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Une méthode bloc de sous-espace minimisant la norme des résidus
pour des séquence de systèmes linéaires

Résumé : Nous nous intéressons à la solution itérative de systèmes linéaires avec plusieurs second-
membres disponibles un groupe après l’autre, y compris le cas où il y a un nombre massif (comme des
dizaines de milliers) de second-membres associés à une seule matrice de sorte que tous ne peuvent pas
être résolus en une fois mais doivent plutôt être divisés en morceaux de tailles variables possibles. Pour
de telles séquences de systèmes linéaires à matrices et second-membres multiples, nous développons une
nouvelle méthode de recyclage des résidus conjugués généralisés par blocs avec orthogonalisation interne
et convergence partielle (IB-BGCRO-DR), qui exploite technique de recyclage subspatial dans GCRO-
DR [SIAM J. Sci. Comput., 28(5) (2006), pp. 1651-1674] mécanisme de convergence partielle dans IB-
BGMRES [Algèbre linéaire, 419 (2006), pp. 265-285] pour garantir que ce nouvel algorithme pourrait
réutiliser les informations spectrales pour les cycles suivants ainsi que pour les systèmes linéaires restants
à résoudre. La variante connexe IB-BFGCRO-DR qui convient au préconditionnement flexible est conçue
pour faire face aux contraintes de certaines applications tout en permettant un calcul de précision mixte,
ce qui présente des avantages en termes de vitesse et d’utilisation de la mémoire par rapport à la double
précision ainsi que dans la perspective des unités de calcul émergentes telles que les GPU. En outre, nous
discutons également des choix possibles lors de la construction d’un sous-espace de recyclage ainsi que
de la manière d’exploiter le mécanisme de convergence partielle pour réaliser la flexibilité des politiques
d’expansion de l’espace de recherche et surveiller les seuils de convergence individuels pour chaque
second-membre. Comme effet secondaire, on peut également illustrer le fait que cette méthode peut être
appliquée au cas des matrices constantes ou variant lentement. Enfin, nous démontrons les avantages
numériques et informatiques de la combinaison de ces idées dans de tels algorithmes sur un ensemble
d’exemples académiques simples.

Mots-clés : Méthode bloc de sous-espace, augmentation, déflation, recyclage de sous-espace, block-
GMRES, convergence partielle.
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1 Introduction

We consider the solution of a long sequence of slowly-changing families of general linear systems of
the form:

A(`)X(`) = B(`), ` = 1, 2, . . . , (1)

where, associated with the `th family, A(`) ∈ Cn×n is a slowly-changing square nonsingular matrix of
large dimension n along the family index `, B(`) = [b(`,1), b(`,2), . . . , b(`,p

(`))] ∈ Cn×p(`) are simulta-
neously given right-hand sides of full rank with p(`) � n, and X(`) = [x(`,1), x(`,2), . . . , x(`,p

(`))] ∈
Cn×p(`) are the solutions to be computed. Both the coefficient matrix A(`) and right-hand sides B(`)

change from one family to the next, and the families of linear systems are typically available in sequence.
Many large scientific and industrial applications warrant the solution of such a sequence of families

of linear systems, to name a few, such as full waveform inversion problems [37, 38], frequency response
functions computation of a vibrating system over a given frequency range in engineering applications in-
cluding structural dynamics and acoustics [22], parameter estimation involving parameter-dependent par-
tial differential equations with multiple right-hand sides under realistic settings of Marine acquisition with
different sources and receivers both moving [16], parametric macro-modeling problems of micro-electro-
mechanical systems with the parametric model order reduction technique [11], electromagnetic wave
propagation problems with the model reduction approach consisting of a multipoint Galerkin asymptotic
waveform evaluation to automate the fast frequency sweep process [30], computations for diffuse opti-
cal tomographic imaging with multiple sources [19], Google PageRank model problems with multiple
damping factors and multiple personalization vectors [44], electromagnetic scattering problems [17, 35],
various source locations in seismic, parametric studies in general, and some other related time-dependent
nonlinear inverse problems [18]. Specifically, large sparse complex non-Hermitian and nonsymmetric
linear systems with thousands of right-hand sides are required to be solved when multiple wave sources
are used in the solution of the acoustic full waveform inversion problem in geophysics associated with the
phenomena of wave propagation through a heterogeneous model simulating the subsurface of Earth [20].
We refer to [1, 3, 7, 11–13, 21, 47] for more applications.

When solving sequences of linear systems as (1), attractive approaches are those that can exploit
information generated during the solution of a given system to accelerate the convergence for the next
ones. Deflated restarting is implementing a similar idea between the cycles in the generalized minimum
residual norm method (GMRES) [31,34,43]; it is realized by using a deflation subspace containing a few
approximate eigenvectors deemed to hamper the convergence of the Krylov subspace [23–25] methods.
Another alternative technique is the subspace recycling proposed in the GCRO-DR [27] method, which
is a combination of GMRES-DR [24] and GCRO [9] since it reuses the target approximated eigenvectors
associated with deflated restarting technique in GMRES-DR within the GCRO framework. This latter
method can reuse information accumulated in previous cycles as well as that accumulated in solving
previous families. Given the multiple right-hand sides of (1) are simultaneously available, block Krylov
subspace methods are often considered as the suitable candidates for their capability of sharing search
subspaces that can be generated using BLAS3-like implementation [15]. A common issue in block Krylov
subspace methods is the rank deficiency that might appear when expanding the residual spaces, which is
caused by the convergence of individual or linear combination of solution vectors. Such rank deficiency
problem could lead the block Arnoldi process to breakdown before the solution for all the right-hand sides
are found. Although deflating the directions associated with almost converged solutions might appear as
a natural way to deal with such issue, this often leads to eventually slowing down the convergence [21].
For the sake of balancing robustness and convergence rate, Robbé and Sadkane proposed an inexact
breakdown detecting mechanism for the block GMRES algorithm (denoted by IB-BGMRES) [32], which
could keep and reintroduce directions associated with the almost converged parts in next iterations if
necessary. We refer to [2, 4, 32] for relevant works on inexact breakdown detection, as well as to [39–

RR n° 9393



6 Giraud, Jing & Xiang

42, 45] for related variants of block Krylov subspace methods for solving linear systems with multiple
right-hand sides.

The contribution of this paper is to combine subspace recycling techniques of GCRO-DR [27] with
the inexact breakdown mechanism of IB-BGMRES [32] to develop a new recycling block GCRO-DR
variant with inexact breakdown detection. The remainder of this paper is organized as follows. We first
recall the governing ideas of the minimum norm residual block Krylov subspace methods in Section 2.
We also briefly discuss the inexact breakdown mechanism developed by Robbé and Sadkane [32]. Those
two ingredients are exploited to develop the new algorithm IB-BGCRO-DR and its flexible precondition-
ing variant referred to as IB-BFGCRO-DR discussed in Section 2.4. Some additional numerical features
to combine numerical and computation efficiency in the subspace expansion policy are discussed in Sec-
tion 3. We also describe in this section how the subspace expansion can be adapted to accommodate
different individual thresholds for each right-hand side. In Section 4 we show the benefit of combining
the ideas mentioned above on a set of simple academic examples with both constant and slowly varying
successive linear systems with multiple right-hand sides and finally make some concluding remarks in
Section 5.

The symbol || · ||q denotes the Euclidean norm when q = 2 and the Frobenius norm when q = F . The
superscript H denotes the transpose conjugate of a vector or a matrix, and the superscript † refers to the
Moore-Penrose inverse. For convenience of the algorithm illustration and presentation, some MATLAB
notation is used. A subscript j for a scalar or a matrix is used to indicate that the scalar or the matrix is
obtained at iteration j. A matrix C ∈ Ck×` consisting of k rows and ` columns sometimes is denoted as
Ck×` explicitly. The identity and null matrices of dimension k are denoted respectively by Ik and 0k or
just I and 0 when the dimension is evident from the context. If C ∈ Ck×`, the singular values of C are
denoted by σ1(C) ≥ . . . ≥ σmin(k,`)(C) in descent order. A positive integer m represents the maximal
dimension of the underlying block approximation subspace in each cycle.

2 Block GCRO-DR with inexact breakdown

In this section, we first recall the subspace recycling techniques existing in minimum residual Krylov
methods GCRO [9] and GCRO-DR [27]. For the sake of simplicity of exposure, the block formulation
of GCRO-DR (BGCRO-DR) [26,28,29] is presented straightforwardly. Then, in the context of the block
methods, the driving ideas of inexact breakdown mechanism as well as the corresponding block Arnoldi-
like recurrence formula developed by Robbé and Sadkane [32] are discussed for handing the partial
convergence of the solution vectors that might lead to rank deficiency.

For simplicity and notational convenience, we drop in the rest of this paper the superscript (`) in B(`)

and X(`) when considering to solve the current `th family of linear systems in the entire sequence of
families. We indicate the superscript for a family order explicitly when necessary. That is, suppose that
the current `th family of linear systems to be solved is

AX = B, (2)

where, A ∈ Cn×n is the current square nonsingular matrix of dimension n, B = [b(1), b(2), . . . , b(p)] ∈
Cn×p are the simultaneously given right-hand sides and X = [x(1), x(2), . . . , x(p)] ∈ Cn×p are the
solutions to be computed.

2.1 Block GCRO

The background of GCRO [9], a nested GMRES [33, 34] method based on GCR, is briefly reviewed
first in the case of a single right-hand side and then extended to the block case. As described in [9], the

Inria



Block GCRO-DR methods with inexact breakdowns 7

GCRO method relies on a given full-rank matrix Uk ∈ Cn×k, and a matrix Ck as the image of Uk with
respect to the general matrix A satisfying the relations

AUk = Ck, (3)
CHk Ck = Ik. (4)

For the solution of a single right-hand side linear system Ax = b and a given initial guess x0, the
governing idea is to first define x1 ∈ x0 + Range(Uk) that minimizes the residual norm. From x1 and
its associated residual r1, Arnoldi iterations are performed to enlarge the nested orthonormal basis of the
residual spaces. The vector

x1 = argmin
x∈x0+Range(Uk)

||b−Ax||2,

is defined by

x1 = x0 + UkC
H
k r0, and r1 = (I − CkCHk )r0 so that r1 ∈ C⊥k .

