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ABSTRACT

Current studies are shifting from the use of single linear references to representation
of multiple genomes organised in pangenome graphs or variation graphs.
Meanwhile, in metagenomic samples, resolving strain-level abundances is a major
step in microbiome studies, as associations between strain variants and phenotype
are of great interest for diagnostic and therapeutic purposes. We developed
StrainFLAIR with the aim of showing the feasibility of using variation graphs

for indexing highly similar genomic sequences up to the strain level, and for
characterizing a set of unknown sequenced genomes by querying this graph.

On simulated data composed of mixtures of strains from the same bacterial species
Escherichia coliesults show thétrainFLAIR was able to distinguish and estimate

the abundances of close strains, as well as to highlight the presence of a new

strain close to a referenced one and to estimate its abundance. On a real dataset
composed of a mix of several bacterial species and several strains for the same species
results show that in a more complex cgurationStrainFLAIR correctly

estimates the abundance of each strain. Hence, results demonstrated how graph
representation of multiple close genomes can be used as a reference to characterize ¢
sample at the strain level.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Metagenomics, Variation graphs, Strain-level abundances, Read mapping

INTRODUCTION

The use of reference genomes has shaped the way genomics studies are currently
conducted. Reference genomes are particularly useful for reference guided genomic
assembly, variant calling or mapping sequencing reads. For the latter, they provide a
unique coordinate system to locate variants, allowing to work on the same reference an
easily share information. However, the usage of reference genomes represeated as
sequences reaches some liniitsl{puz, Dobin & Gillis, 20)90ne sequence chosen as the
reference among other homologous sequences does not capture the whole genomic
variability. Hence, reads from non-reference alleles may be mis-mapped or not mapped ¢
all. Secondly, with the increasing availability of new genomes, several sequences can b
used as multiple references. However, close genomes (typically genomes of strains of t
same species) show a high sequence similarity. The mapping of sequencing reads result:
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mis-mapped reads or ambiguous alignments generating noise in the downstream analys
(Na et al., 2016

This has led recent methods to provide a representation of multiple genomes as genorr
graphs, also called variation graphs, in which each path is a different known variation.
Such graph representations are wellrgg, and tools to build and manipulate graphs are
under active developmentarrison et al., 201 Kim et al., 2019Rakocevic et al., 2019
Li, Feng & Chu, 2020This graph structure provides obvious advantages such as the
reduction of the data redundancy, while highlighting variatigaar(ison et al., 20).8
However, it also introduces novel difilties. Updating a graph with novel sequences,
adapting existing etient algorithms for read mapping, and, mainly, developing new
ways to analyse sequence-to-graph mapping results for downstream analyses are amol
those new challenges. The work presented here primarily focuses on this latest point.

It proposes to show the feasibility of using variation graphs forlprg metagenomic
samples at the strain level, that is to say identifying and estimating abundances of strain
contained in a metagenomic sample.

In the context of metagenomics, representing genomes in graphs is of particular interes
for indexing microorganism genomes. Microorganisms are predominant in almost every
ecosystems from ocean wat€uflagawa et al., 201t human body Clemente et al.,

2013, and play major functioning roles in themléw & Brito, 202)) While studies in
microbial ecology are facing a bottleneck due to thecdify of isolating and cultivating
most of those microbes in laboratory, preventing the analysis of the complex structure
and dynamics of the microbial communiti€stéwart, 2002 high-throughput sequencing

in metagenomics offers the opportunity to study a whole ecosystem. In particular, shotgur
sequencing allows a resolution up to the species lévet| et al., 20),6and enables
samples analysis in terms of population stredition, microbial diversity or bio-markers
identi cation Quince et al., 201ybUnderstanding of microbial communities structure

and dynamics is usually revealed by resolving the species present in samples and their
relative abundances, which can then be associated with phenotypes, notablyeiial ihe
human health Ehrlich, 201,1Vieira-Silva et al., 202Golé et al., 20.1Characterizing
samples at the strain level has a growing interest, as it may highlight new associations wi
phenotypes. A better understanding of the functional impact of strains in host-microbe
interactions is crucial to new therapeutic strategies and personalized megstherichia

coli, which has a highly variable genome, is a well-known example since some strains
are harmless commensals in the human gut microbiota while others are harmful pathogen
(Rasko et al., 20pBoman et al., 20)3Current approaches using gene catalog handle
multiple similar genomes by selecting a representative sequence from cluster of genes, th
getting rid of the redundancy but also of the variations, yet crucial to distinguish the strains
of a species(in et al., 2010

