.

One reason for this lack of work on visual localization under
varying conditions was a lack of suitable benchmark datasets.
The standard approach for obtaining ground truth 6DOF poses
for query images is to use SfM. An SfM model containing both

visuallocalization.net
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the database and query images is built and the resulting poses
of the query images are used as ground truth [45], [71], [80].
Yet, this approach again relies on local feature matches and can
only succeed if the query and database images are sufficiently
similar [63]. The benchmark datasets constructed this way thus
tend to only include images that are relatively easy to localize in
the first place.

This paper is an extended version of our previous conference
paper [70], where we presented three datasets for benchmarking
localization methods in the long-term visual localization scenario.
To create these datasets, we heavily relied on human work:
We manually annotated matches between images captured under
different conditions and verified the resulting ground truth poses.
These three complimentary benchmark datasets are based on
existing data [5], [54], [72]. All consist of a 3D model constructed
under one condition and offer query images taken under different
conditions: The Aachen Day-Night dataset focuses on localizing
high-quality night-time images against a day-time 3D model. The
RobotCar Seasons and CMU Seasons dataset both consider auto-
motive scenarios and depict the same scene under varying seasonal
and weather conditions. One challenge of the RobotCar Seasons
dataset is to localize low-quality night-time images. The CMU
Seasons dataset focuses on the impact of seasons on vegetation
and thus the impact of scene geometry changes on localization.

In this paper, we present extended versions of the CMU
Seasons and the RobotCar Seasons datasets. Since the original
publication, we have also been very happy to see a large number
of submissions to our evaluation server, and considerable progress
has been made on the long-term localization problem and the
benchmarks since then, allowing us to review the current state
of the field, and to compare the best performing methods to
better understand the common features that contribute to a well-
performing method on this challenging problem.

Thus, in this paper we make the following contributions:
(i) We present an outdoor benchmark complete with ground
truth and metrics for evaluating 6DOF visual localization under
changing conditions such as illumination (day/night), weather
(sunny/rain/snow), and seasons (summer/winter). Two of the
datasets presented here are extended versions of the datasets
in [70]: the Extended CMU Seasons contains roughly 40%
more images than the original CMU Seasons dataset (mostly
of challenging vegetated areas). Additionally, while the original
RobotCar Seasons dataset only released camera poses for one
condition, we here release around half of the camera poses for
all conditions. Our benchmark covers multiple scenarios, such
as pedestrian and vehicle localization, and localization from sin-
gle and multiple images as well as sequences. (ii) We provide
an extensive summary of the current state-of-the-art algorithms
from both the computer vision and robotics communities on our
datasets, together with results from our own baseline methods,
as well as a discussion that aims to provide insight into why
these methods perform as they do. (iii) We show the value of
querying with multiple images, rather than with individual photos,
especially under challenging conditions. (iv) We have made our
benchmarks publicly available at visuallocalization.net, where we
are also hosting the benchmarking server for automatic evaluation
of localization results on the hidden test set. We hope this will
continue to stimulate research on long-term visual localization,
local image feature learning, and related topics.

2 RELATED WORK
Localization benchmarks. Tab. 1 compares our benchmark
datasets with existing datasets for both visual localization and
place recognition. Datasets for place recognition [17], [57], [82],
[89], [90] often provide query images captured under different
conditions compared to the database images. However, they nei-
ther provide 3D models nor 6DOF ground truth poses. Thus, they
cannot be used to analyze the impact of changing conditions on
pose estimation accuracy. In contrast, datasets for visual local-
ization [16], [33], [37], [44], [45], [71], [72], [76], [80] often
provide ground truth poses. However, they do not exhibit strong
changes between query and database images due to relying on
feature matching for ground truth generation. A notable exception
is the Michigan North Campus Long-Term (NCLT) dataset [15],
providing images captured over a long period of time and ground
truth poses obtained via GPS and LIDAR-based SLAM. Yet, it
does not cover all viewing conditions captured in our datasets,
e.g., it does not contain any images taken at night or during rain.
To the best of our knowledge, ours are the first datasets providing
both a wide range of changing conditions and accurate 6DOF
ground truth camera poses.

Datasets such as KITTI [29], TorontoCity [93], or the Málaga
Urban dataset [7] also provide street-level image sequences. Yet,
they are less suitable for visual localization as only few places are
visited multiple times.

2D image-based localization methods approximate the pose of
a query image using the pose of the most similar photo retrieved
from an image database. They are often used for place recognition
[2], [17], [51], [68], [83], [89] and loop-closure detection [21],
[28], [59]. They remain effective at scale [4], [68], [71], [90] and
can be robust to changing conditions [2], [17], [60], [71], [83],
[89]. As a baseline, we evaluate two compact VLAD-based [34]
image-level representations: DenseVLAD [89] aggregates densely
extracted SIFT descriptors [3], [50] while NetVLAD [2] uses
learned features. Both are robust against day-night changes [2],
[89] and work well at large-scale [71].

We also evaluate the de-facto standard approach for loop-
closure detection in robotics, where robustness to changing condi-
tions is critical for long-term autonomous navigation [17], [47],
[57], [60], [83], [89]: FAB-MAP [21] is an image retrieval
approach based on the Bag-of-Words (BoW) paradigm [78] that
explicitly models the co-occurrence probability of different visual
words.

3D structure-based localization methods [44], [45], [49], [67],
[69], [84], [96] establish correspondences between 2D features in
a query image and 3D points in an SfM point cloud via descriptor
matching. These 2D-3D matches are then used to estimate the
query’s camera pose. Descriptor matching can be accelerated by
prioritization [18], [45], [69] and efficient search algorithms [23],
[52]. In large or complex scenes, descriptor matches become
ambiguous due to locally similar structures found in different parts
of the scene [44]. This results in high outlier ratios of up to 99%,
which can be handled by exploiting co-visibility information [44],
[49], [67], semantic verification [75], [87], [88] or via geometric
outlier filtering [11], [25], [42], [84], [85], [96].

As baselines, we evaluate Active Search [69] and the City-
Scale Localization approach [84], as representatives for efficient
and scalable localization methods, respectively.

Hierarchical localization methods [30], [33], [66], [67], [72],
[75] perform localization in a hierarchical fashion, combining
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TABLE 1
Comparison with existing benchmarks for place recognition and visual localization. ”Condition Changes” indicates that the viewing conditions of
the query images and database images differ. For some datasets, images were captured from similar camera trajectories. If SfM 3D models are
available, we report the number of sparse 3D points and the number of associated features. Only our datasets provide a diverse set of changing

conditions, reference 3D models, and most importantly ground truth 6DOF poses for the query images.

Image 3D SfM Model # Images Condition Changes 6DOF query
Dataset Setting Capture (# Sub-Models) Database Query Weather Seasons Day-Night poses
Alderley Day/Night [57] Suburban Trajectory 14,607 16,960 X X
Nordland [82] Outdoors Trajectory 143k X
Pittsburgh [90] Urban Trajectory 254k 24k
SPED [17] Outdoors Static Webcams 1.27M 120k X X X
Tokyo 24/7 [89] Urban Free Viewpoint 75,984 315 X
7 Scenes [76] Indoor Free Viewpoint 26,000 17,000 X
Aachen [72] Historic City Free Viewpoint 1.54M / 7.28M (1) 3,047 369
Cambridge [37] Historic City Free Viewpoint 1.89M / 17.68M (5) 6,848 4,081 X(SfM)
Dubrovnik [45] Historic City Free Viewpoint 1.89M / 9.61M (1) 6,044 800 X(SfM)
Landmarks [44] Landmarks Free Viewpoint 38.19M / 177.82M (1k) 204,626 10,000
Mall [80] Indoor Free Viewpoint 682 2296 X
NCLT [15] Outdoors & Indoors Trajectory about 3.8M X X
Rome [45] Landmarks Free Viewpoint 4.07M / 21.52M (69) 15,179 1000
San Francisco [16], [44], [71] Urban Free Viewpoint 30M / 149M (1) 610,773 442 X(SfM)
Vienna [33] Landmarks Free Viewpoint 1.12M / 4.85M (3) 1,324 266
Aachen Day-Night [70] Historic City Free Viewpoint 1.65M / 10.55M (1) 4,328 922 X X
RobotCar Seasons (updated) Urban Trajectory 6.77M / 36.15M (49) 26,580 5,616 X X X X
Extended CMU Seasons (new) Suburban Trajectory 3.37M / 17.17M (24) 60,937 56,613 X X X

the above two approaches by using image retrieval as an initial
step in a 3D-structure based approach in order to constrain the
localization problem to a smaller 3D model. This typically makes
the feature matching problem simpler, since it reduces the number
of potentially distracting features present in the full model.