Starting from the unitary vector v1 = r1/‖r1‖2, the Arnoldi procedure enables us to form an or-
thonormal basis Vm = [v1, ..., vm] of the Krylov space Km((I − CkC

H
k )A, v1) = span(v1, (I −

CkC
H
k )Av1, ..., ((I − CkCHk )A)m−1v1) that can be written in the matrix form as

(I − CkCHk )AVm = Vm+1Hm. (5)

Combining (3) and (5) in a matrix form allows us to write a relation very similar to an Arnoldi equality
that reads

AŴm = V̂m+1Gm, (6)

where Ŵm = [Uk, Vm], V̂m+1 = [ Ck, Vm+1] and Gm =

[
Ik Bm

0(m+1)×k Hm

]
with V̂ Hm+1V̂m+1 =

Im+1 and Bm = CHk AVm. The minimum residual norm solution in the affine space x1 + Range(Ŵm)

can be written as xm = x1 + Ŵmym where

ym = argmin
y∈Cm+k

‖c−Gmy‖

and c = V̂ Hm+1r1 = (0k, ‖r1‖2, 0m−k)T are the components of the residual associated with x1 in the
residual space V̂m+1.

GCRO and GMRES, both belong to the family of residual norm minimization approach and rely on
an orthonormal basis of the residual space. In addition to sharing the Arnoldi procedure to form part or
all this basis, they do also share the property of “happy breakdown”; that is, if the search space cannot be
enlarged because the new direction computed by the Arnoldi process is the null vector, then the solution
is exactly found in the search space. This sharing of features does extend to the block context for the
solution of linear system with multiple right-hand sides; in particular the inexact breakdown principle
introduced in [32] in the context of block GMRES can be accommodated to block GCRO as discussed in
the sequel. The purpose of the inexact breakdown mechanism is to handle in an elegant and effective way
the loss of numerical rank of the search space basis, that turns out to be also a way to monitor the search
space extension according to the final target accuracy.

The straightforward extension of the GCRO method in the block context can be briefly described.
For ease of reading, we change the calligraphy of the notation but keep the same letters to denote the
block counterpart of the quantities involved in the method. Starting from the block initial guess X0 =

[x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] ∈ Cn×p and associated initial residual R0 = B −AX0 one can define

X1 = argmin
X∈X0+Range(Uk)

||B −AX||F ,

RR n° 9393



8 Giraud, Jing & Xiang

given by
X1 = X0 + UkC

H
k R0, and R1 = (I − CkCHk )R0 so that R1 ∈ C⊥k . (7)

For the sake of simplicity of exposure, we first assume that R1 is of full rank and denote R1 = V1Λ1

as its reduced QR-factorization. The orthonormal block V1 is then used to build the search space via m
steps of block Arnoldi procedure depicted in Algorithm 1 to generate Vm = [V1, ...,Vm] whose columns
form an orthonormal basis of Km((I − CkCHk )A,V1) =

⊕p
t=1Km((I − CkCHk )A, v

(t)
1 ). The block

Arnoldi procedure leads to the matrix equality

(I − CkCHk )AVm = Vm+1H m (8)

where H m is a block Hessenberg matrix with (i, j) block defined by Hi,j . Similarly to the single

Algorithm 1 Block Arnoldi procedure with deflation of the Ck space
1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose a unitary matrix V1 of size n× p
2: for j = 1, 2, . . . ,m do
3: Compute Wj = (I − CkCHk )AVj
4: for i = 1, 2, . . . , j do
5: Hi,j = VHi Wj

6: Wj = Wj − ViHi,j

7: end for
8: Wj = Vj+1Hj+1,j (reduced QR-factorization)
9: end for

right-hand side case, (3) and (8) can be gathered in a matrix form

AŴm = V̂m+1Gm, (9)

where Ŵm = [Uk,Vm], V̂m+1 = [Ck,Vm+1] and Gm =

[
Ik Bm

0(m+1)p×k H m

]
with V̂ H

m+1V̂m+1 =

I(m+1)×p and Bm = CHk AVm ∈ Ck×mp with mp = m× p. The minimum residual norm solution in the
affine space X1 + Range(Ŵm) can be written as Xm = X1 + ŴmYm where

Ym = argmin
Y ∈C(mp+k)×p

‖C − GmY ‖F ,

and C = V H
m+1R1 = (0k×p,Λ

T
1 , 0mp×p)

T , the columns of C are the components of the residual R1 in
the residual space Vm+1.

2.2 Block GCRO with inexact breakdowns

When one solution or a linear combination of the solutions has converged to the target accuracy, the
block-Arnoldi procedure implemented to build an orthonormal basis of Kj(A,R0) needs to be modified
to account for this partial convergence. This partial convergence is characterized by a numerical rank
deficiency in the new p directions one attempts to introduce for enlarging the Krylov space. In [32], the
authors present an elegant numerical variant that enables the detection of what is referred to as inexact
breakdowns. In that approach the directions that have a low contribution to the residual block are dis-
carded from the set of vectors used to expand the search space at the next iteration but these directions
are kept and reintroduced in iterations afterwards if necessary. In this section, we try to give an insight

Inria



Block GCRO-DR methods with inexact breakdowns 9

and the main equality required to derive the IB-BGMRES algorithm. We refer the reader to the origi-
nal paper [32] for a detailed and complete description. For the sake of simplicity of exposure and easy
cross-reading, we adopt most of the notations from [32].

Because when an inexact breakdown occurs, not all the space spanned by Wj is considered to build
Vj+1 in order to expand the space, a subscript j is added to denote its block number of columns. Let
p1 = p and denote by pj+1 the column rank of the block orthonormal basis vector Vj+1. Then Vj+1 ∈
Cn×pj+1 ,Wj ∈ Cn×pj and Hj+1,j ∈ Cpj+1×pj . As a consequence the dimension of the search space
Kj(A,V1) considered at the jth iteration is no longer necessarily equal to j × p but is equal to nj =∑j
i=1 pi; that is, the sum of the column ranks of V′is (i = 1, . . . , j). Vj = [Ck,V1, . . . ,Vj ] ∈ Cn×(nj+k)

(Vj+1 = [Vj , Vj+1]) denotes the orthonormal basis of the residual space.

When no inexact breakdown has occurred pj+1 = pj = . . . = p1 = p, the range of Wj has always
been used to enlarge the search space and we obtain the block relation given by (9). To account for a
numerical deficiency in the residual block Rj = B − AXj in a way that is described later, Robbé and
Sadkane [32] proposed to split

Wj = Vj+1Hj+1,j +Qj (10)

so that the columns of Qj and Vj+1 are orthogonal to each other and only Vj+1 is used to enlarge Vj to
form Vj+1. We can then extend Equation (9) into

AŴj = V̂jGj + [Qj−1, Wj ], (11)

where Qj−1 = [Q1, . . . , Qj−1] ∈ Cn×nj−1 accounts for all the abandoned directions. The matrix Qj−1
is rank deficient, and it reduces to the zero matrix of Cn×nj−1 as long as no inexact breakdown has
occurred.

In order to characterize a minimum norm solution in the space spanned by Ŵj using Equation (11)
we need to form an orthonormal basis of the space spanned by [V̂j ,Qj−1,Wj ]. This is performed by first
orthogonalizing Qj−1 against V̂j , that is Q̃j−1 = (I − V̂jV̂ H

j )Qj−1. Because Qj−1 is of low rank so is
Q̃j−1 that can be written

Q̃j−1 = Pj−1Gj−1 with
{
Pj−1 ∈ Cn×qj has orthonormal columns with V̂ H

j Pj−1 = 0,
Gj−1 ∈ Cqj×nj−1 is of full rank with qj = p− pj .

(12)

Next Wj , that is already orthogonal to V̂j , is made to be orthogonal to Pj−1 with Wj − Pj−1Ej where
Ej = PHj−1Wj ; then one computes W̃jDj with W̃j ∈ Cn×pj and Dj ∈ Cpj×pj the reduced QR-
factorization of Wj−Pj−1Ej . Eventually, the columns of the matrix [V̂j , Pj−1, W̃j ] form an orthonormal
basis of the space spanned by [V̂j ,Qj−1,Wj ].

With this new basis Equation (11) writes

A[Uk,Vj ] = [Ck,Vj ]

[
I Bj
0 Lj

]
+

[
0k, Pj−1Gj−1,

[
Pj−1, W̃j

] [ Ej
Dj

]]

=
[
Ck,Vj , Pj−1, W̃j

]
Ik Bj

0
Lj

Gj−1 Ej
0 Dj

 , (13)
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10 Giraud, Jing & Xiang

where Lj =



H1,1 · · · · · · · · · H1,j

H2,1
. . .

...

VH3 Q1
. . . . . .

...
...

. . . . . . . . .
...

VHj Q1 · · · VHj Qj−2 Hj,j−1 Hj,j


∈ Cnj×nj is no longer upper Hessenberg as

soon as one inexact breakdown occurs, i.e., ∃`, Q` 6= 0.
Equation (13) can be written in a more compact form as

AŴj =
[
Ck,Vj , [Pj−1, W̃j ]

]
F j , (14)

so that the least-squares problem to be solved to compute the minimum norm solution associated with the
generalized Arnoldi relation (13) becomes

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, (15)

with

F j =


Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej
0 Dj

 =

[
Fj

Hj

]
∈ C(k+nj+p)×(k+nj) (16)

and Λj =

 0k×p
Λ1

0nj×p

 , where Fj =

[
Ik Bj

0(nj+p)×k Lj

]
∈ C(k+nj)×(k+nj)

and Hj =

[
0p×k

Gj−1 Ej
0 Dj

]
∈ Cp×(k+nj).