Although they are not based on a graph representation of the reference genomes, seve
tools have already been developed this last few years to study the strain composition o
metagenomic sampleBESMAMDuince et al., 201yand mixtureS (Li, Hu & Li, 2020
use known core genes from the species of interest and a single reference genome,
respectively. Using those data as references, and from sequencing reads, these methot
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infer non-identi ed haplotypes, daing them asde novaapproaches. Additionally,
DESMAbperates on a multiple set of sequencing reRdaPhlan (Scholz et al., 20)L6
which uses a set of reference genomesSirainPhlan (Truong et al., 20)%hich uses
markers from reference genomes are complementary tools providing a gene family
presence/absence matrix and strain idesgtion only for the dominant strain,
respectivelyStrainEst (Albanese & Donati, 20} and DiTASIC (Fischer, Strauch &
Renard, 200)7use a set of reference genomes, providing abundance estimation of strain:
present in the sample. Finally, while designed for metagenomics cédisi,Kraken2
(Wood, Lu & Langmead, 20jLland KrakenUniq (Breitwieser, Baker & Salzberg, 2018
which can use a custom database of reference genomes, offer meaningful outputs to
characterize metagenomic samples. Those tools are further discussed in this article
alongside the result they provide.

In this work, we preserstrainFLAIR , a novel method and its implementation that
uses variation graph representation of gene sequences for straingdéati and
quanti cation. We proposed novel algorithmic and statistical solutions for managing
ambiguous alignments and computing an adequate abundance metric at the graph nod
level. Results on simulated data and on real sequencing data have shown that we coulc
correctly identify and quantify strains present in a sample. Notably, in the controlled
experimental design that we investigated, we could also detect the existence of a strain clc
to, but absent from those in the reference.

StrainFLAIR is available abttp://github.com/kevsilva/StrainFLAIR

METHODS

We propose here a description of our t&fainFLAIR (STRAIN-level proFiLing using
vArlation gRaph). This method exploits various state-of-the-art tools and proposes nove
algorithmic solutions for indexing bacterial genomes at the strain level. It also permits
to query metagenomes for assessing and quantifying their content, in regards to the
indexed genomes. An overview of the index and query pipelines are preserited bn

Rational for the choice of third-party tools and their detailed usages are given in
Section S1.1

In a few wordsStrainFLAIR works as follows: First, it indexes genes of input reference
genomes. Similar genes from several genomes are grouped into a gene family. Each g
family is represented as a part (a connected component) of a variation graph. The path
described in this variation graph by the sequence of any gene of any indexed genome i
called d‘colored-path Note that, conversely, any path of the variation graph does not
necessarily correspond to an indexed gene. At query time, the mapping of a queried rea
on the graph results on a subset of the graph in which each mapped nodes is associate
with a mapping score. This set of nodes is calléchaltipath-alignmerit From a
multipath-alignment we extract a set of so callsithgle-path-alignmeritthat are paths
with a mapping score higher than a threshold. Then, in a step caltddred-path
attribution”, each of the previously determined single-path-alignments is, when possible
attributed to the most probable colored-path of the variation graph, hence determining to
which input genome the mapped read belongs to. Once all read are mapped, the careft
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Figure 1 StrainFLAIR overview.(A) Indexing. Input is a set of known reference genomes of various
bacterial species and straisrainFLAIR uses a graph for indexing genes of those reference genomes.

(B) Read mapping on the previously mentioned graph. (C) Mapped reads argthgsif-LAIR assigns

and estimates species and strain abundances of a bacterial metagenomic sample represented as shor
reads. Full-size DOI: 10.7717/peerj.11884-1

analysis of mapped colored-paths enables to draw depto the queried metagenomic
sample.
We now provide more details on each of BainFLAIR steps.

Indexing strains
Gene prediction
As non-coding DNA represents 15% in aage of bacterial genomes and is not well
characterized in terms of structur®trainFLAIR focuses on protein-coding genes in
order to characterize strains by their gene content and nucleotidic variations of them.
Moreover, non-coding DNA regions can be highly variableo(pe et al., 20} and
taking into account complete genomes would then lead to highly complex graphs, and
combinatorial explosions when mapping reads. Additionally, complete genomes are not
always available. Focusing on the genes allows to use also drafts and metagenome-assem
genomes or a pre-existing set of known gefgs €t al., 2010Li et al., 201 Hence,
StrainFLAIR indexes genes instead of complete genomes in graphs.

Genes are predicted usigodigal , a tool for prokaryotic protein-coding genes
prediction {Hyatt et al., 2010
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Colored path 1 1 3 5 6

Colored path 2 1 2 3 4 6

Variation
Graph

Figure 2 lllustration of a variation graph structure and colored-pathsEach node of the graph
contains a sub-sequence of the input sequences and is integer-indexed. A path corresponding to an input
sequence is called a colored-path, and is encoded by its succession of nedglid8, 5, 6 for the
colored-path 1 in this example. Full-size DOI: 10.7717/peerj.11884y-2

Knowing that some reads map at the junction between the gene and intergenic regions
by conserving only gene sequences, mapping results are biased towards deletions and
drastically lower the mapping score. In order to alleviate this situation, we extend the
predicted gene sequences at both ends. H&t@nNFLAIR conserves predicted genes
plus their surrounding sequences. By default, and if the sequence is long enough, we
conserve 75 bp on the left and on the right of each gene.