Sequence-based approaches for image retrieval are used for loop-
closure detection in robotics [53], [57], [61]. Requiring a matched
sequence of images in the correct order significantly reduces
false positive rates compared to single-image retrieval approaches,
producing impressive results including direct day-night matches
with SeqSLAM [57]. We evaluate OpenSeqSLAM [82] on our
benchmark.

Multiple cameras with known relative poses can be modelled
as a generalized camera [62], i.e., a camera with multiple centers
of projection. Approaches for absolute pose estimation for both
multi-camera systems [43] and camera trajectories [12] from
2D-3D matches exist. Yet, they have never been applied for
localization in changing conditions. In this paper, we show that
using multiple images can significantly improve performance in
challenging scenarios.

Learning-based localization methods have been proposed to
solve both loop-closure detection [17], [56], [81], [83] and pose
estimation [19], [37], [92]. They learn features with stable appear-
ance over time [17], [22], [24], [58], [60], [64], [74], [91], train
classifiers for place recognition [13], [31], [36], [39], [47], [94],
and train CNNs to regress 2D-3D matches [9], [10], [76] or camera
poses [19], [37], [92]. In this paper, we evaluate approaches based
on learned robust local features [22], [24], [64], which constitute
the state-of-the-art on our benchmarks.

3 BENCHMARK DATASETS FOR 6DOF LOCALIZA-
TION

This section describes the creation of our three new benchmark
datasets. Each dataset is constructed from publicly available data,
allowing our benchmarks to cover multiple geographic locations.
We add ground truth poses for all query images and build reference
3D models (cf . Fig. 3) from images captured under a single
reference condition. Note that database images with known pose
for other conditions are provided as well for the RobotCar Seasons

and Extended CMU Seasons datasets, but these do not overlap
with any of the areas containing query images.

All three datasets present different challenges. The Aachen
Day-Night dataset focuses on localizing night-time photos against
a 3D model built from day-time imagery. The night-time images,
taken with a mobile phone using HDR post-processing, are of high
quality. The dataset represents a scenario where images are taken
with hand-held cameras, e.g., an augmented reality application.

Both the RobotCar Seasons and the Extended CMU Seasons
datasets represent automotive scenarios, with images captured
from a car. In contrast to the Aachen Day-Night dataset, both
datasets exhibit less variability in viewpoints but a larger variance
in viewing conditions. The night-time images from the RobotCar
dataset were taken from a driving car with a consumer camera with
auto-exposure. This results in significantly less well-lit images
exhibiting motion blur, i.e., images that are significantly harder
to localize (cf . Fig. 2).

The RobotCar dataset depicts a mostly urban scene with rather
static scene geometry. In contrast, the CMU dataset contains a
significant amount of vegetation. The changing appearance and
geometry of the vegetation, due to seasonal changes, is the main
challenge of this dataset.

3.1 The Aachen Day-Night Dataset
Our Aachen Day-Night dataset is based on the Aachen localization
dataset from [72]. The original dataset contains 4,479 reference
and 369 query images taken in the old inner city of Aachen,
Germany. It provides a 3D SfM model but does not have ground
truth poses for the queries. We augmented the original dataset with
day- and night-time queries captured using standard consumer
phone cameras.

To obtain ground truth poses for the day-time queries, we used
COLMAP [73] to create an intermediate 3D model from the refer-
ence and day-time query images. The scale of the reconstruction
is recovered by aligning it with the geo-registered original Aachen
model. As in [45], we obtain the reference model for the Aachen
Day-Night dataset by removing the day-time query images. 3D
points visible in only a single remaining camera were removed as
well [45]. The resulting 3D model has 4,328 reference images and
1.65M 3D points triangulated from 10.55M features.
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TABLE 2
Detailed statistics for the three benchmark datasets proposed in this paper. For each dataset, a reference 3D model was constructed using images

taken under the same reference condition, e.g., ”overcast” for the RobotCar Seasons dataset. The column training images refers to additional
images whose ground truth poses are provided, which were captured under different conditions from the reference condition.

reference model query images training
# images # 3D points # features condition conditions (# images) images

Aachen Day-Night 4,328 1.65M 10.55M day day (824), night (98) -/-
RobotCar Seasons 20,862 6.77M 36.15M overcast dawn (681), dusk (591), night (678), night+rain (609), rain (615), 5,718

(November) overcast summer / winter (633 / 492), snow (645), sun (672)
Extended CMU Seasons 10,338 3.37M 17.17M sun / no foliage sun (16,366), low sun (21,715), overcast (8,220), clouds (10,312), 50,599

(April) foliage (24,984), mixed foliage (20,932), no foliage (10,697)
urban (18,373), suburban (21,599), park (16,641)

Fig. 2. Example query images for Aachen Day-Night (top), RobotCar
Seasons (middle) and the Extended CMU Seasons (bottom) datasets.

Ground truth for night-time queries. We captured 98 night-
time query images using a Google Nexus5X phone with software
HDR enabled. Attempts to include them in the intermediate model
resulted in highly inaccurate camera poses due to a lack of
sufficient feature matches. To obtain ground truth poses for the
night-time queries, we thus hand-labelled 2D-3D matches. We
manually selected a day-time query image taken from a similar
viewpoint for each night-time query. For each selected day-time
query, we projected its visible 3D points from the intermediate
model into it. Given these projections as reference, we manually
labelled 10 to 30 corresponding pixel positions in the night-
time query. Using the resulting 2D-3D matches and the known
intrinsics of the camera, we estimate the camera poses using a
3-point solver [27], [38] and non-linear pose refinement.

To estimate the accuracy for these poses, we measure the mean
reprojection error of our hand-labelled 2D-3D correspondences
(4.33 pixels for 1600x1200 pixel images) and the pose uncertainty.
For the latter, we compute multiple poses from a subset of the
matches for each image and measure the difference in these
poses to our ground truth poses. The mean median position and
orientation errors are 36cm and 1◦. The absolute pose accuracy
that can be achieved by minimizing a reprojection error depends
on the distance of the camera to the scene. Given that the images
were typically taken 15 or more meters from the scene, we
consider the ground truth poses to be reasonably accurate.

3.2 The RobotCar Seasons Dataset
Our RobotCar Seasons dataset is based on a subset of the publicly
available Oxford RobotCar Dataset [54]. The original dataset
contains over 20M images recorded from an autonomous vehicle
platform over 12 months in Oxford, UK. Out of the 100 available
traversals of the 10km route, we select one reference traversal in
overcast conditions and nine query traversals that cover a wide
range of conditions (cf . Tab. 2). All selected images were taken
with the three synchronized global shutter Point Grey Grasshop-
per2 cameras mounted to the left, rear, and right of the car. Both
the intrinsics of the cameras and their relative poses are known.

The reference traversal contains 26,121 images taken at 8,707
positions, with 1m between successive positions. Building a single
consistent 3D model from this data is very challenging, both due
to sheer size and the lack of visual overlap between the three
cameras. We thus built 49 non-overlapping local submaps, each
covering a 100m trajectory. For each submap, we initialized the
database camera poses using vehicle positions reported by the
inertial navigation system (INS) mounted on the RobotCar. We
then iteratively triangulated 3D points, merged tracks, and refined
both structure and poses using bundle adjustment. The scale of the
reconstructions was recovered by registering them against the INS
poses. The reference model contains all submaps and consists of
20,862 reference images and 6.77M 3D points triangulated from
36.15M features.