The numerical mechanism to select Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as discussed

in [2, 32] in the context of block GMRES. The governing idea consists in building an orthonormal basis
for the directions that contribute the most to the individual residual norms and make them larger than the
target threshold ε(R). Based on the SVD of the coordinate vector of the residual

Λj −F jYj = U1,LΣ1UH1,R + U2,LΣ2UH2,R, (17)

where Σ1 contains the pj+1 singular values larger than the prescribed threshold ε(R), they decompose

U1,L =

(
U(1)

1

U(2)
1

)
in accordance with

[
[Ck,Vj ] , [Pj−1, W̃j ]

]
, that is U(1)

1 ∈ C(k+nj)×p and U(2)
1 ∈

Cp×p. Because, the objective is to construct orthonormal basis we consider [W1,W2] unitary so that
Range(W1) = Range(U(2)

1 ). The new set of orthonormal candidate vectors to expand the search space

Vj+1 =
[
Pj−1, W̃j

]
W1 (18)

is the one that contributes the most to the residual norms while

Pj =
[
Pj−1, W̃j

]
W2,

is the new set of orthogonal abandoned directions. Through this mechanism, directions that have been
abandoned at a given iteration can be reintroduced, if the residual block has a large component along
them. Furthermore, this selection strategy ensures that all the solutions have converged when p inexact
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Block GCRO-DR methods with inexact breakdowns 11

breakdowns have been detected; we refer to Section 3.2 for the discussion on how ε(R) should be defined
to ensure a convergence of all the solutions to a common or individual prescribed backward error. We do
not give the details of the calculation and refer to [32] for a complete description, but only state that via
this decomposition the main terms that appear in Equation (13) can be computed incrementally.

2.3 Subspace recycling policies
So far, we have not made any specific assumption on the definition of the deflation space Uk except

that it has full column rank. In the context of subspace recycling, one key point is to specify what subspace
is to be recycled at restart. At the cost of the extra storage of k vectors, block GCRO offers more flexibility
than block GMRES in the choice of the recycled space. This extra storage, that enables us to remove the
constraints to have the search space included in the residual space, allows us to consider any subspace to
be deflated at restart. In particular any of the two classical alternatives, that are Rayleigh-Ritz (RR) or
Harmonic-Ritz (HR) approaches, can be considered to compute approximated eigenvectors to define Uk
and Ck at restart.

Definition 1. Harmonic Ritz projection.
Consider a subspace W of Cn. Given a general nonsingular matrix B ∈ Cn×n, λ ∈ C and y ∈ W ,
(λ, y) is a harmonic Ritz pair of B with respect to the spaceW if and only if

By − λ y ⊥ BW

or equivalently,
∀w ∈ Range(BW) wH (By − λ y) = 0.

The vector y is a harmonic Ritz vector associated with the harmonic Ritz value λ.

Definition 2. Rayleigh-Ritz projection.
Consider a subspace W of Cn. Given a general nonsingular matrix B ∈ Cn×n, λ ∈ C and y ∈ W ,
(λ, y) is a Rayleigh-Ritz pair of B with respect to the spaceW if and only if

By − λ y ⊥ W

or equivalently,
∀w ∈ Range(W) wH (By − λ y) = 0.

The vector y is a Rayleigh-Ritz vector associated with the Rayleigh Ritz value λ.

Once the maximum size of the space has been reached, we have

AŴm = V̂m+1Fm =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm, (19)

Xm = X1 + ŴmYm,

Rm = B −AXm =
[
Ck,Vm, [Pm−1, W̃m]

]
(Λm −FmYm), (20)

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F , Λm = [0p×k,Λ
T
1 , 0p×nm

]T , (21)

a restart procedure has to be implemented to possibly refine the spectral information to be recycled during
the next cycle. Based on this equality we have to compute the approximated eigen-information as shown
in Proposition 1 and then use it to define Unewk and Cnewk as described in Theorem 1.

Proposition 1. At the restart of IB-BGCRO-DR, the update of the deflated subspace for the next cycle
relies on the computation of harmonic Ritz vectors g(HR)

i ∈ span(Ŵm), or Rayleigh Ritz vectors g(RR)
i ∈

span(Ŵm), of A with respect to Ŵm = [Uk Vm] ∈ Cn×(k+nm).

RR n° 9393



12 Giraud, Jing & Xiang

• The harmonic Ritz pairs (θi, Ŵmg
(HR)
i ) to be possibly used for the next restart satisfy

FH
mFmg

(HR)
i = θjF

H
mV̂ H

m+1Ŵmg
(HR)
i , for 1 ≤ i ≤ nm, (22)

where V̂ H
m+1Ŵm =


CHk Uk 0k×nm

V H
m Uk Inm

PHm−1Uk
W̃H
mUk

0p×nm

 ∈ C(k+nm+p)×(k+nm).

• The Rayleigh Ritz pairs (θi, Ŵmg
(RR)
i ) to be possibly used for the next restart satisfy

Ŵ H
m V̂m+1Fmg

(RR)
i = θjŴ

H
m Ŵmg

(RR)
i , for 1 ≤ j ≤ nm (23)

where Ŵ H
m V̂m+1 =

[
UHk Ck UHk Vm UHk Pm−1 UHk W̃m

0nm×k Inm 0nm×p

]
∈ C(k+nm)×(k+nm+p) and

Ŵ H
m Ŵm =

[
UHk Uk UHk Vm
V H
m Uk Inm

]
∈ C(k+nm)×(k+nm).

Proof. The proofs basically rely on some matrix computations as shortly described below:

• According to Definition 1, each harmonic Ritz pair (θi, Ŵmg
(HR)
i ) satisfies

∀w ∈ Range(AŴm) wH (AŴmg
(HR)
i − θi Ŵmg

(HR)
i ) = 0,

which is equivalent to

(AŴm)H (AŴmg
(HR)
i − θi Ŵmg

(HR)
i ) = 0. (24)

Using Equation (19) leads to(
V̂m+1Fm

)H (
V̂m+1Fmg

(HR)
i − θi Ŵmg

(HR)
i

)
= 0. (25)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of each cycle is orthonormal, (25)
becomes

FH
m Fmg

(HR)
i − θiFH

mV̂ H
m+1Ŵmg

(HR)
i = 0,

which is the same as formulation (22).

• Rayleigh Ritz pairs: using Definition 2 and similar arguments and matrix computation enable to
derive the proof.

Depending on the region of the spectrum that is intended to be deflated (e.g., subspace associated
with the smallest, largest eigenvalues in magnitude), a subset of k approximated eigenvectors is chosen
among the nm ones to define the space that will span Unewk . Then, we describe in Theorem 1 the update
of Unewk and its image Cnewk with respect to A at restart of IB-BGCRO-DR.

Theorem 1. At restart of the IB-BGCRO-DR, if we intend to deflate the space span([Uk,Vm]G
(∗)
k ) where

G
(∗)
k =

[
g
(∗)
i1
, ..., g

(∗)
ik

]
the set of vectors associated with the targeted eigenvalues, the matrices Unewk and

Cnewk to be used for the next cycle are defined by

Unewk = ŴmG
(∗)
k R−1 = [Uk,Vm]G

(∗)
k R−1, (26)

Cnewk = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q, (27)

Inria
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where Q and R are the factors of the reduced QR-factorization of FmG
(∗)
k , which ensure that AUnewk =

Cnewk and (Cnewk )
H
Cnewk = Ik with G(∗)

k = G
(HR)
k or G(∗)

k = G
(RR)
k .

Proof. Let [Q,R] be the reduced QR-factorization of FmG
(∗)
k and multiply by G(∗)

k on the right both
sides of Equation (19). It leads to AŴmG

(∗)
k = V̂m+1FmG

(∗)
k = V̂m+1QR, that is equivalent to

AŴmG
(∗)
k R−1 = V̂m+1FmG

(∗)
k R−1 = V̂m+1Q concluding the proof as span(ŴmG

(∗)
k R−1) = span(ŴmG

(∗)
k )

and V̂m+1Q is the product of two matrices with orthonormal columns so are its columns.

Corollary 1. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to

Cnewk .

Proof. Xold
m = X1 + ŴmYm where Ym solve the least-squares problem (21) so that (Λm −FmYm) ∈

(Range(Fm))⊥ = Null(FH
m). We also have Roldm = V̂m+1 (Λm −FmYm), consequently

(Cnewk )HRoldm =
(
V̂m+1Q

)H (
V̂m+1 (Λm −FmYm)

)
=

(
V̂m+1FmG

(∗)
k R−1

)H (
V̂m+1 (Λm −FmYm)

)
= R−HG

(∗)H
k FH

m (Λm −FmYm)︸ ︷︷ ︸
= 0 because (21)

= 0.

Next, we discuss the relationship between residuals of harmonic Ritz pairs and the linear system
residuals at restart, that can be exploited to lower the cost of the calculation of G(HR)

k at the end of the
next cycle. The residuals of the harmonic Ritz pairs can be formulated in a matrix form as

R(HR)
m = AŴmG

(HR)
k − ŴmG

(HR)
k diag(θ1, · · · , θk). (28)

The linear system residualsRm ∈ Cn×p andR(HR)
m ∈ Cn×k belong to the same subspace Range([Ck,Vm, Pm−1, W̃m]) ∈

Cn×(k+nm+p); because of the minimum residual norm property Rm is orthogonal to Range(AŴm) ∈
Cn×(k+nm), so is R(HR)

m by definition. Therefore the linear system residuals Rm and the residuals
of harmonic Ritz vectors R(HR)

m are in Range(AŴm)⊥ ∩ Range([Ck,Vm, Pm−1, W̃m]), that is a p-
dimensional space since Range(AŴm) ⊂ Range([Ck,Vm, Pm−1, W̃m]). This means that it exists a
matrix βp×k ∈ Cp×k such that R(HR)

m = Rmβp×k, that combines with (28) leads to:

AŴmG
(HR)
k = ŴmG

(HR)
k diag(θ1, · · · , θk) +Rmβp×k. (29)

Proposition 2. At the restart of IB-BGCRO-DR, if harmonic Ritz pairs are used to define recycling space,
then the following relations hold:

Range(Unewk ) ⊂ Range([Cnewk , V1]), (30)

where V1 Λ1 is the reduced QR-factorization of Rnew1 = Roldm = V1Λ1.

Proof. Substituting (26) into Cnewk = AUnewk and from (29), we have

Cnewk = AŴmG
(HR)
k R−1,

= ŴmG
(HR)
k diag(θ1, · · · , θk)R−1 +Rmβp×kR

−1,

= ŴmG
(HR)
k diag(θ1, · · · , θk)R−1 + V1Λ1βp×kR

−1,
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14 Giraud, Jing & Xiang

so that

[Cnewk , V1] = [ŴmG
(HR)
k , V1]

[
diag(θ1, · · · , θk)R−1 0k×p

Λ1βp×kR
−1 Ip

]
. (31)

By (26) we also have: Unewk = ŴmG
(HR)
k R−1. That shows that

Range(Unewk ) ⊂ Range([ŴmG
(HR)
k , V1]) = Range([Cnewk , V1]).