Gene clustering

Genes are clustered into gene families uUSIB4HIT (Li & Godzik, 200§ For the clustering

step, the genes without extensions are used in order to strictly cluster according to the exa
gene sequences and no parts of intergenic regipslI T-ESTis used to realize the
clustering with an identity threshold of 0.95 and a coverage of 0.90 on the shorter
sequence. The local sequence identity is calculated as the number of identical bases in
alignment divided by the length of the alignment. Sequences are assigned to tinigest
cluster verifying these requirements.

Graph construction
Each gene family is represented as a variation grigijph 3. Variation graphs are
bidirected DNA sequence graphs that represents multiple sequences, including their
genetic variation. Each node of the graph contains sub-sequences of the input sequenc
and successive nodes draw paths on the graph. Paths corresponding to reference sequer
are specically called'colored-paths Each colored-path corresponds to the original
sequences of a gene in the cluster.

In the case of a cluster composed of only one sequegdeplkit (Garrison et al.,
2017 is used to convert the sequence intoad graph. Alternatively, when a cluster is
composed of two sequences or man@imap2 (Li, 201§ is used to generate pairwise
sequence alignments. Theeqwish (Garrison, 202lis used to convert these pairwise
sequence alignments into a variation graph. All the so-computed graphs (one per input
cluster) are then concatenated to produce a single variation graph where each cluster ¢
genes is a connected component.
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The index is created once for a set of reference genomes. Afterward, any set of
sequenced reads can be queried at the strain-level based on this index.

Querying variation graphs

The so-created variation graphs is queried by reads. Each read is mapped on the grapt
Then each mapped read is associated, when possible, to a gene of one of the indexed
genome. This is th&read attributiori step, itself composed of theingle-path-alignments
attribution” and the"colored-path attributichsteps, detailed below.

Mapping reads

For mapping reads on the previously described reference graph, we used the sequence-
graph mappevg mpmafrom vg toolkit . It produces a so-callédhultipath-alignmerit

A multipath-alignment is a graph of partial alignments and can be seen as a sub-graph
(a subset of edges and vertices) of the whole variation grapRi¢sedor an example).

The mapping result describes, for each read, the nodes of the variation graph traversed !
the alignment and the potential mismatches or indels between the read and the sequence
each traversed node.

Reads attribution

When mapping a read on a graph with colored-paths, two key issues arise, as illustrated o
Fig. 3 As mapping generates a sub-graph per mapped read, the most probable mappec
path(s) have to be deed. Meanwhile, the most probable mapped path(s) corresponding
to a colored-path also have to be ded. Hence we developed an algorithm to analyse and
convert, when possible, a mapping result into one or several single-path-alignment(s)
(successive nodes joined by only one edge) per mapped read. In addition we propose ¢
algorithm to attribute each such single-path-alignment to most probable colored-path(s).

Single-path-alignments attribution
A breadth rst search on the multipath-alignment is proposed. It starts at each node of the
alignment with a user-dened threshold on the mapping score. A single-path-alignment
with a mapping score below this threshold is ignored, and the single-path-alignment
with the best mapping score is retained. Additionally, for each alignment, nodes are
associated with a so-call8abrizontal coverageralue. The horizontal coverage of a node
by a read corresponds to the proportion of bases of the node covered by the read. Hence
node has an horizontal coverage of 1 if all its nucleotides are covered by the read with
or without mismatches or indels.

Because of possible ties in mapping score, the search can result in multiple single-patl
alignments, as illustratefdg. 3A This situation corresponds to a read which sequence
is found in several different genes or to a read mapping onto the similar region of different
versions of a gene.

To take into account ambiguous mapping affectations, as shown below, the parsing
of the mapping output is decomposed into two steps. Tisestep processes the reads
that mapped only a unigue colored-path (caltedique mapped reatihiere),
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Figure 3 lllustration of the multipath-alignment concept and the read attribution processThe
region of the read in blue aligns un-ambiguously to a node of the graph while the dark and light red parts
can either align to the top or the bottom nodes of their respective mapping localization (due to mis-
matches that can align on both nodes for example), drawing an alignment as a sub-graph of the reference
variation graph, and thus opening the possibility of four single-path-alignments. (A) Single-path-
alignments attribution. First, from the multipath-alignment (all four read sub-paths), the breadth search
nds the possible corresponding single-path-alignment(s) while respecting the mapping score threshold
imposed by the user. Here, for the example, all four possible paths are considered valid. (B) Colored-path
attribution. Second, each single-path-alignment is compared to the colored-paths from the reference
variation graph. Two single-path-alignments matched the colored-pats-§4and 56-7). As it
mapped equally more than one colored-path, this read is not processed duringsthetep of the
algorithm which focuses on reads mapping uniquely on a single colored-path, but falls in the multiple
mapped reads case which is processed during the second step and will be considered shared by both
matched colored-paths. Full-size DOI: 10.7717/peer].11884)-3

corresponding to a single gene. The second step processes the reads with multiple
alignments (calledmultiple mapped readshere).