We obtained images from the other traversals by selecting
reference positions inside the 49 submaps and gathering all images
from the nine other traversals with INS poses within 10m of one
of these positions. This resulted in 11,934 images in total, where
triplets of images were captured at 3,978 distinct locations. These
images were grouped into 460 temporal sequences based on the
timestamps of the images.

Compared to [70], we have now, in addition to the images in
the reference traversal, also publicly released around half of the
camera poses for the images from the other traversals (and thus
captured during different conditions), for a total of 26,580 images.
The camera poses of the remaining 5,616 images are used as a
hidden test set in the long-term visual localization benchmark for
the RobotCar Seasons dataset.

Ground truth poses for the queries. Due to GPS drift, the INS
poses for these other traversals cannot be directly used as ground
truth. Again, there are not enough feature matches between day-
and night-time images for SfM. We thus used the LIDAR scanners
mounted to the vehicle to build local 3D point clouds for each
of the 49 submaps under each condition. These models were then
aligned to the LIDAR point clouds of the reference trajectory using
ICP [6]. The camera trajectory is then obtained from the known
relative pose between the camera and LIDAR. Many alignments
needed to be manually adjusted to account for changes in scene
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Fig. 3. 3D models of the Aachen Day-Night (left, showing database (red), day-time query (green), and night-time query images (blue)), RobotCar
Seasons (middle), and Extended CMU Seasons (right) datasets. For RobotCar and CMU, the colors encode the individual submaps.

structure over time (often due to building construction and road
layout changes). The final median RMS errors between aligned
point clouds was under 0.10m in translation and 0.5◦ in rotation
across all locations. The alignments provided ground truth poses
for these images.

3.3 The Extended CMU Seasons Dataset
The Extended CMU Seasons Dataset is based on a subset of
the CMU Visual Localization Dataset [5], which contains more
than 100K images recorded by the Computer Vision Group at
Carnegie Mellon University over a period of 12 months in Pitts-
burgh, PA, USA. The images were collected using a rig of two
cameras mounted at approximately 45 degrees forward/left and
forward/right angles on the roof of an SUV. The vehicle traversed
an 8.5 km long route through central and suburban Pittsburgh 16
times with a spacing in time of between 2 weeks up to 2 months.
Out of the 16 traversals, we selected the one from April 4 as the
reference, and then 11 query traversals were selected such that
they cover the range of variations in seasons and weather that the
dataset contains.

As with the RobotCar Seasons dataset, we publicly release all
images and corresponding ground truth poses for the reference
traversal, in addition to around half of the ground truth poses from
the other traversals, for a total of 60,937 images. The remaining
half remain private as a test set for benchmarking purposes.
Compared to the original CMU Seasons dataset from [70], the
Extended CMU Seasons dataset is considerably larger: it contains
around 42% more images, and the number of publicly available
camera poses has been increased by a factor 8.5. More importantly,
the publicly available poses now contain images taken under a
wide range of environmental conditions.

Ground truth poses for the queries. As with the RobotCar
dataset, the GPS is not accurate enough and the CMU dataset
is also too large to build one 3D model from all the images.
The full sequences were split up into 24 shorter sequences, each
containing about 250 consecutive vehicle poses. For each short
sequence, a 3D model was built using bundle adjustment of SIFT
points tracked over several image frames using the system in
[26]. The resulting submaps of the reference route were merged
with the corresponding submaps from the other traversals by
using global bundle adjustment and manually annotating image
correspondences across sequences collected during different dates.
Reprojection errors are within a few pixels for all 3D points and
the distances between estimated camera positions and expected
ones (based on neighbouring cameras) are under 0.10m. The
resulting reference model consists of 3.37M 3D points triangulated
from 17.17M features in 10,338 database images.

4 BENCHMARK SETUP
The datasets are available for download from the benchmark web-
site, where we are also hosting an evaluation server. To evaluate a
method, a file containing the estimated 6 DoF poses for images in
the test set is uploaded to the server, and the localization results are
automatically computed, reported and ranked in the leaderboard.
Since the original publication of this paper, many new submissions
have arrived, and considerable progress has been made on the
benchmarks. Below we present the evaluation measures used to
benchmark performance, and in Sec. 6, results for the current top-
performing methods are presented and discussed.

Evaluation measures. We measure the pose accuracy of a
method by the deviation between the estimated and the ground
truth pose. The position error is measured as the Euclidean
distance ‖cest − cgt‖2 between the estimated cest and the ground
truth position cgt. The absolute orientation error |α|, measured as
an angle in degrees, is computed from the estimated and ground
truth camera rotation matrices Rest and Rgt. We follow standard
practice [32] and compute |α| as 2 cos(|α|) = trace(R−1

gt Rest)−1,
i.e., we measure the minimum rotation angle required to align both
rotations [32].

We measure the percentage of query images localized within
Xm and Y ◦ of their ground truth pose. We define three pose ac-
curacy intervals by varying the thresholds: High-precision (0.25m,
2◦), medium-precision (0.5m, 5◦), and coarse-precision (5m, 10◦).
These thresholds were chosen to reflect the high accuracy required
for autonomous driving. We use the intervals (0.5m, 2◦), (1m, 5◦),
(5m, 10◦) for the Aachen night-time queries to account for the
higher uncertainty in our ground truth poses. Still, all regimes are
more accurate than consumer-grade GPS systems.

Multi-camera methods and optimistic baselines. In order to
measure the benefit of using multiple images for pose estimation,
we have evaluated three approaches: OpenSeqSLAM [82] is based
on image retrieval and enforces that the images in the sequence
are matched in correct order. Knowing the relative poses between
the query images, we can model them as a generalized camera
[62]. Given 2D-3D matches per individual image (estimated via
Active Search), we estimate the pose via a generalized absolute
camera pose solver [43] inside a RANSAC loop. We denote this
approach as Active Search+GC (AS+GC). We mostly use ground
truth query poses to compute the relative poses that define the
generalized cameras1. Thus, AS+GC provides an upper bound on
the number of images that can be localized when querying with
generalized cameras.

1. Note that Active Search+GC only uses the relative poses between the
query images to define the geometry of a generalized camera. It does not use
any information about the absolute poses of the query images.
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Additionally, we evaluate PFSL [79], a particle-filter based
approach that performs localization by reasoning solely using
semantic information. See Sec. 5 for details.

In order to measure how hard our datasets are, we also
implemented two optimistic baselines. Both assume that a set of
relevant database images is known for each query. Both perform
pairwise image matching and use the known ground truth poses for
the reference images to triangulate the scene structure. The feature
matches between the query and reference images and the known
intrinsic calibration are then used to estimate the query pose.
The first optimistic baseline, LocalSfM, uses upright RootSIFT
features [3], [50]. The second uses upright CNN features densely
extracted on a regular grid. We use the same VGG-16 network [77]
as NetVLAD. The DenseSfM method uses coarse-to-fine matching
with conv4 and conv3 features.

We select the relevant reference images for the two baselines
as follows: For Aachen, we use the manually selected day-time
image (cf . Sec. 3.1) to select up to 20 reference images sharing
the most 3D points with the selected day-time photo. For RobotCar
and CMU, we use all reference images within 5m and 135◦ of the
ground truth query pose.

We also evaluated PoseNet [37] but were not able to obtain
competitive results. We also attempted to train DSAC [9] on KITTI
but were not able to train it. Both PoseNet and DSAC were thus
excluded from further evaluations.

5 DETAILS ON THE EVALUATED ALGORITHMS

In this section we provide brief descriptions of each of the top
performing methods, so that we can try to reason about what
it is that makes a method perform well in the long-term visual
localization scenario. Many methods are combinations of image
retrieval methods and structure-based localization methods, so we
start this section by briefly introducing some of the more common
methods used as building blocks, and end with the composite
approaches that combine these building blocks, referred to here
as hierarchical approaches. In this way we may more clearly see
what each individual method brings to the table.