Corollary 2. For all the restarts but the first, if harmonic Ritz vectors are used to define the deflated
space, the generalized eigenvalue problem to be solved simplifies and reads:

FH
mFmg

(HR)
i = θi F

H
mTmg

(HR)
i for 1 ≤ j ≤ nm, (32)

where Tm = V̂ H
m+1Ŵm(1 : k+nm, :) =

 CHk Uk 0k×nm

VH1 Uk
[
Ip1 0p1×(nm−p1)

]
0(nm−p1)×k

[
0(nm−p1)×p1 Inm−p1

]
 ∈ C(k+nm)×(k+nm).

Proof. The simplified right-hand side of (32) is deduced from the (2× 1) block structure of F in Equa-
tion (16) and the equality V̂ H

m+1Ŵm = [Tm Op]
T that comes from Range(Unewk ) ⊂ Range([Cnewk , V1]) ⊂

Range(V̂m+1) = Range([Cnewk , V1],V2, . . . ,Vm, Pm−1, W̃m]), ∀i ∈ {2, ..,m} VHi Uk = 0pi×k and
([Pm−1, W̃m])HUk = 0p×k.

2.4 A variant suited for flexible preconditioning
All what has been described in the previous sections, naturally extends to the preconditioned case

where, for right preconditioning with a fixed preconditioner M , the central equality writes

A[Uk,MVm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm, (33)

the least-squares problem to be solved to compute the minimum norm solution becomes

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F ,

and the solution is
Xm = X1 + [Uk,MVm]Ym.

If we denote Mj a (possibly nonlinear) nonsingular preconditioning operator at iteration j and Mj(Vj)
denotes the action of Mj on a block vector Vj , Equation (33) translates to

A[Uk,Zm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm with Zm = [M1(V1), ...,Mm(Vm)] ,

that writes in a more compact form

AẐm = V̂m+1Fm with Ẑm = [Uk,Zm] and V̂m+1 =
[
Ck,Vm, [Pm−1, W̃m]

]
. (34)

The solution update is Xm = X1 + [Uk,Zm]Ym. To keep the notation simple, we choose to keep the
notation for quantities that have the same meaning as in the non-flexible case but of course will have
different values.

Inria



Block GCRO-DR methods with inexact breakdowns 15

In the context of flexible preconditioning many strategies for defining harmonic Ritz vectors can be
envisioned for GCRO-DR. Among those considered in [5], we follow the one with a lower computational
cost required in solving the generalized eigenvalue problem, referred to as Strategy C in [5]. Further-
more, it also allows us to obtain very similar properties in the flexible case to the ones we have exposed
in the non-preconditioned case shown in Section 2.3. We refer to Appendix A for two other strategies for
approximating target eigen-information. The proposition below indicates that with an appropriated defi-
nition of the harmonic Ritz vectors, all the properties of IB-BGCRO-DR extend to the flexible situation.

Proposition 3. At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation space is built
on the harmonic Ritz vectors g(HR)

i ∈ span(Wm) of AẐmW†m with respect to Wm = [Wk Vm] ∈
Cn×(k+nm) :

1. The harmonic Ritz pairs (θi,Wmg
(HR)
i )

• for the first restart satisfy

FH
mFmg

(HR)
i = θjF

H
mV̂ H

m+1Wmg
(HR)
i , for 1 ≤ i ≤ nm, (35)

where V̂ H
m+1Wm =


CHk Wk 0k×nm

V H
m Wk Inm

PHm−1Wk

W̃H
mWk

0p×nm

 ∈ C(k+nm+p)×(k+nm),

• for the subsequent restart, we have V̂ H
m+1Wm = [Tm Op]

T with

Tm =

 CHk Wk 0k×nm

VH1 Wk

[
Ip1 0p1×(nm−p1)

]
0(nm−p1)×k

[
0(nm−p1)×p1 Inm−p1

]
 ∈ C(k+nm)×(k+nm), (36)

and Equation (35) can be recast in

FH
mFmg

(HR)
i = θi F

H
mTmg

(HR)
i for 1 ≤ j ≤ nm. (37)

2. At restart, if G(HR)
k =

[
g
(HR)
i1

, . . . , g
(HR)
ik

]
are associated with the k targeted eigenvalues, the

matricesWnew
k , Unewk and Cnewk to be used for the next cycle are defined by

Wnew
k = WmG

(HR)
k R−1 = [Wk,Vm]G

(HR)
k R−1, (38)

Unewk = ẐmG
(HR)
k R−1 = [Uk,Zm]G

(HR)
k R−1, (39)

Cnewk = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q, (40)

whereQ andR are the factors of the reduced QR-factorization of FmG
(HR)
k that ensuresAUnewk =

Cnewk with (Cnewk )
H
Cnewk = Ik.

3. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnewk .

4. At all the restarts but the first, we have the following relation that holds

Range(Wnew
k ) ⊂ Range([Cnewk , V1]), (41)

where V1 Λ1 is the reduced QR-factorization of Rnew1 = Roldm = V1Λ1.

Proof. The proof essentially follows the same arguments as the ones developed for IB-BGCRO-DR, and
we refer the reader to the Appendix B for the technical details.

We also mention that a closely related numerical technique that extend IB-BGMRES-DR in the flexi-
ble preconditioning context can be derived. We refer to Appendix C where the resulting algorithm named
IB-BFGMRES-DR is detailed and its properties are described.
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3 Additional numerical features to complement the inexact break-
down

3.1 Subspace expansion policies
Thanks to the inexact breakdown mechanism, the abandoned directions at a given iteration might be

reintroduced in a subsequent one, thereby we can trade on the original policy and select for the subspace
expansion only a subset of those defined by the SVD decomposition of the least-squares residuals defined
by (17). In particular, it might be relevant to choose a block size pCB that is suited to best cope with the
computational features on a given platform rather than selecting the numerical block size pj+1 defined
as the number of singular values larger than the prescribed threshold εR. In that respect, we consider a
subspace expansion policy so that the block size at the end of step j is defined as pCBj+1 = min(pCB , pj+1).
We refer this variant as Inexact Breakdown Block GCRO-DR with computational blocking (denoted by
IB-BGCRO-DR-CB).

3.2 Monitoring individual convergence thresholds
A classical stopping criterion for the solution of a linear system Ax = b is based on backward error

analysis and consists in stopping the iteration when

ηb(xj) =
‖b−Axj‖2
‖b‖2

≤ ε. (42)

When we have to solve for a family of right-hand sides B = [b(1), ..., b(p)], we can first scale all the right-
hand sides so that they are all of norm one (i.e., form b̃(i) = b(i)/‖b(i)‖2, iterate for the scaled right-hand
sides B̃ = [b̃(1), ..., b̃(p)] until all the residual norms ‖b̃(i) − Ax̃(i)j ‖2 ≤ ε and scale back the computed

solutions to get the one initially sought x(i) = x̃
(i)
j ‖b(i)‖2; this latter will comply with (42). For the sake

of simplicity of exposure and without loss of generality, we will assume in the rest of this section that the
set of right-hand sides are of norm one.

The governing idea in the inexact breakdown mechanism is to only select the directions associated
with singular values larger than ε(R), so that, when there is no more candidate direction for extending the
search space, i.e., pj+1 = 0 all the solutions are computed at the target accuracy ε(R). Setting ε(R) = ε
ensures that all the solutions complied with the stopping criterion (42). This relies on the following
inequalities:

‖b(i) −Ax(i)j ‖2 ≤ ‖B −AXj‖2 = ‖Λj −F jYj‖2 ≤ ε(R). (43)

The occurrence of p inexact breakdowns is a sufficient condition that ensures the convergence of the p
solution vectors, but the convergence might happen before and a more classic stopping criterion can be
accommodated at a very low computational cost. One can also check the convergence by looking at the
norm of the least-squares residuals, that are easy to compute. LetQLSj RLSj be the (full)QR-factorization
of F j (i.e., QLSj is unitary) , then

Λj −F jYj = QLSj

(
0(nj+k)×p

R`sj

)
, (44)

where R`sj ∈ Cp×p are the last p rows of (QLSj )HΛj so that ‖b(i) − Ax
(i)
j ‖2 = ‖R`sj (:, i)‖2. Those

residual norm calculations allow the definition of a stopping criterion for the block algorithm based on
the individual convergence criterion of each right-hand side defined by (43).
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Block GCRO-DR methods with inexact breakdowns 17

In some applications all the solutions associated with a block of right-hand sides do not need to be
solved with the same accuracy. In that context, the subspace expansion policy and the stopping criterion
should be adapted. Let ε(i) denotes the target accuracy for the solution associated with the right-hand side
b(i). We define the candidate direction by applying the candidate directions policy to the scaled residual
matrix (Λj − F jYj)Dε where Dε = diag ((ε(1))−1, (ε(2))−1, · · · , (ε(p))−1) with ε(R) = 1. When p
inexact breakdowns have occurred, because the 2-norm of a matrix is an upper bound of the 2-norm of its
columns (that are the residual scaled by their associated stopping criterion threshold), we have∥∥∥b(i) −Ax(i)m ∥∥∥

2
(ε(i))−1 ≤ ‖(Λ1 −FmYm)Dε‖2 ≤ 1 for ∀i ∈ {1, · · · , p}.

As discussed previously the individual convergence of the solutions can be checked at each iteration by
computing the norm of the columns of the (p× p) least-squares residual R`sj Dε.

3.3 Remarks on some computational and algorithmic aspects

On the computational point of view, a few remarks can be made for the practical implementation
of the described numerical methods. For the sake of conciseness of this paper, we do not give the full
technical details of what we briefly expose below but rather refer for each of them to a particular section
in the appendix where a complete proof is given. The points we wanted to make are:

1. Note that both techniques for monitoring individual convergence thresholds and the subspace ex-
pansion policies discussed in Section 3.1 and 3.2 could be applied to any other block minimum
residual norm methods equipped with the inexact breakdown mechanism such as the IB-BGMRES
and IB-BGMRES-DR algorithms.

2. The full QLSj RLSj -factorization involved in the solution of the least-squares problems (44) enables
the cheap calculation of the SVD for the residual block (17). This observation applies naturally to
the IB-BGMRES and IB-BGMRES-DR algorithms (we refer to Appendix E for the details).