Colored-path attribution

Once a read is assigned to one or several single-path-alignment(s), it still has to be
attributed, if possible, to a colored-path. The following process attributes each mapped
read to a colored-path and various metrics for downstream analyses are computed.

In particular, an absolute abundance for each node of the variation graph, calladdiee
abundancy is computed, rst focusing orunique mapped read$ rst step). For a given
single-path-alignment, the successive nodes composing this path are compared to the
existing colored-paths of the variation graph. If the alignment matches part of a colored-
path, the number of mapped reads on this path is incremented byi@enes@ds raw

count). The node abundance for each node of the alignment is incremented with its
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horizontal node coverage deed by this alignment. Alignments with no matching
colored-paths are skipped.

Then, we focus omultiple mapped readgsecond step), as illustratedy. 3B During
this step, a single-path-alignment matches multiple colored-paths. Hence, the abundanc
is distributed to each matching colored-path relatively to the ratio between them. This
ratio is determined from the reads raw count of each path from teestep. For example,
if 70 unique mapped reads were found for pathl and 30 for path2 duringshetep, a
read matching ambiguously both pathl and path2 during the second step counts as 0.7
for pathl and 0.3 for path2. This ratio is applied to increment both the raw count of reads
and the coverage of the nodes.

Gene-level and strain-level abundances

StrainFLAIR output is decomposed into an intermediate result describing the queried
sample and gene-level abundances, and tia¢ result describing the strain-level
abundances.

Gene-level

After parsing the mapping result, thest output provides information for each
colored-pathj.e each version of a gene. Thereby, thi result proposes gene-level
information including abundances. Exhaustive description of these intermediate results
is provided inSection S1.2We describe here three major metrics outputted by
StrainFLAIR :

The mean abundance of the nodes composing the pathstead of solely counting
reads, we make full use of the graph structure and we propose abundances computatio
for each node as previously explained, and as already done for haplotype resolution
(Baaijens et al., 20).%Hence, for each colored-path, the gene abundance is estimated by
the mean of the nodes abundance.

In order to not underestimate the abundance in case of a lack of sequencing depth
(which could result in certain nodes not to be traversed by sequencing readsgahe
abundance without the nodes of the path never covered by a ré&adlso outputted.

The mean abundance with and without these non-covered nodes are computed using
unique mapped reads only or all mapped reads.

Theratio of covered nodesde ned as the proportion of nodes from the path which
abundance is strictly greater than zero.

Strain-level

A colored-path associated to only one strain is caléhin-specic’. Strain-level
abundances are obtained by exploiting the results of reads mapped on strair-speci
colored-paths.

First, for each genome, the proportion of detected genes is computed, as the proportio
of specic genes on which at least one read maps. Then, the global abundance of the
genome is computed as the mean or median of all its spgene abundances. However, if
the proportion of detected genes is less than a usaredethreshold, the genome is
considered absent and hence its abundance is set to zero.
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StrainFLAIR nal output is a table where each line corresponds to one of the reference
genomes, containing in columns the proportion of detected spggnes, and our
proposed metrics to estimate their abundances (using mean or median, with or without
never covered nodes as described for the gene-level result).

Results presentegiection S1.Zalidate and motivate the proposed abundance metric by
comparing it to the expected abundances and other estimations using linear models.

RESULTS

We validated our method on both a simulated and a real dataset. All computations were
performed usingstrainFLAIR , version 0.0.1, with default parameters. The relative
abundances estimation was based on the mean of the sgetie abundances, computed
by taking into account all the nodes (including non-covered nodes), and using a 50%
threshold on the proportion of detected sp&cgenes.