5.1 2D Image-based Localization
By 2D image-based localization methods, or image retrieval
methods, we here mean methods which do not employ any
kind of 3D reasoning when computing the pose of the query
image. Methods which fall into this category typically pose the
localization problem as an image search problem. Given the query
image, together with a set of database images whose camera pose
is fully known (perhaps from GPS data or from a structure-from-
motion reconstruction), the pose of the query image is typically
approximated as the pose of the visually most similar image in
the database set. Typically, the most similar image is found by
computing a single global image descriptor for the query image
and all database images, and then finding the nearest neighbour to
the query descriptor in the set of database descriptors.

DenseVLAD. DenseVLAD [89] computes the global image
descriptor by extracting SIFT features on a dense, regular grid on
the image at different scales. This is done instead of extracting
features at, for example, difference-of-Gaussian extrema, since
it has been noted that the repeatability of feature detectors de-
teriorates with increasing viewpoint and lighting changes. The
extracted descriptors are then clustered based on a vector of locally
aggregated decriptors (VLAD) approach [35].

NetVLAD. NetVLAD [2] is a CNN which uses a differentiable
VLAD layer to encode an image into a global image descriptor.
The VLAD layer is placed at the final feature map of a CNN made
for image classification, such as AlexNet or VGG 16, and performs
pooling of the features in that layer. The network has been trained
on Google Time Machine data in a weakly supervised manner
based on a triplet ranking loss.

ToDayGAN. ToDayGAN [1] is a style-transfer network that
performs night-to-day image translation for the purpose of image
retrieval-based visual localization. Night-time images are trans-
lated to daytime images, followed by extraction of a DenseVLAD
descriptor.

Localizing Visual Landmarks for Place Recognition. This
learning based image retrieval method [95] is based on the idea
that for the visual place recognition problem, not all parts of
an image are useful for describing the image. Thus a landmark
localization network which outputs dense local features as well as
a heatmap showing the saliency (or distinctiveness) of each local
feature is trained in a weakly supervised manner using only image
level annotations (i.e. no pixel-level annotations of saliency). The
similarity of two images may then be computed by matching
features between the images, and summing the cosine-similarity
of all matches, together with a weight depending on the spatial
distribution of the matches.

5.2 Structure-based approaches
Unlike image-based localization, structure-based approaches em-
ploy a 3D representation constructed from the database images to
perform visual localization. Typically, an SfM model is built from
the database images, and the camera pose of the query image is
computed by first establishing 2D-3D correspondences between
the query image and the point cloud, and then performing camera
pose estimation using these correspondences. These methods typ-
ically differ in which type of local image feature is used to build
the model and establish matches, which matching strategy is used
to establish matches, how the pose is computed from the matches,
if outlier rejection is performed on the matches, and so on.

Active Search. Active Search [69] is a feature matching
strategy which uses a quantization of the descriptor space in order
to accelerate feature matching. For each feature in the image,
matching is only performed to 3D points assigned to the same
visual word [78], and image features are matched in ascending
order, in the sense that image features assigned to a visual word
with the fewest 3D points assigned to it, are matched first. When
a match is found, the vicinity of that 3D point is examined for
possible matches back into the image.

CityScaleLocalization. CityScaleLocalization [84] is a localiza-
tion approach that employs an outlier rejection strategy to reject
correspondences which cannot be a part of the optimal camera
pose. The method is based on knowledge of the vertical direction,
as well as an approximate height of the camera above ground.
Under these circumstances, if one correspondence is assumed to
be an inlier, an upper bound to the number of inliers for the
best camera pose can be computed. If this is below the number
of inliers found in the best pose candidate found so far, this
correspondence can be permanently removed from consideration
without affecting the solution.

Semantic Match Consistency. The Semantic Match Consistency
approach [88] is a soft outlier rejection method, similar to the
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CityScaleLocalization method but which incorporates scene se-
mantics. Given knowledge about the gravity direction and camera
height, assuming a 2D-3D correspondence is correct constrains the
camera center to lie on a circle. This circle can then be traversed
and the 3D structure projected down into the hypothesized camera
centers along the circle. The consistency between the semantic
labelling of the projected structure, and the actually observed
labelling of the query image yields a soft inlier-outlier likelihood
score for this correspondence.

Match Consistency with Fine-Grained Segmentations. The
fine-grained segmentation match consistency method [41] is a
structure-based method that computes the camera pose using PnP
RANSAC on 2D-3D correspondences established by matching
SIFT features, with an additional outlier filtering step based on
semantics. Specifically, all 2D-3D matches whose 2D point has a
semantic label which disagrees with its corresponding 3D point
are discarded immediately after matching. This can be done using
e.g. Cityscapes classes [20], or more fine-grained semantic classes
learned in a self-supervised manner [41].

DGCNCCC. The Dense Geometric Correspondence Network
(DGC-Net) [55] is a network for estimating dense correspon-
dences between images. It takes as input two images and outputs
the deformation field that maps one to the other. It is trained
on both a synthetic dataset containing homographically warped
images, as well as a real dataset containing true correspondences
obtained via dense reconstruction.

5.3 Learned local image features

SuperPoint. SuperPoint [22] is a CNN which takes an image as
an input and outputs local image features. The network consists of
one shared encoder, and two decoder heads: one outputs a heatmap
of detection scores, while the other outputs dense descriptors over
the image. The network is trained in a self-supervised manner,
where ground truth detections are generated for an unlabelled
image by applying a detector, trained on synthetic data, to several
warped versions of the image, and then warping back all detections
into the original image.

D2-Net. D2-Net [24] is a learned feature detector and descriptor.
It is a CNN which takes an image as input, and outputs a set
of feature detections over the image, as well as a descriptor for
each pixel in the image. The network consists of a single CNN
which performs detection and description jointly; the descriptors
correspond to the depth dimension of the tensor output by the
network, and the detections correspond to those pixels which have
a local maximum in one of their feature maps. The network is
trained in a supervised manner on correspondences obtained from
the MegaDepth [46] dataset.

5.4 Hierarchical Methods
The image retrieval and structure-based methods have different
strengths and weaknesses, and stronger methods can of course be
created by combining these two approaches. Under this section
we have collected the methods that explicitly start with an image
retrieval step to reduce the search space for a structure-based
method.

Hierarchichal Localization. The Coarse-to-fine hierarchical
localization method [66] combines image retrieval and structure-
based approaches by first performing image retrieval to find a set

of database images which are likely to be close to the query image.
These shortlisted images are then clustered into a set of distinct
places based on their covisibility graphs. For each place, a local 3D
model is extracted from the full map, and localization is performed
independently to each local model, keeping the best pose. Further,
the local and global descriptors are distilled into a MobileNet [65]
based CNN architecture, allowing efficient inference on mobile
devices.

Visual Localization Using a Sparse Semantic 3D Map. This
method [75] combines NetVLAD with structure-based pose es-
timation using SIFT features. Specifically, NetVLAD is used to
retrieve a shortlist of database images. Local image features are
then matched between the query image and each of the k retrieved
images. For each of the k images, camera pose estimation is
performed using PnP RANSAC, with the modification that the
quality of the pose is based on the consistency of the semantic
reprojection, as opposed to the traditional inlier counting. This
gives a score for each database image. Lastly, all 2D-3D matches
are pooled together, and PnP is performed to solve for the
pose, where the scores for each database image is used to bias
RANSAC’s sampling to prefer correspondences from database
images with higher semantic consistency score.

Asymmetric Hypercolumn Matching. Like the above two
methods, this method [30] starts with an image retrieval step using
NetVLAD descriptors to obtain a shortlist of images from the
database that may contain visual overlap with the query image.
Sparse-to-dense matching is then performed between the sparse
features found in the database image (extracted using SuperPoint
detections, and Hypercolumn features, i.e., features extracted from
the feature layers of the VGG backbone of the NetVLAD net-
work), and dense features extracted from the query image. In other
words, each sparse feature in the retrieved database images (with
known 3D position) is matched exhaustively to the dense features
of the query. This bypasses the problem of non-repeatability of
feature detectors during changing conditions [97].