3. For the sake of exposure, we made the assumption that the initial residual block R1 is of full rank.
In practice, this constraint can be removed by applying already to V1 the candidate search space
expansion policy based on the SVD of theR factor of the reducedQR factorization ofR1. We refer
to the Appendix F for the details for a detailed exposure of the resulting algorithm. In particular,
a consequence of the occurrence of an inexact breakdown in R1 is that the right-hand side of the
least-squares problems needs to be updated at each iteration and not simply expanded with a zero
block. The pseudocode for IB-BGCRO-DR with inexact breakdown detection in R1 and updated
right-hand side of the least-squares problems for constant and slowly-changing left-hand sides with
massive number of right-hand sides are presented in Appendix I and J, respectively.

4 Numerical experiments

In the following sections we illustrate the different numerical features of the novel algorithm intro-
duced above. For the sake of comparison, for some of the experiments we also display results with closely
related block methods such as BGCRO-DR [28,29,36,46] or IB-BGMRES-DR [2]. All the numerical ex-
periments have been run using a Matlab prototype, so that the respective performances of the algorithms
are evaluated in term of number of matrix-vector products, denoted as mvps (and preconditioner appli-
cations in the preconditioned case) required to converge. For all block methods, the stopping criterion is
that the p individual normwise backward errors satisfy ηb(i)(x

(i)
s ) =

||b(i)−Ax(i)
s ||2

||b(i)||2
< ε (i = 1, . . . , p)
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with respect to the approximate solution x(i)s , or themvps exceeds the allowed maximal number (referred
to as maxMvps).

For each set of block of right-hand sides, referred to as a family, the block initial guess is equal to 0 ∈
Cn×p, where p is the number of right-hand sides. The block of right-hand sideB = [b(1), b(2), . . . , b(p)] ∈
Cn×p is composed of p linearly independent vectors generated randomly (using the same seed when
block methods are compared). While any part of the spectrum could be considered to define the recycled
space we consider for all the experiments the approximated eigenvectors associated with the k smallest
approximated eigenvalues in magnitude. The maximum dimension of the search space in each cycle is
set to be md = 15 × p, the targeted backward error is ε = 10−8 and maxMvps = 2000 × p for each
solver run. To illustrate the potential benefit of IB-BGCRO-DR when compared to another block solver,
we consider the overall potential gain when solving a sequence of ` families defined as

Gain (`) =

∑`
s=1 #mvps (method)(s)∑`

s=1 #mvps (IB-BGCRO-DR)(s)
. (45)

4.1 Ritz versus harmonic Ritz subspace recycling policies
To illustrate the flexibility of subspace recycling in IB-BGCRO-DR as discussed in Section 2.3, both

the harmonic Ritz (HR) and Rayleigh Ritz (RR) projections are considered to construct the recycled
subspace; the associated algorithms are referred to as IB-BGCRO-DR(HR) and IB-BGCRO-DR(RR).
Following the spirit of the test examples considered in [24] we consider bidiagonal matrices of size 5000
with lower diagonal unity so that their spectrum is defined by their diagonal entries; we denote them
Matrix 1 and Matrix 2. Matrix 1 has diagonal entries 0.1, 1, 2, 3, . . . , 4999 and Matrix 2 has diagonal
entries 10.1, 10.2, . . . , 20, 21, . . . , 4920. We consider experiments with a family size p = 20, the size of
the recycled space k = 30 and the maximal dimension of the search space md = 300. In Figure 1 we
display some experimental results. The graphs on the left give the envelope of the convergence histories
of the p backward errors as a function of the number of matrix-vector products (mvps) for the first three
families. On the right graphs we depict the number of matrix-vector products for each of the 30 families.
For Matrix 1, one can observe that the HR-projection does capture a space that slows down the initial
convergence once the first family has been solved; that is, for families 2 and 3 the converge histories
do not exhibit anymore any plateau. On that example the RR-projection does not capture a recycled
space that helps much the convergence as the three convergence histories exhibit very similar pattern. For
Matrix 2, both RR and HR projections work pretty much the same. In Table 1, we report the total required
mvps for the two matrix examples for 3 and 30 families. Those results do not attempt to highlight that
one projection is superior to the other one, but simply illustrate the flexibility of the GCRO approach to
accommodate both. The selection or discussion of the best suited projection method is out of the scope
of this paper.

In the rest of this paper, only the HR projection is considered to build recycling subspace used in the
GCRO-DR like methods. Besides, the bidiagonal Matrix 1 is chosen as the constant left-hand sides in
following Subsection 4.2- 4.5, in which the related parameters are likewise set to be p = 20, k = 30 and
md = 300.

4.2 Comparison with IB-BGMRES-DR
In order to illustrate the difference between BGCRO-DR, IB-BGCRO-DR and IB-BGMRES-DR.

The convergence histories of two consecutive families are displayed in the left plot of Figure 2. Several
observations can be made. Because IB-BGCRO-DR and BGCRO-DR do not have a deflation space to
start with for the first family, the convergence histories of the three solvers overlap as long as the IB-
mechanism does not detect any partial convergence. At this point, the convergence rate of IB-BGCRO-
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Figure 1: History of bidiagonal Matrix 1 and Matrix 2 (p = 20, md = 300 and k = 30). Left: convergence histories
of the largest/smallest backward errors ηb(i) at each mvps for 3 consecutive families. Right: consumed number of
mvps versus family index.

Family number Matrix Method mvps

3 Matrix 1
IB-BGCRO-DR(HR) 6950
IB-BGCRO-DR(RR) 7280

30 Matrix 1
IB-BGCRO-DR(HR) 65686
IB-BGCRO-DR(RR) 68421

3 Matrix 2
IB-BGCRO-DR(HR) 13281
IB-BGCRO-DR(RR) 12977

30 Matrix 2
IB-BGCRO-DR(HR) 131401
IB-BGCRO-DR(RR) 129865

Table 1: Numerical results of IB-BGCRO-DR with recycling subspace generated by RR or HR-projection for Matrix
1 and Matrix 2 with p = 20, md = 300 and k = 30.

DR and IB-BGMRES-DR becomes faster (in terms of matrix-vector products) than that of BGCRO-
DR, and the two convergence histories mostly overlap as the two IB techniques remain mathematically
equivalent. For the second and subsequent families, the capability to start with a deflation space shows
its benefit for BGCRO-DR and IB-BGCRO-DR. Because IB-BGMRES-DR has to capture again this
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spectral information it needs a few restarts before it finds the spectral information again and refines it
in its subsequent search spaces; eventually it exhibits a convergence rate similar to the BGCRO-DR
counterpart.

For the sake of comparison and to illustrate the benefit of the IB mechanism we also display the
converge histories of BGCRO-DR that always requires more matrix-vector products compared to its IB
counterpart. Those extra matrix-vector products mostly concur to improve the solution quality for some
right-hand sides beyond the targeted accuracy. To further highlight the effect of the IB mechanism, we
report in the right plot the size of search space expansion as a function of the iterations. Because BGCRO-
DR does not implement the IB mechanism, the search space is increased by p = 20 at each iteration. For
the two other block solvers, the block size monotonically decreases down to 1. Because the IB mechanism
is implemented on R1 in IB-BGCRO-DR, the block size does not increase at restart. By construction,
IB-BGMRES-DR implements the IB mechanism at restart so that the same observation applies.

A summary of the mvps and the number of block iterations (referred to as its) is given in Table 2 that
shows the benefit of using IB-BGCRO-DR.
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Figure 2: History for Section 4.2. Comparison IB-BGCRO-DR with BGCRO-DR and IB-BGMRES-DR by solving
bidiagonal Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of the largest/smallest backward
errors ηb(i) at each mvps for 2 consecutive families. Right: varying blocksize comparison along iterations.

Family number Method mvps its

2
BGCRO-DR 6640 332
IB-BGMRES-DR 5407 343
IB-BGCRO-DR 4774 291

Table 2: Numerical results in both terms of mvps and its for Matrix 1 (p = 20, md = 300 and k = 30).

4.3 Convergence analysis with different target accuracies
In this section we illustrate how the target accuracy interplays with the quality of the extracted spectral

information.
The convergence histories of solving three successive families with accuracy ε = 10−2, 10−3, 10−4, 10−8

are described in Figure 3, from which it is observed that the benefits of inexact breakdown detection is
significative especially when solving the first family with lower accuracy, like 10−2, 10−3 or 10−4. Be-
sides it is interesting to notice the different curve shapes of IB-BGCRO-DR displayed among the accuracy
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10−2, 10−3 and 10−4, 10−8. For the former two, with lower accuracy, it seems that the inexact break-
down detection mechanism prevents IB-BGCRO-DR to capture a deflation space enabling us to have as
smooth and fast convergence for the subsequent families similar to what BGCRO-DR exhibits. For the
first family, the absence of IB mechanism in regular BGCRO-DR leads to the exploration of spaces that
are not important for the linear system solution (at least for the level of targeted accuracy) but relevant
to capture useful spectral information that will significant speed-up its convergence for the subsequent
families.

For ε = 10−4, IB-BGCRO-DR needs the solution of two families to capture all the relevant spectral
information and to exhibit the same convergence rate as BGCRO-DR. While, the first family is enough
for ε = 10−8.

0 500 1000 1500 2000 2500

mvps

10 -3

10 -2

10 -1

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families with threshold 1e-2

IB-BGCRO-DR
IB-BGMRES-DR

BGCRO-DR

0 1000 2000 3000 4000 5000

mvps

10 -4

10 -3

10 -2

10 -1

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families with threshold 1e-4

IB-BGCRO-DR
IB-BGMRES-DR

BGCRO-DR

0 500 1000 1500 2000 2500 3000 3500

mvps

10 -4

10 -3

10 -2

10 -1

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families with threshold 1e-3

IB-BGCRO-DR
IB-BGMRES-DR

BGCRO-DR

0 2000 4000 6000 8000

mvps

10 -8

10 -6

10 -4

10 -2

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families with threshold 1e-8

IB-BGCRO-DR
IB-BGMRES-DR

BGCRO-DR

Figure 3: History of Section 4.3 for the behavior in case of different target accuracy (10−2, 10−3, 10−4 and
10−8). Convergence history of IB-BGCRO-DR, BGCRO-DR and IB-BGMRES-DR on the families constructed by
bidiagonal Matrix 1 with parameters setting as p = 20, md = 300 and k = 30.