The presented results are compare&taken2 considered as one of the state-of-the-
art tool dedicated to the characterization of read set content, and based sequences
as references. Read counts giveikiaken2 were normalized by the genome length
and converted into relative abundances. Other tested tools either suffer from unfair
comparisons as their features differ fr@mwainFLAIR (DESMARanPhlanand
StrainPhlan ) or show weaker results than those obtaine&lgken?2 (StrainEst
DITASIC KrakenUnig andmixtureS ). All results obtained with these tools are presented
in Section S1.8

Here we present a proof of concept of the variation graph application for the microbial
strain detection. While the aim of this article is not to provide a benchmark of the state-of-
the-art tools, computing setup and performances are indicat&etdaion S1.4

Validation on a simulated dataset
We rstvalidated our method on simulated data, focusing on a single species with multiple
strains. Our aim was to validate tB¢rainFLAIR ability to identify and quantify
strains given sequencing data from a mixture of several strains of uneven abundances,
and with one of them absent from the index. Results presented in this section can be
reproduced using data and commands available from the github website.
Reference variation graph
We selected complete genomeEstherichia cola predominant aerobic bacterium in the
gut microbiota {Tenaillon et al., 20)Pand a species known for its phenotypic diversity
(pathogenicity, antibiotics resistance) mostly resulting from its high genomic variability
(Dobrindt, 200k

Eight strains oE. coliwere selected for this experiment from the NCRig{s://www.
nchi.nlm.nih.gov/genome/?term=txid562[orpr$even were used to construct a
variation graph . colilAlI39, 0104:H4 str. 2011C-3493, str. K-12 substr. MG1655, SE15,
0157:H16 str. Santai, O157:H7 str. Sakai, 026 str. RM8426), and one was used as an
unknown strain in a strains mixturee( coliBL21-DE3). For ease of reading, in the
following, K-12 substr. MG1655 is simply designeti{i2’ and BL21-DE3 is designed by
“BL2T.
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Table 1 Composition of the mixtures described in number of reads simulated and the corresponding
coverage (in parenthesedjor each simulation (including either K-12, indexed in the variation graph, or
BL21, not indexed), seven mixtures were simulated.

Samples 0104:H4 IAI39 K-12 or BL21
200,000 (6.5x)
100,000 (3x)
50,000 (1.6x%)

300,000 (8.5x%) 200,000 (5.8x) 25,000 (0.8x%)
10,000 (0.3x%)
5,000 (0.2x)
1,000 (0.03x)

N o ok WN P

Mixtures and sequencing simulations

Our aim was to simulate the co-presence of se#erablistrains. Mixtures of three strains
were used to mimic complex single species composition in metagenomic samples.

We simulated short sequencing reads of 150 bp uaingim from vg toolkit  with a
probability of sequencing errors set to 0.1%. Two batches of simulations were conducted i
order to highlight the detection and quantation of strains in the mixture. Therst
simulation was a mixture composed of strains indexed in the reference graph (0104:H4
IAI39 and K-12) while the second simulation (0104:H4, 1AI39 and BL21) had one
absent from the reference variation graph (BL21) thus simulating a strain absent from
the reference graph to be idergd and quantied. For each simulation, we tested our
StrainFLAIR with various read coveragégble ), with K-12 or BL21 in equal

abundance of 1AI39, potentially making it more ditilt to distinguish, or in lower
abundance, potentially making it more difilt to detect at all.

Strain-level abundances

As explained in Methods, we computed the strain-level abundances using the speci
gene-level abundance table obtained by mapping the simulated reads onto the variatior
graph. We compared our results to the expected simulated relative abundances.

Simulation 1: mixtures with K-12, present in the reference graph
StrainFLAIR successfully estimated the relative abundances of the three strains present i
the mixture {Table 3, the sum of squared errors between the estimation given by our tool
and the expected relative abundance was between 25 and 45 for all the experiments.
However, it did not detect the very low abundant strain in the case of the mixture with
1,000 simulated reads for K-12 (coverage 6f03x). With our methodology, the
threshold on the proportion of detected genes (see Methods) lead to set relative abundan
to zero of likely absent strains. This reduces both the underestimation of the relative
abundances of the present strains and the overestimation of the absent strains.

In comparisonKraken2 did not provide this resolution. Applied to our simulated
mixtures, while Kraken2 was slightly better for K-12 abundance estimation, it
overestimated 1AI39 relative abundance and underestimated ©di0d, leading to an
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Table 2 Reference strains relative abundances expected and computestiainFLAIR or Kraken2

for each simulated experiment with variable coverage of the K-12 straBest results are shown in
bold. ForStrainFLAIR , the proportion of spect genes detected is shown in parentheses. Complete
results are presentegkction S1.6