5.5 Sequential and Multi-Camera Methods

By sequential methods, we refer to methods that use more than
a single query image during pose estimation. This provides ad-
ditional information, especially for the Extended CMU Seasons
dataset, which consists of a sequence of timestamped images
captured from a synchronized stereo rig. More accurate poses can
here be obtained by exploiting the temporal consistency, making
the results of these methods not directly comparable to methods
which only utilize a single image.

PFSL. The PFSL method [79] is a particle filter-based semantic
localization method, which performs filtering on a sequence of
timestamped images and corresponding IMU data. It is only
evaluated on the Extended CMU Seasons dataset, and uses a
motion model based on simulated IMU data generated from
(noisy versions of) the ground truth camera poses. The likelihood
function for a given pose is based on how well the reprojection
of a semantically labelled 3D point cloud matches the observed
semantic labelling in the current query image. It is worth noting
that explicit 2D-3D matching of local features is completely absent
from this pipeline, and the method is thus not dependent on the
invariance of local descriptors towards environmental changes to
perform well.
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SeqSLAM. SeqSLAM [57] is an image retrieval based approach
that matches temporally coherent sequences of images using a
similarity measure based on the correlation of the intensities in
the images. The presented result are from the OpenSeqSLAM
implementation from [82] with default parameters for template
learning and trajectory uniqueness.

5.6 Optimistic Baselines

We also implemented two optimistic baselines, which are provided
some information about the ground truth camera pose for each
image. Specifically, for each query image, we provide a small set
of reference images depicting the same part of the model. The re-
maining problem is to establish sufficiently many correspondences
between the query and the selected reference images to facilitate
camera pose estimation. Thus, both approaches measure an upper
bound on the pose quality that can be achieved with a given type
of local feature.

LocalSfM. Given a query image and its relevant set of refer-
ence images, LocalSfM first extracts upright RootSIFT [3], [50]
features. Next, LocalSfM performs exhaustive feature matching
between the relevant reference images as well as between the
query and the relevant reference images. While Active Search
uses Lowe’s ratio test2, LocalSfM neither uses the ratio test nor
a threshold on the maximum descriptor distance. Instead, it only
requires matching features to be mutual nearest neighbors. Given
the known poses and intrinsics for the reference images, LocalSfM
triangulates the 3D structure of the scene using the previously
established 2D-2D matches. Notice that the resulting 3D model is
automatically constructed in the global coordinate system of the
reference 3D model. Finally, we use the known intrinsics of the
query image and the feature matches between the query and the
reference images to estimate the camera pose of the query.

For each query image, the relevant set of reference images
is selected as follows: For the RobotCar Seasons dataset, we use
the ground truth pose of each query image to identify a relevant
set of reference images. More precisely, we select all reference
images whose camera centers are within 5m of the ground truth
position of the query and whose orientations are within 135◦ of
the orientation of the query image.

As explained in Sec. 3.2 of the paper, we manually select
a day-time query image taken from a similar viewpoint for each
night-time query photo in the Aachen Day-Night dataset. The day-
time queries were included when constructing the intermediate
model. Thus, their ground truth poses as well as a set of 3D
points visible in each of them are obtained from the intermediate
structure-from-motion model. For each day-time query, we select
up to 20 reference images that observe the largest number of the
3D points visible in the day-time query. These reference images
then form the set of relevant images for the corresponding night-
time query photo.

LocalSfM is implemented using COLMAP [73]. It is rather
straight-forward to replace upright RootSIFT features with other
types of local features. Our implementaton is publicly available3.

DenseSfM. DenseSfM modifies the LocalSfM approach by
replacing RootSIFT [3] features extracted at DoG extrema [50]
with features densely extracted from a regular grid [8], [48]. The

2. Active Search uses a ratio test threshold of 0.7 for 2D-to-3D and a
threshold of 0.6 for 3D-to-2D matching.

3. https://github.com/tsattler/visuallocalizationbenchmark

goal of this approach is to increase the robustness of feature
matching between day- and night-time images [89], [97]. We
used convolutional layers (conv4 and conv3) from a VGG-16 net-
work [77], which was pre-trained as part of the NetVLAD model
(Pitts30k), as features. We generated tentative correspondences
by matching the extracted features in a coarse-to-fine manner:
We first match conv4 features and use the resulting matches
to restrict the correspondence search for conv3 features. As for
LocalSfM, we performed exhaustive pairwise image matching.
The matches are verified by estimating up to two homographies
between each image pair via RANSAC [27]. The resulting verified
feature matches are then used as input for COLMAP [73]. The
reconstruction process is the same as for LocalSfM, i.e., we first
triangulate the 3D points and then use them to estimate the pose
of the night-time query. DenseSfM uses the same set of reference
images for each query photo as LocalSfM.

6 EXPERIMENTAL EVALUATION
This section presents the results of the current top performing
methods for each of the three datasets, as well as a discussion
where we attempt to identify the general strategies and pipelines
that seem to perform well in the long-term localization scenario. In
the benchmark, we have focused on pose accuracy, as described in
Sec. 4. Only submitted methods with an accompanying article and
methods that were presented at the Long-Term Visual Localization
under Changing Conditions workshop during the Computer Vision
and Pattern Recognition (CVPR) conference in 2019 are included.

The results on the three datasets are shown in Tab. 3, 4, and
7. Fig. 4 shows a summary of these results for a subset of the
methods, in order to easier get an overview of the performance of
the different methods. Note that the methods have been grouped
into four different categories in order to get a better overview of
the results. This categorization is based on the rough taxonomy
of visual localization methods which was introduced in Sec. 5.
These groupings correspond to sequential methods, hierarchi-
cal methods, structure-based methods, and image-retrieval based
methods. Within each group, the methods are ranked in order of
decreasing performance, with the best-performing method at the
top. Grouping together the methods in this manner may of course
change the global ordering of the methods, but it turned out that on
these datasets these groupings are fairly natural, in the sense that
methods in the same group tend to exhibit similar performance.

6.1 Evaluation on the Aachen Day-Night Dataset
The focus of the Aachen Day-Night dataset is on benchmarking
the pose accuracy obtained by state-of-the-art methods when
localizing night-time queries against a 3D model constructed from
day-time imagery. In order to put the results obtained for the night-
time queries into context, the methods are also evaluated on the
824 day-time queries. As shown in Tab. 3, the best-performing
hierarchical and structure-based methods generally succeed in
localizing most of the day-time query images, even in the high-
precision regime. We conclude that the Aachen dataset is not
particularly challenging for the day-time query images.

Night-time queries. Tab. 3 also reports the results obtained for the
night-time queries. For the structure-based methods, we observe
a significant drop in accuracy over all precision regimes when
localizing night-time images. Given that the night-time queries
were taken from similar viewpoints as the day-time queries, this
drop is solely caused by the day-night change.

https://github.com/tsattler/visuallocalizationbenchmark
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Fig. 4. Performance on the three datasets of some of the top performing methods. Results are shown for the three precision regimes fine, medium
and coarse (see the individual tables for details on these). The CityScaleLocalization and DenseVLAD methods are included in the figures as well,
as representatives of the structure-based and image-retrieval based methods, respectively.