4.4 Subspace expansion policies
As discussed in Section 3.1, only a subset of the candidate directions exhibited by the IB mechanism

can be eventually selected to expand the search space at the next block iteration; we denote this maximum
size pCB and refer to this variant as IB-BGCRO-DR-CB where the CB stands for Computational Block-
ing. In Table 3 we show the effect of this algorithmic parameter onmvps and its for the solution of 3 and
30 families with Matrix 1 when pCB varies from 1 to 15 for a number of right-hand sides p = 20. It can
be seen that smaller pCB is, the smaller mvps, but larger its. While reported only on one example this
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trend has been observed in all our numerical experiments. Depending on the computational efficiency
or cost of the matrix-vector products with respect to the computation weight of the least-squares solu-
tion and SVD of the least squares residuals, this gives opportunities to monitor the overall computational
efficiency of the complete solution.

Family number Method mvps its

3
IB-BGCRO-DR 6950 416
IB-BGCRO-DR-CB (pCB = 15) 6849 460
IB-BGCRO-DR-CB (pCB = 10) 6856 661
IB-BGCRO-DR-CB (pCB = 5) 6859 1297
IB-BGCRO-DR-CB (pCB = 1) 6844 6370

30
IB-BGCRO-DR 65686 3818
IB-BGCRO-DR-CB (pCB = 1) 64700 60131

Table 3: Numerical results of IB-BGCRO-DR and IB-BGCRO-DR-CB for pCB = 1, 5, 10, 15 in terms of mvps
and its for Section 4.4, where the involved parameters for bidiagonal Matrix 1 are set to be p = 20, md = 300 and
k = 30.

We notice that this subspace expansion policy also applies to IB-BGMRES-DR, and we refer to
Figure 9 and Table 8 of Appendix L for an illustration for this block solver.

4.5 Solution with individual convergence thresholds
To illustrate this feature, we consider a family of p right-hand sides and a convergence threshold 10−4

for the first p/2 and 10−8 for the last p/2 ones. To illustrate the benefit of this feature we compare with
calculations where all the right-hand sides are solved with the most stringent accuracy, that is 10−8. We
display in the left part of Figure 4, the convergence histories for 3 successive families. The variant that
controls the individual threshold is denoted as IB-BGCRO-DR-VA where VA stands for Variable Accu-
racy. It can be seen that the numerical feature works well and that the envelope of the backward errors has
the expected shape, that is, the minimum backward error goes down to 10−8 while the maximum ones
(associated with the first p/2 solutions) only goes down to 10−4. If we compare the convergence history
of IB-BGCRO-DR and IB-BGCRO-DR-VA, it can be seen that the slope of IB-BGCRO-DR-VA is deeper
than that of IB-BGCRO-DR once the first p/2 solutions have converged; at this point IB-BGCRO-DR-VA
somehow focuses the new directions (produced by the matrix-vector products used for the x-axis) to re-
duce the residual norms of the remaining p/2 solutions that have not yet converged. The plot on the right
of Figure 4 shows the computational gain induced by the individual control of the accuracy compared to
the situation where all the right-hand sides would have been solved the most stringent one if this feature
had not been designed. In this case the individual monitoring of the convergence saves around 30 % of
the matrix-vector products. Those results are summarized in Table 4.

Similar to previous subsections, we refer to Figure 10 and Table 9 of Appendix M for an illustration
of extending such individual control to the block solver IB-BGMRES-DR that can also accommodate this
feature.

4.6 Behavior on sequences of slowly varying left-hand sides problems
The example used in this section is from a finite element fracture mechanics problem that is fully

documented in [27, Section 4.1]. Over 2000 linear systems of size 3988 × 3988 need to be solved in
order to capture the fracture progression, and among them 151 linear systems 400 − 550 representing a
typical subset of the fracture progression in which many cohesive elements break are examined in [27].

Inria



Block GCRO-DR methods with inexact breakdowns 23

0 1000 2000 3000 4000 5000 6000 7000

mvps

10 -8

10 -6

10 -4

10 -2

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families

IB-BGCRO-DR-VA

IB-BGCRO-DR

5 10 15 20 25 30

 Family index

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

G
a

in
 (

l)

 Gain (l) along the family index

IB-BGCRO-DR

IB-BGCRO-DR-VA

Figure 4: Comparison of IB-BGCRO-DR to IB-BGCRO-DR-VA on families with Matrix 1 (p = 20, md = 300 and
k = 15). Left: convergence histories of the largest/smallest backward errors ηb(i) at each mvps for 3 consecutive
families. Right: Gain (`) of IB-BGCRO-DR-VA to IB-BGCRO-DR versus family index.

Family number Method mvps its

3
IB-BGCRO-DR 6948 416
IB-BGCRO-DR-VA 5118 395

30
IB-BGCRO-DR 65641 3820
IB-BGCRO-DR-VA 47141 3567

Table 4: Numerical results of IB-BGCRO-DR with fixed/varying target accuracy for each right-hand side in terms of
mvps and its for Section 4.5, where the coefficient matrix is bidiagonal Matrix 1 with involving parameters defined
as p = 20, md = 300 and k = 30.

The solution of these linear systems have been investigated using both GCRO-DR and GCROT, and we
refer to [10] for a comprehensive experimental analysis. For our numerical experiments we borrow the
ten linear systems numbered 400− 409 of this FFEC collection. For each set of linear system we select
the matrix and the corresponding right-hand sides that we expand to form a block of p = 20 right-hand
sides by appending random linearly independent vectors.

We display the convergence histories for solving first 3 consecutive families of linear systems in
the left plot of Figure 5. For the solution of the first block of right-hand sides, the observations on
the IB and DR mechanisms discussed in Section 4.2 apply. Even though the matrix has changed, the
recycled spectral information computed for the previous matrix still enable a faster convergence at the
beginning of the solution of the next one. For the solution of the first family the convergence histories
of the three methods fully overlap until the first inexact breakdown occurs, as until this step the three
methods are mathematically equivalent. For the subsequent families, it can be seen that the sequence
of matrices are close enough to ensure that the recycled space from one system to the next still makes
benefit to the convergence as IB-BGCRO-DR and BGCRO-DR converge faster than IB-BGMRES-DR at
the initial stage. The benefit of the IB mechanism is also illustrated on that example as IB-BGCRO-DR
still outperforms BGCRO-DR. The overall benefit in term of mvps saving is illustrated in the right plot
on a sequence of 10 linear systems, where the saving is close to 14% with respect to IB-BGMRES-DR
and more than 67 % with respect to BGCRO-DR. Those results are summarized in Table 5.
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Figure 5: Convergence results of IB-BGCRO-DR, BGCRO-DR and IB-BGMRES-DR on a sequence of slowly
varying left-hand sides built on FFEC with p = 20, md = 300 and k = 15.

Family number Method mvps its

3
BGCRO-DR 13200 660
IB-BGMRES-DR 8068 622
IB-BGCRO-DR 7363 523

10
BGCRO-DR 39515 1969
IB-BGMRES-DR 26832 2022
IB-BGCRO-DR 23603 1611

Table 5: Numerical results in terms of mvps and its for Section 4.6, in which the involving parameters for FFEC
are set to be p = 20, md = 300 and k = 15.

4.7 A variant suited for flexible preconditioning

In this section, we illustrate the numerical behavior of the flexible variant IB-BFGCRO-DR that we
have derived in Section 2.4 and make comparison with closely related variants namely BFGCRO-DR (a
straightforward block extension of FGCRO-DR [6]) and IB-BFGMRES-DR. We refer to Appendix C for
a detailed description of IB-BFGMRES-DR that is although novel.

We consider a representative quantum chromodynamics (QCD) matrix from the University of Florida
sparse matrix collection [8]. It is the conf5.4-00l8x8-0500 matrix denoted as B of size 49152 × 49152
with the critical parameter κc = 0.17865 as a model problem. Thirty families of linear systems are
constructed that are defined as A(`) = I − κc(`)B with 0 ≤ κc(`) < κc and ` = 1, 2, . . . , 30. We
use the Matlab function linspace(0.1780, 0.1786, 30) to generate the parameters κc(`) for the sequence
of left-hand side matrices and observe that those matrices have the same eigenvectors associated with
shifted eigenvalues. A sequence of p = 12 successive canonical basis vectors are chosen to be the block
of right-hand sides for a given left-hand side matrix following [27, Section 4.3] so that the complete set
of the right-hand sides for the ` linear systems reduces to the first p × ` columns of the identity matrix.
This choice could be supported by the fact that the problem of numerical simulations of QCD on a four-
dimensional space-time lattice for solving QCD ab initio (cf. [27, Section 4.3]) has a 12 × 12 block
structure, and then a system with 12 right-hand sides related to a single lattice site is often of interest to
solve.

The flexible preconditioner is defined by a 32-bit ILU(0) factorization of the matrix involved in
the linear system. In a 64-bit calculation framework, the preconditioning consists in casting the set of

Inria



Block GCRO-DR methods with inexact breakdowns 25

directions to be preconditioned in 32-bit format, performing the forward/backward substitution in 32-bit
calculation and casting back the solutions in 64-bit arithmetic. The rounding applied to the vectors has a
nonlinear effect that makes the preconditioner nonlinear.

0 500 1000 1500 2000

 mvps

10 -8

10 -6

10 -4

10 -2

10 0

b
(m

in
,m

a
x
)

 Convergence for 3 consecutive families

IB-BFGCRO-DR
IB-BFGMRES-DR

BFGCRO-DR

5 10 15 20 25 30

Family index

0.95

1

1.05

1.1

1.15

1.2

1.25

G
a

in
 (

l)

 Gain (l) along the family index

IB-BFGCRO-DR
IB-BFGMRES-DR

BFGCRO-DR

Figure 6: Behavior of flexible block solver variant on families of QCD matrices with p = 12, md = 180 and
k = 90. Left: convergence histories of the largest/smallest backward errors ηb(i) at each mvps for 3 consecutive
families. Right: Gain (l) of the block methods with respect to IB-BFGCRO-DR along family index.