#reads  Method 0104:H4  1AI39 K-12 Sakai SE15 Santai RM8426
K-12
1,000 Expected 59.88 39.92 02 0 0 0 0
StrainFLAIR ~ 56.47 4353 O 0 0 0 0
(0.995) (0.989) (0.309) (0.189) (0.151) (0.188) (0.212)
Kraken2 38.91 60.72 0.22 0.04 0.07 0.03 0.02
25,000 Expected 57.14 38.1 476 0 0 0 0
StrainFLAIR  52.14 40.58 7.27 0 0 0 0
(0.994) (0.989) (0.878) (0.208) (0.153) (0.215) (0.234)
Kraken2 37.23 58.1 4.51 0.04 0.07 0.03 0.02
200,000 Expected 42.86 28.57 28.570 0 0 0
StrainFLAIR ~ 38.12 2981 3208 O 0 0 0
(0.993) (0.988) (0.99) (0.211) (0.159) (0.219) (0.237)
Kraken2 28.31 44,18 27.35 0.04 0.08 0.03 0.02

overall higher sum of squared errors (between 456 and 872) compared to the expected
abundances. Moreover, it set relative abundances to all the seven reference strains wher
four of them were absent from the mixture. This was expected as some reads (from
intergenic regions for example) can randomly be similar to regions of genes from absen
strains.

Simulation 2: mixtures with BL21, absent from the reference graph

Here, BL21 was considered an unknown strain, not contributing to the variation graph.
The closest strain of BL21 in the graph, according to fastAllh(et al., 20)8was K-12
(98.9% of identity, se®ection S1)5Thus we expected tand signal of BL21 through

the results on K-12.

As with the K-12 mixturesStrainFLAIR successfully estimated the relative
abundances of the two known strains present in the mixtue®|e J, the sum of squared
errors between the estimation given by our tool and the expected relative abundance
was between 22 and 180 for all the experiments. Labelled as K-12, it also gave close
estimations for BL21 in this controlled experimental design. Again, it did not detect the
very low abundant strain in the case of the mixture with 1,000, 5,000, and 10,000
simulated reads for BL21. Also similarly to the K-12 mixtures experimeraken2
overestimated IAI39 relative abundance and underestimated ©df4 (sum of squared
errors between 751 and 873), even less precisely than in the previous experiment. With
suf cient coverage (here from the 0.8x for BL&L)ainFLAIR was closer to the expected
values for all the reference strains themaken2.

Interestingly, the proportion of detected specgenes for each straiRif). 9 seems to
highlight a pattern allowing to distinguiskin this specic experiment - present strains,
absent strains and likely new strains close to the reference in the graph. According to th
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Table 3 Reference strain relative abundances expected and compute8toginFLAIR or Kraken2

for each simulated experiment with variable coverage of the BL21 strain, absent from the reference
variation graph.BL21 strain expected abundances are followed by an asterisk in the K-12 column. Best
results are shown in bold. F@trainFLAIR , the proportion of spect genes detected is shown in
parentheses. Complete results are presedsedon S1.6

#reads Method 0104:H4 1AI39  K-12 Sakai SE15 Santai RM8426
BL21-DE3
1,000 Expected 59.88 39.92 *02 O 0 0 0
StrainFLAIR  56.48 4352 O 0 0 0 0
(0.995) (0.989) (0.254) (0.189) (0.151) (0.192) (0.214)
Kraken2 38.93 60.76 0.11 0.05 0.08 0.04 0.03
25,000 Expected 57.14 38.1 176 0 0 0 0
StrainFLAIR  54.12 41.72 4.16 0 0 0 0
(0.995) (0.989) (0.584) (0.266) (0.177) (0.282) (0.298)
Kraken2 37.75 58.93 2.16 0.28 0.34 0.25 0.29
200,000 Expected 42.86 28.57 28.57 0 0 0
StrainFLAIR ~ 46.96 35.32 17.72 0 0 0 0
(0.993) (0.988) (0.711) (0.318) (0.211) (0.346) (0.351)
Kraken2 31.14 48.83 13.53 1.57 1.67 1.58 1.68

Figure 4 Proportion of detected specic genes for each simulated experiment with variable coverage
of the BL21 strain, absent from the reference graph. Full-size DOI: 10.7717/peerj.11884J-4
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experiments with enough coverage (from 25,000 simulated reads for BL21), three grour
of proportions could be observed: proportion of almost 100% (0104:H4 and 1AI39 :
strains present in the mixtures and in the reference graph), proportion und863%0
(Sakai, SE15, Santai, and RM8426 : strains absent from the mixtures), and an in-betwe
proportion around 6670% for K-12 (closest strain to BL21).

It was expected that an absent strain would have spgenes detected as
StrainFLAIR detects a gene once only one read mappped on it. However, all absent
strains had a proportion at around 30% except K-12 which proportion was twice higher.
Conjointly with the non-null abundance estimated for the reference K-12, this suggests the
presence of a new strain whose genome is highly similar to K-12.

Validation on a real dataset

We used a mock dataset available on EBI-ENA repository under accession number
PRJEB4249@n order to validate our method on real sequencing data from samples
composed of various species and strains. The mock dataset is composed of 91 strains
bacterial species for which complete genomes or sets of contigs are available, including
plasmids. Among the species, two of them contained each two different strains. Three
mixes had been generated from the mock, and we usetiMix@A” in the following

results.