TABLE 3
Performance of state-of-the-art methods on the Aachen Day-Night

dataset.

day night
m

deg
.25 / .50 / 5.0

2 / 5 / 10
.5 / .1 / 5.0
2 / 5 / 10

Optimistic baselines
DenseSfM 39.8 / 60.2 / 84.7
LocalSfM 36.7 / 54.1 / 72.4
Hierarchical methods
NetVLAD & D2-Net - multi-scale [2], [24] 84.8 / 92.6 / 97.5 43.9 / 66.3 / 85.7
Vis. Loc. Using Sparse Semantic 3D Map [75] 71.8 / 91.5 / 96.8 40.8 / 63.3 / 80.6
DenseVLAD & D2-Net - multi-scale [24], [89] 83.1 / 90.9 / 95.5 40.8 / 62.2 / 80.6
Hierarchical-Loc. NetVLAD, SuperPoint [66] 80.5 / 87.4 / 94.2 42.9 / 62.2 / 76.5
Hierarchical-Loc. (multi-cam) [66] 80.5 / 87.4 / 94.2 42.9 / 62.2 / 76.5
Asymmetric Hypercolumn Matching [30] 47.8 / 72.2 / 91.3 30.6 / 53.1 / 78.6
Structure-based methods
Active Search v1.1 85.3 / 92.2 / 97.9 27.6 / 38.8 / 56.1
CityScaleLocalization [84] 52.3 / 80.0 / 94.3 24.5 / 33.7 / 49.0
DGCNCCC [55] 22.9 / 49.8 / 84.7 19.4 / 37.8 / 68.4
Image-retrieval based methods
Loc. Vis. Landmarks for 2D matching [95] 62.4 / 71.8 / 79.9 24.5 / 35.7 / 44.9
DenseVLAD [89] 0.0 / 0.1 / 22.8 0.0 / 2.0 / 14.3
NetVLAD [2] 0.0 / 0.2 / 18.9 0.0 / 2.0 / 12.2
Loc. Vis. Landmarks for Place Recognition [95] 0.0 / 0.2 / 20.8 0.0 / 1.0 / 10.2
FAB-MAP [21] 0.0 / 0.0 / 4.6 0.0 / 0.0 / 0.0

It is interesting to note that while the hierarchical methods
experience a large drop for night-time images in the high-precision
regime, the drop in accuracy for the coarse-precision regime is
much less severe. This seems to indicate that the reduced search
space caused by the initial image retrieval step significantly helps
the feature matching problem by restricting the 2D-3D correspon-
dence search to a much smaller space, reducing the impact of
visually similar false positives.

However, the performance of the image retrieval methods
alone, using no structure-based spatial reasoning to aid in the
ranking, is quite poor. Note that these methods simply output the
pose of the top-retrieved database image, so the poor performance
in the high-precision regime should not be surprising. This dataset
is a challenging one for pure image retrieval method due to the
viewpoint differences between the database and query images,
making it quite unlikely that the top retrieved database image
should lie very close to the true pose of the query image.

If more than one database image is retrieved, the known 3D
structure of the scene may be used to re-rank the candidates.
There is thus a clear synergistic effect between the image retrieval
and structure-based methods: the structure-based methods can be
used to exclude visually similar but geometrically incompatible
candidates, and the top retrieved candidates may then in turn
be used to reduce the search space for the feature matching
when establishing correspondences to be used for camera pose
estimation. This effect is evident in the good performance of the
hierarchical methods.

LocalSfM, despite knowing relevant reference images for each
query, completely fails to localize about 20% of all queries.
This is caused by a lack of correct feature matches for these
queries, either due to failures of the feature detector or descriptor.
DenseSfM skips feature detection and directly matches densely
extracted CNN descriptors (which encode higher-level information
compared to the gradient histograms used by RootSIFT). This
enables DenseSfM to localize more images at a higher accuracy.
Still, there is significant room for improvement, even in the coarse-
precision regime (cf . Tab. 3). Also, extracting and matching dense
descriptors is a time-consuming task.

6.2 Evaluation on the RobotCar Seasons Dataset
The focus of the RobotCar Seasons dataset is to measure the
impact of different seasons and illumination conditions on pose
estimation accuracy in an urban environment.

On the Aachen Day-Night dataset, the image retrieval-based
methods performed overall considerably worse than structure-
based methods and hierarchical methods. For the RobotCar
dataset, the image retrieval methods essentially achieve the same
coarse-precision performance as the structure-based and hierarchi-
cal methods, but with hierarchical methods being slightly better
in this regime. This improved performance of image-retrieval
methods is caused by the lower variation in viewpoints between
database and query images as the car follows the same road. The
poorer performance in the higher precision regimes should not
be surprising, since these methods are constrained to outputting
camera poses that coincide with one of the database images.
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TABLE 4
Performance of state-of-the-art methods on the RobotCar Seasons dataset.

day conditions night conditions
dawn dusk OC-summer OC-winter rain snow sun night night-rain