Family number Method mvps its

3
BFGCRO-DR 1944 147
IB-BFGMRES-DR 1911 177
IB-BFGCRO-DR 1797 145

30
BFGCRO-DR 18774 1347
IB-BFGMRES-DR 19147 1779
IB-BFGCRO-DR 17770 1327

60
BFGCRO-DR 37494 2682
IB-BFGMRES-DR 38363 3570
IB-BFGCRO-DR 35642 2655

Table 6: Numerical results in terms of mvps and its for Section 4.7, in which the involving parameters for QCD
matrix are set to be p = 12, md = 15× p = 180 and k = 90.

For those experiments, we attempt to favor the recycling of the space, because the matrices share the
same invariant space, so that we choose a relative large value for k that is k = md/2. We report in the
left plot of Figure 6, the convergence histories of the three flexible block variants. Similarly to what has
already been observed previously the convergences are very similar on the first family and only differ
when the IB mechanism becomes active mostly in the last restart. For the second and third families, one
can see that IB-BFGCRO-DR and BFGCRO-DR have identical convergence speed. One can observe a
shift in the convergence histories between the end of the solution of one family and the beginning of
the next one for both IB-BFGCRO-DR and BFGCRO-DR. This shift is due to the extra k matrix-vector
products that have to be performed when the matrix changes in order to adapt the deflation space as
follows

1. compute A(`+1)U
(`)
k = C̃k

2. compute the reduced QR factorization of C̃k = C
(`+1)
k R
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3. update the basis of the deflation space U (`+1)
k = U

(`)
k R−1 so that A(`+1)U

(`+1)
k = C

(`+1)
k .

Because k is large, we can clearly see the shift in the left plot of Figure 6. On the second and third
family IB-BFGMRES-DR has the same convergence history as for the solution of the first one. For this
parameter selection on those examples, it can be noticed that the dominating effect on the convergence
improvement is due to the space recycling and not the IB mechanism as BFGCRO-DR outperforms IB-
BFGMRES-DR gradually. This observation is highlighted in the right plot of Figure 6, where the benefit
of using IB-BFGCRO-DR rather than BFGCRO-DR does shrink when compared to previous experiments
and is only about 8%. This example also illustrate the benefit of combining the two numerical features
IB and subspace recycling as IB-BGCRO-DR is the method that requires the less matrix-vector products
(and preconditioning applications) as well as the less iterations as it is summarized in Table 6 for various
numbers of linear system families.

5 Concluding remarks
In this paper, we develop new variants of block GCRO-DR methods denoted as IB-BGCRO-DR.

We demonstrate that these new solvers combine the nice numerical features of both inexact breakdown
detection mechanism and subspace recycling strategy through extensive numerical experiments for solv-
ing linear systems with constant or slowing-varying left-hand sides and massive number of right-hand
sides. We discuss the multiple choices for constructing the recycling subspace used in the GCRO-DR like
methods and illustrate that the performance of IB-BGCRO-DR with the recycling subspace built by the
commonly used Harmonic Ritz projection is not always superior to that with Rayleigh Ritz projection.
Based on the inexact breakdown mechanism, we present the flexibility of the search space expansion
policy that can be accommodated to find a trade-off between the computational and numerical efficiency
of the solver. We also introduce a technique for monitoring individual convergence thresholds for each
right-hand. To comply with mixed-precision calculation, the flexible preconditioning variant is also pro-
posed, which would be of interest for emerging computing platforms where mixed-precision calculation
could be a way to reduce data movement that is foreseen as one of the major bottleneck to reach high
performance.
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A Other two alternatives to compute the approximate eigen-information

Proposition 4. (Strategy A [5]) At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation
space is built on the harmonic Ritz vectors g(HR)

i ∈ span(Ẑm) of A with respect to Ẑm = [Uk Zm] ∈
Cn×(k+nm) :

1. The harmonic Ritz pairs (θi, Ẑmg
(HR)
i ) for the each restart satisfy

FH
mFmg

(HR)
i = θjF

H
mV̂ H

m+1Ẑmg
(HR)
i , for 1 ≤ i ≤ nm, (46)

• for the first restart: V̂ H
m+1Ẑm =

[
Ck,Vm, [Pm−1, W̃m]

]H
[Uk,Zm] ∈ C(k+nm+p)×(k+nm),

• for the subsequent restart:

V̂ H
m+1Ẑm =


CHk Uk CHk Zm[
VH1 Uk

0(nm−p1)×k

]
V H
m Zm

0p×k

[
PHm−1Zm

W̃H
mZm

]
 . (47)

2. At restart, if G(HR)
k =

[
g
(HR)
i1

, . . . , g
(HR)
ik

]
are associated with the k targeted eigenvalues, the

matrices Unewk and Cnewk to be used for the next cycle are defined by

Unewk = ẐmG
(HR)
k R−1 = [Uk,Zm]G

(HR)
k R−1, (48)

Cnewk = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q, (49)

whereQ andR are the factors of the reduced QR-factorization of FmG
(HR)
k that ensuresAUnewk =

Cnewk with (Cnewk )
H
Cnewk = Ik.

3. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnewk .

4. At all the restarts but the first, we have the following relation that holds

Range(Unewk ) ⊂ Range([Cnewk , V1]), (50)

where V1 Λ1 is the reduced QR-factorization of Rnew1 = Roldm = V1Λ1.

Proof. The proofs basically relay on some matrix computations as shortly described below:

• According to Definition 1, each harmonic Ritz pair (θi, Ẑmg
(HR)
i ) satisfies

∀w ∈ Range(AẐm) wH (AẐmg
(HR)
i − θi Ẑmg

(HR)
i ) = 0, (51)

which equivalently becomes

(AẐm)H (AẐmg
(HR)
i − θi Ẑmg

(HR)
i ) = 0. (52)

Using Equation (34) leads to(
V̂m+1Fm

)H (
V̂m+1Fmg

(HR)
i − θi Ẑmg

(HR)
i

)
= 0. (53)
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Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of cycle is orthonormal, (53) be-
comes

FH
m Fmg

(HR)
i − θiFH

mV̂ H
m+1Ẑmg

(HR)
i = 0,

which is the same as formulation (46). The corresponding simplified form of V̂ H
m+1Ẑm in the right

hand side of (46) established in the second and subsequent cycles could be deduced by the to-
be-proved formula (50), which means Range(Unewk ) ⊂ Range([Cnewk , V1]) ⊂ Range(V̂m+1) =

Range([Cnewk , V1],V2, . . . ,Vm, Pm−1, W̃m]), ∀i ∈ {2, ..,m} VHi Uk = 0pi×k and ([Pm−1, W̃m])HUk =
0p×k.

• [Q,R] is the reduced QR-factorization of FmG
(HR)
k and multiply by G(HR)

k on the right both
sides of Equation (34). It leads toAẐmG

(HR)
k = V̂m+1FmG

(HR)
k = V̂m+1QR, that is equivalent

to AẐmG
(HR)
k R−1 = V̂m+1FmG

(HR)
k R−1 = V̂m+1Q that concludes the proof as V̂m+1Q is the

product of two matrices with orthonormal columns so are its columns.

• The same process for proving Corollary 1.

• Prove (50): Range(Unewk ) ⊂ Range([Cnewk , V1]). According to (52), the residuals of the har-
monic Ritz pairs can be formulated in a matrix form as

R(HR)
m = AẐmG

(HR)
k − ẐmG

(HR)
k diag(θ1, · · · , θk),

from which and the relationship between residual of harmonic Ritz pairs and the residual at restart:
R

(HR)
m = Rmβp×k proved in Section 2.3, we obtain

AẐmG
(HR)
k = ẐmG

(HR)
k diag(θ1, · · · , θk) +Rmβp×k. (54)

Using (48) into Cnewk = AUnewk and from (54), we have

Cnewk = AẐmG
(HR)
k R−1,

= ẐmG
(HR)
k diag(θ1, · · · , θk)R−1 +Rmβp×kR

−1,

= ẐmG
(HR)
k diag(θ1, · · · , θk)R−1 + V1Λ1βp×kR

−1,

so that

[Cnewk , V1] = [ẐmG
(HR)
k , V1]

[
diag(θ1, · · · , θk)R−1 0k×p

Λ1βp×kR
−1 Ip

]
, (55)

By (48) we also have: Unewk = ẐmG
(HR)
k R−1. That shows that

Range(Unewk ) ⊂ Range([ẐmG
(HR)
k , V1]) = Range([Cnewk , V1]).

Proposition 5. (Strategy B [5]) At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation
space is built on the harmonic Ritz vectors g(HR)

i ∈ span(V̂m) of AẐmV̂ H
m with respect to V̂m =

[Ck Vm] ∈ Cn×(k+nm) :

1. The harmonic Ritz pairs (θi, V̂mg
(HR)
i ) for the each restart satisfy

FH
mFmg

(HR)
i = θi F

H
m g

(HR)
i for 1 ≤ i ≤ nm, (56)
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2. At restart, if G(HR)
k =

[
g
(HR)
i1

, . . . , g
(HR)
ik

]
are associated with the k targeted eigenvalues, the

matrices Unewk and Cnewk to be used for the next cycle are defined by

Unewk = ẐmG
(HR)
k R−1 = [Uk,Zm]G

(HR)
k R−1, (57)

Cnewk = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q, (58)

whereQ andR are the factors of the reduced QR-factorization of FmG
(HR)
k that ensuresAUnewk =

Cnewk with (Cnewk )
H
Cnewk = Ik.

3. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnewk .

Proof. Given the proof essentially follows the same arguments as the ones developed for Proposition 4
or 3, the details are omitted here.

Although the Strategy A depicted in Proposition 4 is the most efficient way among the possible three
strategies described in [5] for approximating the eigen-information of the coefficient matrix A, the com-
putational cost of the last nm columns of V̂ H

m+1Ẑm as shown in the right-hand side of Equation (47) is
too heavy especially with larger nm. Therefore, another possible alternatives are considered to reduce
the computational cost of solving such general eigen-solving problem. Inspired from the way of comput-
ing eigen-information under the context of flexible GMRES with deflated restarting (FGMRES-DR) as
shown in [14, Proposition 1], Strategy B shown in Proposition 5 is described for the IB-BFGCRO-DR,
while which turns out to be not that suitable under the GCRO-DR context by numerical results shown
in Table 7. Thus, the Strategy C is devised and described in Proposition 3, which has the same sense
as Strategy A but with a lower computational cost of solving the general eigen-solving problem thanks
to the structure of V̂ H

m+1Wm = [Tm Op]
T with the simplified form Tm as shown in Equation (36).