Even though 20 out of 91 strains were absents in this mix, we indexed the full set of 9:
genomes. This was done in order to mimic a controBe@inFLAIR use case where the
the reference graph contains a mix of strains present and absent in the queried data.
The metagenomic sample was sequenced using lllumina HiSeq 3000 technology and
resulted in 21,389,196 short paired-end reads.

We compared our results to the expected abundances of each strain in the sample
de ned as the theoretical experimental DNA concentration proportion. As such, it has to
be noted that potential contamination and/or experimental bias could have occurred and
affected the expected abundances.

Strain detection

Among the 91 strains used in the reference variation graphjnFLAIR detected 65
strains. All of these 65 strains were indeed sequenced in Mix1A. FHemaaFLAIR
produced no false positive. From the 26 strains considered abs8iraiy-LAIR , 20

were not present in the sample (true negatives) and 6 should have been detected (false
negatives). However, the term false negative has to be soften as the ground truth remai
uncertain. Among those 6 undetected strains, all of them had theoretical abundance
below 0.1%.

More precisely, among the 6 strains undetecte8tbginFLAIR , 5 had some detected
genes, but below the 50% threshold. In this case, by dS#aualinFLAIR discards these
strains. Finally, only one of the undetected straidesulfovibrio desulfuricahD 132)
should have been theoretically detected (even if its expected coverage was below 0.1%),
no specic gene was idented. Considering thabtrainFLAIR uses a permissive
de nition of detected gene (at least one read maps on the gene), having strictly no speci
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Figure 5 Experimental relative abundance compared to relative abundance as computed by
StrainFLAIR and Kraken2. A selection of relevant results is shown here, Sedion S1.for the

complete results. (A) Represents a case wAgenFLAIR and Kraken2 give similar results to the
experimental value (18 cases over 91). (B) Represents a caseStuiafeLAIR and Kraken2 give

similar results, but lower than the experimental value (26 cases over 91). (C) Represents a case where
StrainFLAIR andKraken2 give similar results, but greater than the experimental value (16 cases over
91). (D, E, F, G) Represent the two species represented by two strains each. (H, ) Represent two atypical
cases. Full-size DOI: 10.7717/peerj.11884)-5

genes detected f@esulfovibrio desulfuricah® 132 suggests that this strain might in
fact be absent from Mix1A. This is also supported by the result Koaken2 which
estimated a relative abundance 8E 5, almost 500 times lower than the theoretical
result.

As in the simulated dataset validatittraken?2 affected non-null abundances to all the
references.

Strain relative abundances

For the estimated relative abundanc&sainFLAIR gave more similar results compared

to the state-of-the-art todkraken2 than the experimental valueBi(. 5. The sum of
squared error betweeBtrainFLAIR and Kraken2 was around 11StrainFLAIR and
Kraken2 gave similar results compared to the experimental values, with sum of squarec
errors of around 209 and 211 respectively.
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Interestingly,Thermotoga petrophiBKU-1 is the only case where results from
StrainFLAIR and Kraken2 differs greatly, with, in addition, the theoretical abundance
being in-between. Moreovérhermotogap. RQ2 is the strain expected to be absent that
Kraken2 estimates with the highest relative abundance among the other expected
absent strains, and the only one exceeding the relative abundances of two present strait
Considering the previous results on the simulated mixtures andlthetmotoga
petrophilaRKU-1 andThermotogap. RQ2 are close species (fastANI around 96.6%) it
could be an additional indicator of how tools liKeaken2 can be mislead by too close
species or strains.

In the sample, the specibethanococcus maripaludigs represented by two strains
(S2 and C5) and the specighewanella baltid&kewise (0S223 and OS185).

StrainFLAIR successfully distinguished and estimated the relative abundances of each
strain of these two genomes. In this very situation and contrary to resufisaniistrains,
Kraken2 was also able to correctly estimate the abundances.

DISCUSSION

Recent advances in sequencing technologies have provided large reference genome
resources. Representation and integration of those multiple genomes, often highly simila
are under active development and led to genome graphs based tools. Integrating
multiple genomes from the same species is particularly interesting as it provides new
opportunities to characterize strains, a key resolution. This taxonomic level can highlight
new associations with diseases or witltieincy/toxicity of drugs for instance that the
analysis at the species level currently masks. Particularly for gut microbiota studies,
characterizing individual gut microbiota and targeting spebiacterial strains will open

the eld of precision medicine’\(banese & Donati, 201Warchesi et al., 20).6

In this context, we develop&iirainFLAIR , a new computational approach for strain
level pro ling of metagenomic samples, using variation graphs for representing all
reference genomes. Our intention was in the one hand to test whether or not indexing
highly similar genomes in a graph enables to characterize queried samples at the strain
level, and, in the other hand, to provide a end-user tool able to perform the indexing of
genomes and the query of reads including the analyses of mapping results.