m
deg

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

Sequential methods
SeqSLAM [57] 3.1 / 9.7 / 15.4 0.5 / 7.1 / 22.8 0.0 / 2.4 / 80.6 0.0 / 4.3 / 13.4 9.8 / 4.9 / 22.0 2.3 / 11.6 / 27.4 0.0 / 1.3 / 3.1 0.0 / 0.0 / 1.3 1.0 / 3.0 / 4.9
Hierarchical methods
Vis. Loc. Using Sparse Semantic 3D Map [75] 58.1 / 93.8 / 99.1 76.6 / 95.4 / 100.0 47.4 / 94.3 / 100.0 51.2 / 98.8 / 100.0 78.5 / 94.6 / 100.0 65.1 / 97.7 / 100.0 55.4 / 83.0 / 99.1 13.3 / 32.3 / 51.8 15.3 / 40.4 / 51.7
Hierarchical-Localization (multi-cam) [66] 60.4 / 91.6 / 99.6 70.1 / 95.9 / 100.0 52.1 / 93.4 / 99.5 54.3 / 98.8 / 100.0 77.1 / 93.7 / 100.0 69.3 / 97.7 / 100.0 60.3 / 82.6 / 96.0 16.4 / 31.4 / 52.2 10.8 / 33.0 / 43.8
DenseVLAD & D2-Net [24] 56.4 / 93.8 / 99.6 77.2 / 95.9 / 100.0 43.6 / 91.0 / 98.1 53.7 / 96.3 / 100.0 77.1 / 94.6 / 100.0 64.7 / 95.8 / 99.1 56.2 / 79.0 / 92.4 27.0 / 48.7 / 59.7 25.6 / 45.8 / 56.7
ToDayGAN, NetVLAD, D2-Net 51.5 / 89.4 / 96.5 73.1 / 95.4 / 100.0 43.1 / 94.3 / 99.5 50.0 / 95.7 / 100.0 74.6 / 94.6 / 100.0 62.3 / 95.3 / 100.0 56.2 / 85.7 / 99.1 19.9 / 54.4 / 81.0 25.6 / 62.1 / 86.7
Hierarch.-Loc. NetVLAD+SuperPoint [66] 54.2 / 83.7 / 92.5 65.5 / 94.4 / 100.0 51.7 / 91.9 / 97.2 55.5 / 98.2 / 100.0 75.1 / 93.2 / 100.0 70.2 / 96.3 / 100.0 58.9 / 86.2 / 97.8 13.3 / 24.8 / 41.2 3.9 / 16.3 / 30.5
Asymmetric Hypercolumn Matching [30] 48.9 / 86.3 / 98.2 61.4 / 92.9 / 99.5 45.5 / 88.6 / 95.3 45.7 / 95.7 / 100.0 71.2 / 93.7 / 100.0 62.3 / 94.0 / 100.0 48.2 / 82.6 / 95.5 20.8 / 67.7 / 96.9 35.0 / 82.8 / 100.0
Structure-based methods
Semantic Match Consistency [88] 56.4 / 94.7 / 100.0 72.6 / 94.9 / 100.0 44.5 / 93.8 / 100.0 47.6 / 95.7 / 100.0 78.0 / 94.6 / 100.0 60.5 / 97.7 / 100.0 52.2 / 80.8 / 100.0 10.2 / 26.5 / 50.9 7.4 / 33.5 / 48.8
Active Search v1.1 w/ pose prior 53.7 / 94.7 / 100.0 72.1 / 94.9 / 100.0 40.3 / 90.0 / 100.0 43.9 / 98.2 / 100.0 78.5 / 93.7 / 100.0 63.7 / 97.2 / 100.0 50.0 / 76.3 / 98.2 11.1 / 17.3 / 35.0 8.4 / 26.1 / 36.0
Act. Search on Seq. of Triplets (uses GT info.) 52.4 / 94.7 / 100.0 64.5 / 95.9 / 100.0 22.7 / 95.7 / 100.0 45.1 / 100.0 / 100.0 72.2 / 95.1 / 100.0 61.9 / 94.0 / 100.0 53.6 / 79.9 / 100.0 4.0 / 17.3 / 42.5 6.9 / 35.0 / 52.2
Active Search on Camera Triplets 55.5 / 93.4 / 100.0 58.9 / 89.3 / 100.0 37.9 / 92.4 / 100.0 48.2 / 95.1 / 100.0 68.3 / 93.7 / 100.0 58.6 / 95.8 / 100.0 52.2 / 77.7 / 91.5 1.3 / 4.9 / 10.2 2.0 / 11.3 / 14.3
Active Search v1.1 50.2 / 92.5 / 99.6 64.5 / 94.9 / 100.0 37.4 / 88.2 / 97.6 41.5 / 96.3 / 100.0 74.6 / 93.7 / 100.0 56.7 / 93.5 / 99.5 37.1 / 64.3 / 88.4 2.7 / 7.1 / 12.4 1.0 / 15.3 / 21.2
CityScaleLocalization [84] 54.2 / 89.4 / 96.9 75.1 / 95.4 / 100.0 37.4 / 82.9 / 91.5 48.2 / 96.3 / 100.0 73.7 / 94.6 / 100.0 61.4 / 94.9 / 97.2 33.9 / 52.7 / 71.0 0.4 / 1.3 / 6.2 1.0 / 5.4 / 12.8
DGCNCCC [55] 7.9 / 30.8 / 85.0 12.2 / 45.7 / 96.4 9.0 / 35.5 / 93.8 3.7 / 17.1 / 92.7 17.6 / 48.8 / 96.6 8.8 / 32.6 / 95.8 4.0 / 15.6 / 87.1 0.0 / 0.4 / 10.6 0.0 / 2.0 / 17.2
Image-retrieval based methods
Localizing Vis. Landm. for 2D matching [95] 60.4 / 93.0 / 99.1 70.1 / 93.9 / 99.0 51.2 / 93.8 / 99.1 54.9 / 95.7 / 98.2 75.1 / 94.1 / 99.5 64.2 / 96.7 / 98.1 58.0 / 83.9 / 95.5 17.3 / 35.8 / 65.0 13.8 / 38.9 / 63.5
DenseVLAD (single-scale, top-1 interp.) 15.0 / 40.1 / 95.6 12.2 / 40.6 / 99.0 13.3 / 36.0 / 89.6 13.4 / 39.0 / 100.0 20.0 / 54.6 / 100.0 11.6 / 44.2 / 96.3 4.9 / 20.5 / 77.7 1.8 / 7.1 / 28.3 2.5 / 9.9 / 27.1
DenseVLAD (single-scale) [89] 13.7 / 41.0 / 95.6 8.6 / 37.1 / 99.0 9.5 / 35.5 / 89.1 1.8 / 31.1 / 100.0 14.1 / 49.3 / 100.0 13.0 / 40.5 / 96.3 7.1 / 19.2 / 77.7 2.2 / 6.6 / 28.3 1.5 / 6.9 / 26.6
ToDayGAN + DenseVLAD [1] 15.4 / 45.8 / 97.4 7.6 / 35.5 / 98.5 9.0 / 30.3 / 88.2 2.4 / 28.0 / 97.6 13.7 / 50.7 / 100.0 10.2 / 38.1 / 93.5 8.0 / 22.3 / 78.1 0.9 / 9.3 / 59.3 3.0 / 16.7 / 53.2
DenseVLAD [89] 15.4 / 45.8 / 97.4 7.6 / 35.5 / 98.5 9.0 / 30.3 / 88.2 2.4 / 28.0 / 97.6 13.7 / 50.7 / 100.0 10.2 / 38.1 / 93.5 8.0 / 22.3 / 78.1 0.9 / 4.4 / 24.3 2.5 / 5.9 / 25.1
Localizing Vis. Landm. for Place Rec. [95] 13.2 / 38.3 / 81.9 7.1 / 28.4 / 89.3 7.6 / 31.8 / 87.7 2.4 / 26.8 / 91.5 13.7 / 44.9 / 97.6 11.2 / 35.8 / 86.0 12.1 / 33.0 / 89.3 6.2 / 18.1 / 58.4 5.9 / 19.7 / 66.5
NetVLAD [2] 10.1 / 28.2 / 87.7 4.6 / 25.4 / 97.5 10.0 / 35.1 / 97.6 2.4 / 28.0 / 100.0 12.2 / 46.8 / 100.0 8.8 / 32.6 / 95.3 8.5 / 22.8 / 88.8 0.0 / 0.9 / 18.1 0.5 / 2.0 / 13.3
FAB-MAP [21] 2.2 / 5.3 / 10.6 2.5 / 18.3 / 57.4 0.9 / 9.5 / 30.8 0.6 / 14.0 / 46.3 12.2 / 40.5 / 92.2 3.3 / 8.8 / 28.4 0.0 / 0.0 / 0.9 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0

TABLE 5
Using multiple images for pose estimation (ActiveSeach+GC) on the

RobotCar Seasons dataset.

all day all night
m

deg
.25 / .50 / 5.0

2 / 5 / 10
.25 / .50 / 5.0

2 / 5 / 10
ActiveSearch v1.1 51.7 / 88.6 / 97.7 1.9 / 11.0 / 16.6
CSL 54.6 / 85.9 / 93.3 0.7 / 3.3 / 9.3

ActiveSearch+GC (triplet) 54.3 / 90.9 / 98.7 1.6 / 7.9 / 12.1
ActiveSearch+GC (sequence, GT) 53.3 / 93.3 / 100.0 5.4 / 25.6 / 47.1
SeqSLAM 1 / 6 / 15.9 0.5 / 1.4 / 3

Compared to Aachen Day-Night, there is an even stronger drop
in pose accuracy between day and night for the RobotCar dataset.
All methods fail to localize a significant number of queries for
both the high- and medium-precision regimes.

The better performance of essentially all methods under
”night+rain” compared to ”night” comes from the autoexposure
of the RobotCar’s cameras. A longer exposure is used for the
”night”, leading to significant motion blur.

For the night-time images, the Asymmetric Hypercolumn
Matching [30] method stands out in particular, beating the other
methods with a significant margin, localizing more than 90% of
the images in the coarse-precision regime. This is likely due to the
dense feature extraction strategy this method employs on the query
images, bypassing the need for the feature detector to re-detect the
same features seen during daytime from these blurry images.

Multi-image queries. The RobotCar is equipped with three
synchronized cameras and captures sequences of images for each
camera. Rather than querying with only a single image, we can
thus also query with multiple photos. Tab. 5 shows the results
obtained with SeqSLAM (which uses temporal sequences of all
images captured by the three cameras) and Active Search+GC.
For the latter, we query with triplets of images taken at the
same time as well as with temporal sequences of triplets. For
the triplets, we use the known extrinsic calibration between the
three cameras mounted on the car. For the temporal sequences, we
use relative poses obtained from the ground truth (GT) absolute
poses. Because PFSL takes a couple of seconds to converge after
initialization, and the sequences in the RobotCar Seasons Dataset

TABLE 6
Using location priors to query only submodels rather than the full

RobotCar Seasons dataset for night-time queries.

RobotCar - all night
m

deg
.25 / .50 / 5.0

2 / 5 / 10

ActiveSearch full model 0.9 / 3 / 4.9
sub-model 4.4 / 11.7 / 16.6

CSL full model 0.7 / 3.3 / 9.3
sub-model 0.5 / 4.7 / 18.4

ActiveSearch+GC (triplet) full model 1.6 / 7.9 / 12.1
sub-model 9.3 / 21.2 / 29.4

ActiveSearch+GC (sequence, GT) full model 5.4 / 25.6 / 47.1
sub-model 17.7 / 42.7 / 64.1

ActiveSearch+GC (sequence, VO) full model 1.4 / 11.2 / 24.2
sub-model 3.7 / 16.1 / 48

LocalSfM sub-model 20 / 35.9 / 49.9

are relatively short compared to that time, we did not run PFSL for
this data set. For readability, we only show the results summarized
for day- and night-conditions.

Tab. 5 shows that Active Search+GC consistently outperforms
the corresponding single image methods in terms of pose accuracy.
Active Search+GC is able to accumulate correct matches over
multiple images. This enables Active Search+GC to succeed even
if only a few matches are found for each individual image.
Naturally, the largest gain can be observed when using multiple
images in a sequence.