The method exploits state-of-the art-tools additionally to novel algorithmic and
statistical solutions. By indexing microbial species and/or strains in a graph, it enables th
identi cation and quantication of strains from a sequenced sample, mapped onto this
graph.

Albeit in a controlled experiment simplifying the complex reality, we have
demonstrated on simulated and on real datasets the ability of our method to identify and
correctly estimate the abundance of microbial strains in metagenomic samples. In this
context,StrainFLAIR was able to highlight the presence and also to estimate a relative
abundance for a strain similar to existing references, but absent from these references.

We also showed th&trainFLAIR tended to set to zero the predicted abundance of
low abundant strains, while a tool likeaken2 was able detect them. As a result, it seemed
that StrainFLAIR looses the ability to detect very low abundant strains. However, in our
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simulations, this situation corresponded to coverages of 0.03x or less, hence simulating
strain for which not all genomic content was present. Eventually, regarding this extremely
low coverage, it might be more relevant to de this strain as absent. Overall, there

is a need to distinguish between low abundant strains, ingiuft sequencing depth, and
reads from intergenic regions or other genes randomly matching genes. In this regard,
StrainFLAIR integrated a threshold on the proportion of sp&cjenes detected that can

be further explored to rane which strain abundances are set to zero. Importantly, results
also showed that our graph-based tool had no false positive call, contrary to general
purpose tooKraken2 that detected 100% of strains that were indexed but absent from
queried reads.

From the validation on real datasets, we showed$ivxa@inFLAIR was still able to
correctly estimate the relative abundances in a more complex context mixing both
different species and different strains, without being biased by references absent in the
sample.

Our methodology taking into account all mapped reads and imposing a threshold that
sets some strains abundances to zero seems more adequate and closer to what is expe
(experimental data or ground truth) compared to other tools. Moreover, being able to
detect some queried strains as absent is particularly interesting in the metagenomics
context. Unlike mock datasets that are of controlled and known compositions, no prior
knowledge is available for real metagenomic samples. They require the most exhaustiv
references-including unnecessary genomdsence strains absent from the sample.
StrainFLAIR is a new step towards the objective to take into account those unnecessar
genomes without biasing the downstream analysis.

Measured computation time performances show 8teainFLAIR enables to analyse
million reads in a few hours. Even if this opens the doors to routine analyses of small reac
sets, new development efforts will be made for reducing computation time in order to
scale-up to very large datasets. Additionally, althdsigainFLAIR showed convincing
results on simulated and real datasets, exploring more complex situations is still necessal
First, the mock represented a controlled sample with prior knowledge for building the
reference set. While this can be reproduced in a real situation bylterazg a genome
database (usingraken2 for example), further work might be needed to evaluate the
scalability of our method with larger reference sets. However, we also showed that even
adding unnecessary genomes (absent from the queried seédtlieFLAIR was able to
correctly dene them as absent strains. Secondly, we presented a case of one unknown
strain in a mixture close to one of the reference strain. Future works will aim to address the
issue of having several unknown strains close to the same reference or a mix of known
and unknown strains close to the same reference, v8treinFLAIR can not distinguish
yet.

Genomic plasticity and diversity is of increasing importance in microbiology, and lead
to the eld of pangenomics. Pangenomics can mainly beettand explored in two ways.
First, from the gene presence/absence perspective, also allowing to characterize core
and accessory genome of a species. Secondly, freranalysis of genomic variations.
StrainFLAIR , which uses variation graphs to index clusters of genes, has the potential tc
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cover both of those aspects. Indeed, graph structures, used as model for representing a
of related sequences, are then of great interest to capture all information on presence/
absence of genes and variation/similarity of sequences, leading to new highlights on
genome organization and regions of plasticity in a species. The variability provided by the
sequencing of new genomes arises new challenges. In particular, this variability will need
be integrated into the graphs, which assumes a dynamic structure.

The natural continuation will be related to the dynamical update of the reference graph
used withStrainFLAIR when novel species or strains are detected. As suggested in this
work, when an indexed strain is detected in a query sample but with a [6b94)
proportion of genes detected, this eets the presence of another strain similar, but
distinct. Other metrics could be used such as the mapping of non-colored paths of the
graph and by nucleotidic variations between mapped reads and the graph sequences, ar
of course, by non-mapped reads. Reads from these so-detected novel species or strain
may be assembled using third-party haplotype-aware assemblers and the assembled
sequences of genes will have to be added to the reference variation graph, updating clust
and path colors.
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