Location priors. In all previous experiments, we considered
the full RobotCar 3D model for localization. However, it is not
uncommon in outdoor settings to have a rough prior on the
location at which the query image was taken. We simulate such a
prior by only considering the sub-model relevant to a query rather
than the full model. While we observe only a small improvement
for day-time queries, localizing night-time queries significantly
benefits from solving an easier matching problem (cf . Tab. 6).
For completeness, we also report results for LocalSfM, which also
considers only a small part of the model relevant to a query. Active
Search+GC outperforms LocalSfM on this easier matching task
when querying with sequences in the coarse regime. This is due
to not relying on one single image to provide enough matches.

One drawback of sequence-based localization is that the rel-
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ative poses between the images in a sequence need to be known
quite accurately. Tab. 6 also reports results obtained when using
our own multi-camera visual odometry (VO) system to compute
the relative poses. The reasons for the performance drop are drift
and collapsing trajectories due to degenerate configurations.

6.3 Evaluation on the Extended CMU Seasons Dataset
Compared to the urban scenes shown in the other datasets, sig-
nificant parts of the Extended CMU Seasons dataset consist of
suburban areas, as well as country road and park areas. Seasonal
changes can drastically affect the appearance of such regions,
making these the most challenging parts of this dataset. In the
following, we thus focus on these conditions. Please refer to the
benchmark website for results for all conditions of the dataset.

Tab. 7 evaluates the impact of changes in foliage and of
different regions (urban, suburban and country road or park) on
pose accuracy. The reference condition for the Extended CMU
Seasons dataset does not contain foliage. Thus, other conditions
for which foliage is also absent lead to the most accurate poses.
Unsurprisingly, the images showing heavy vegetation (i.e., the
regions labelled park) are the most challenging due to the dramatic
changes in appearance here.

Similarly as in the RobotCar dataset, the image retrieval
methods tend to be characterized by poor performance in the
high-precision regime, but fairly good performance in the coarse
precision regime. Note that the results for DenseVLAD and
NetVLAD consists of the pose error obtained when using the
pose of the top-ranked database image as the estimated pose of the
query image. Even in the very challenging park regime it correctly
retrieves a database image within five meters of the query image
more than 60% of the time.

The structure-based methods exhibit an overall better per-
formance than the pure image-retrieval based methods. This is
especially true in the high-precision regimes, where structure-
based methods perform significantly better. However, some of
the image-retrieval based methods still outperform the structure-
based methods in the coarse regime. This suggests that global
image-level descriptors can still capture useful information even
under severe environmental changes, at least in a self-driving car
scenario where there tends to be very little viewpoint changes
between query images and database images.

The hierarchical methods perform even better than the
structure-based methods, bumping up the coarse-precision perfor-
mance above that of the image retrieval based ones. This is natural
since these combine the strengths of those two approaches. Since
these methods can use the geometric structure to perform spatial
verification of the image retrieval results, they are not limited to
using only the top-retrieved database image, and thus the accuracy
in the coarse regime is not limited by the corresponding results of
the image retrieval methods. This yields a prior on the position,
making the subsequent structure-based pose estimation easier.

Lastly, we have the sequential methods, which use all infor-
mation gathered up until the current frame to perform localization.
It should be noted that the top sequential method presented here
(PFSL) had access to simulated (noisy) IMU measurements based
on ground truth information, such that a particle filtering method
employing motion and measurement updates could be evaluated.
Still, it is interesting to note that the accuracy is almost 100%
for all regimes, suggesting that the long-term visual localization
problem is possible to solve robustly in robotics scenarios with a
continuous feed of images and IMU data.

7 CONCLUSION & LESSONS LEARNED
In this paper, we have introduced three challenging benchmark
datasets for visual localization and reviewed the current state in the
field of long-term visual localization. Significant progress has been
made in the field since the original introduction of the datasets, but
there still remains room for improvement. In particular, night-time
images, and scenes containing little man-made structure remain
challenging in the long-term scenario.

To summarize, our main takeaways from the review are
the following: (i) Overall, hierarchical methods outperform pure
structure-based methods, which in turn outperform pure image-
retrieval based methods. However, image-retrieval based meth-
ods often perform quite well in the coarse-precision regime.
(ii) The top performing methods are essentially the same for
all three datasets, indicating that these methods generalize well.
(iii) Learning-based local image features seem to outperform
handcrafted ones in the long-term localization scenario. (iv) Hi-
erarchical and structure-based methods are robust to most view-
ing conditions in urban environments, but their performance in
heavily vegetated areas, and during night-time still has room for
improvement. (v) Localizing night-time images against a database
built from day-time photos is still a very challenging problem,
even when a location prior is given. (vi) Scenes with a significant
amount of vegetation are challenging, even when a location prior is
given. (vii) SfM, typically used to obtain ground truth for localiza-
tion benchmarks, does not fully handle problems (v) and (vi) due
to limitations of existing local features. Dense CNN feature match-
ing inside SfM improves pose estimation performance at high
computational costs, but does not fully solve the problem. Novel
(dense) features, e.g., based on scene semantics [74], seem to be
required to solve these problems. Our datasets readily provide a
benchmark for such features through the LocalSfM and DenseSfM
pipelines. (viii) Image-level descriptors such as DenseVLAD can
succeed in scenarios where local feature matching fails. Using
the image-retrieval results to reduce the search-space for feature
matching is likely the source of the performance boost observed
for hierarchical methods. (ix) Utilizing multiple images (in the
case of a camera rig) or sequential information can greatly boost
the localization performance. It is interesting to note that there still
seems to be a large focus in the literature on single-image methods:
most methods evaluated in this paper are single-image methods.
Despite the large changes in scene appearance they achieve good
performance in registering the images one at a time. We expect that
substantial performance gains can likely be obtained by integrating
these methods into a sequential localization pipeline, and believe
this is a promising direction of future research. Other fruitful
directions may be reducing memory consumption and increasing
run-time efficiency, in order to enable the methods to run in real-
time on resource constrained devices.
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T. Pylvänäinen, K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod,
and R. Grzeszczuk. City-Scale Landmark Identification on Mobile
Devices. In Proc. CVPR, 2011. 2, 3

[17] Z. Chen, A. Jacobson, N. Sünderhauf, B. Upcroft, L. Liu, C. Shen, I. D.
Reid, and M. Milford. Deep learning features at scale for visual place
recognition. In Proc. ICRA, 2017. 2, 3

[18] S. Choudhary and P. J. Narayanan. Visibility probability structure from
sfm datasets and applications. In Proc. ECCV, 2012. 2

[19] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen. VidLoc: A
Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization. In
Proc. CVPR, 2017. 3

[20] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. CVPR, pages 3213–3223, 2016. 7

[21] M. Cummins and P. Newman. FAB-MAP: Probabilistic Localization and
Mapping in the Space of Appearance. IJRR, 27(6):647–665, 2008. 2, 9,
10

[22] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-
supervised interest point detection and description. In Proc. CVPR

Workshops, pages 224–236, 2018. 3, 7
[23] M. Donoser and D. Schmalstieg. Discriminative Feature-to-Point Match-

ing in Image-Based Locallization. In Proc. CVPR, 2014. 2
[24] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and

T. Sattler. D2-net: A trainable cnn for joint description and detection of
local features. In Proc. CVPR, pages 8092–8101, 2019. 3, 7, 9, 10, 12

[25] O. Enqvist and F. Kahl. Robust optimal pose estimation. In Proc. ECCV,
pages 141–153, Marseille, France, 2008. 2

[26] O. Enqvist, C. Olsson, and F. Kahl. Non-sequential structure from
motion. In Workshop on Omnidirectional Vision, Camera Networks and
Non-Classical Cameras (OMNIVIS), Barcelona, Spain, Nov. 2011. 5

[27] M. Fischler and R. Bolles. Random Sampling Consensus: A Paradigm
for Model Fitting with Application to Image Analysis and Automated
Cartography. Commun. ACM, 24:381–395, 1981. 4, 8
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