From Table 7, it is easy to observed that the numerical result of IB-BFGCRO-DR with Strategy C is
approximate to that with Strategy A through the later one costs the fewest mvps and its.

Family number Method mvps its

3
IB-BFGCRO-DR (Strategy A) 1750 139
IB-BFGCRO-DR (Strategy B) 2006 171
IB-BFGCRO-DR (Strategy C) 1797 145

Table 7: Numerical results of IB-BFGCRO-DR with three kinds of strategies in terms of mvps and its, in which
the involving parameters for QCD matrix are set to be p = 12, md = 15× p = 180 and k = 90.
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B Proof of Proposition 3
Proof. The proofs basically relay on some matrix computations as shortly described below:

• According to Definition 1, each harmonic Ritz pair (θi,Wmg
(HR)
i ) satisfies

∀w ∈ Range(AẐmW†mWm) wH (AẐmW†mWmg
(HR)
i − θiWmg

(HR)
i ) = 0. (59)

BecauseWm is initially set to be equal to Vm and then is updated by (38), which has full column
rank, taking a left inverse for the Moore-Penrose inverse ofWm makesW†mWm = I. Therefore,
the second formula of (59) equivalently becomes

(AẐm)H (AẐmg
(HR)
i − θiWmg

(HR)
i ) = 0. (60)

Using Equation (34) leads to(
V̂m+1Fm

)H (
V̂m+1Fmg

(HR)
i − θiWmg

(HR)
i

)
= 0. (61)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of each cycle is orthonormal, (61)
becomes

FH
m Fmg

(HR)
i − θiFH

mV̂ H
m+1Wmg

(HR)
i = 0,

which is the same as formulation (35). The corresponding alternative form (37) with simplified
right-hand side established in the second and subsequent cycles could be deduced by the (2 × 1)

block structure of F in Equation (16) and the equality V̂ H
m+1Wm = [Tm Op]

T that comes
from the to-be-proved formula (41), which means Range(Wnew

k ) ⊂ Range([Cnewk , V1]) ⊂
Range(V̂m+1) = Range([Cnewk , V1],V2, . . . ,Vm, Pm−1, W̃m]), ∀i ∈ {2, ..,m} VHi Wk =

0pi×k and ([Pm−1, W̃m])HWk = 0p×k.

• [Q,R] is the reduced QR-factorization of FmG
(HR)
k and multiply by G(HR)

k on the right both
sides of Equation (34). It leads toAẐmG

(HR)
k = V̂m+1FmG

(HR)
k = V̂m+1QR, that is equivalent

to AẐmG
(HR)
k R−1 = V̂m+1FmG

(HR)
k R−1 = V̂m+1Q that concludes the proof as V̂m+1Q is the

product of two matrices with orthonormal columns so are its columns.

• The same process for proving Corollary 1.

• Prove (41): Range(Wnew
k ) ⊂ Range([Cnewk , V1]). According to (60), the residuals of the har-

monic Ritz pairs can be formulated in a matrix form as

R(HR)
m = AẐmG

(HR)
k −WmG

(HR)
k diag(θ1, · · · , θk),

from which and the relationship between residuals of harmonic Ritz pairs and the linear system
residuals at restart: R(HR)

m = Rmβp×k proved in Section 2.3, we obtain

AẐmG
(HR)
k =WmG

(HR)
k diag(θ1, · · · , θk) +Rmβp×k. (62)

Using (39) into Cnewk = AUnewk and from (62), we have

Cnewk = AẐmG
(HR)
k R−1,

= WmG
(HR)
k diag(θ1, · · · , θk)R−1 +Rmβp×kR

−1,

= WmG
(HR)
k diag(θ1, · · · , θk)R−1 + V1Λ1βp×kR

−1,
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so that

[Cnewk , V1] = [WmG
(HR)
k , V1]

[
diag(θ1, · · · , θk)R−1 0k×p

Λ1βp×kR
−1 Ip

]
. (63)

By (38) we also have: Wnew
k =WmG

(HR)
k R−1. That shows that

Range(Wnew
k ) ⊂ Range([WmG

(HR)
k , V1]) = Range([Cnewk , V1]).
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C IB-BFGMRES-DR: Block flexible GMRES with inexact break-
downs and deflated restarting

C.1 Block flexible Arnoldi with inexact breakdowns
Starting from an orthonormal block vector V1 obtained from the reduced QR-factorization of the

initial residual 1 R0 = B − AX0 = V1Λ1, Algorithm 2 describes details about the block flexible
Arnoldi process used to construct a pair of orthonormal basis. In the no exact breakdown situation,
i.e., pj+1 = pj = . . . = p1 = p, the whole columns of Wj in step 10 of Algorithm 2 have been used to
enlarge the search space, and then the block Arnoldi relation at the jth iteration is obtained as

AZj = VjHj + [0n×nj−1 , Wj ] = Vj+1H j , (64)

in which Zj = [M1(V1), ...,Mm(Vj)], Vj = [V1, ...,Vj ] ∈ Cn×nj (nj = j × p) contains orthonormal

columns and H j =
[

Hj

0...0 Hj+1,j

]
∈ Cnj+1×nj composed by square matrices Hj+1,j ∈ Cpj×pj (pj = p)

is a block upper Hessenberg matrix. The minimum residual norm solution in the affine space X0 +
Range(Zj) can be written as Xj = X0 + ZjYj where

Yj = argmin
Y ∈Cnj×p

‖Λ̃j −H jY ‖F

and Λ̃j = V H
j+1R0 = (Λ1, 0nj×p)

T , the columns of Λ̃j are the components of the individual initial
residual in the residual space Vj+1.

Algorithm 2 BLOCK FLEXIBLE ARNOLDI PROCEDURE WITH BLOCKWISE MODIFIED GRAM-
SCHMIDT ORTHOGONALIZATION:

1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose a unitary matrix V1 of size n× p
2: for j = 1, 2, . . . ,m do
3: Choose a (possibly nonlinear) preconditioning operator Mj

4: Zj = Mj(Vj)
5: Compute Wj = AZj
6: for i = 1, 2, . . . , j do
7: Hi,j = VHi Wj

8: Wj = Wj − ViHi,j

9: end for
10: Wj = Vj+1Hj+1,j (reduced QR-factorization)
11: end for

When an inexact breakdown occurs up to iteration j in Algorithm 2, the dimension of the approxima-
tion space Range(Zj) generated at the jth iteration is no longer equal to j×p but equal to nj =

∑j
i=1 pi

with nj < j × p. According to the inexact breakdown detecting mechanism in IB-BGMRES [32],
the block flexible Arnoldi with inexact breakdowns 2 and equation (10) developed by Robbé and Sad-

1Out of simplicity, the initial residualR0 in here is assumed to be of full column rank, while such assumption could be removed
by introducing inexact breakdown detection in R0 as the contents described in Appendix F.

2The block flexible Arnoldi with inexact breakdowns is obtained by changing the step 4 of Algorithm 3 of Appendix D into
4: Orthogonalize AMj(Vj) against previous block orthonormal vector Vj = [V1, . . . ,Vj ] as

L1,1:j = V H
j (AMj(Vj)), Wj = AMj(Vj)− VjL1,1:j , where L1,1:j is a block column matrix.
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kane [32], the Equation (64) could be extended into

AZj = VjHj + [Qj−1, Wj ], (65)

where Qj−1 = [Q1, . . . , Qj−1] ∈ Cn×nj−1 is rank deficient and accounts for all the abandoned direc-
tions.

In order to characterize a minimum norm solution in the space spanned by Zj using Equation (65)
we need to form an orthonormal basis of the space spanned by [Vj ,Qj−1,Wj ]. This is performed by first
orthogonalizing Qj−1 against Vj , that is Q̃j−1 = (I − VjV H

j )Qj−1. Because Qj−1 is of low rank so
is Q̃j−1 that can be written as formula (12). Next Wj , that is already orthogonal to Vj , is made to be
orthogonal to Pj−1 with Wj−Pj−1Ej whereEj = PHj−1Wj ; then one computes W̃jDj the reducedQR-
factorization of Wj−Pj−1Ej . Eventually, the columns of the matrix [Vj , Pj−1, W̃j ] form an orthonormal
basis of the space spanned by [Vj ,Qj−1,Wj ].

With this new basis Equation (65) writes

AZj =
[
Vj , [Pj−1, W̃j ]

]
F̃ j , (66)

where F̃ j =

[
Lj

H̃j

]
∈ C(nj+p)×nj with H̃j =

[
Gj−1 Ej

0 Dj

]
∈ Cp×nj and Lj ∈ Cnj×nj owns the

same details as described in formula (13), which is no longer a block upper Hessenberg as shown in the
right-hand sides of (64) as soon as inexact breakdown occurs, i.e., ∃` Q` 6= 0.

The numerical mechanism to select Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as discussed

in [2, 32] within the context of block GMRES. The governing idea consists in building the orthonormal
basis for the directions that contribute the most to the individual residual norms and make them larger
than the target threshold ε(R). Based on the SVD of the coordinate vector of the least-square residual Λ̃j−
F̃ jYj = U1,LΣ1VH1,R + U2,LΣ2VH2,R where Σ1 contains the singular values larger than the prescribed

threshold ε(R), they decompose U1,L =

(
U(1)

1

U(2)
1

)
in accordance with

[
Vj , [Pj−1, W̃j ]

]
, that is U(1)

1 ∈

Cnj×p and U(2)
2 ∈ Cp×p. Because, the objective is to construct orthonormal basis we consider [W1,W2]

unitary so that Range(W1) = Range(U(2)
1 ). The new set of orthonormal vectors selected to expand the

search space as formula (18), which contributes the most to the residual. We do not give the detailed
calculation and refer to [32] for a complete description, but only state that via this decomposition the
main terms that appear in Equation (66) can be computed incrementally by an alternative formulation:

AZj = Vj+1L j + Q̃j , (67)

with L j =

[
Lj

Vj+1Qj−1 Hj+1,j

]
, where Lj =

L j−1

H1,j

...
Hj,j

 , the last block row of L j at next

iteration (j + 1) is given by L j+1,: = WH
1 Hj . The last block column of Lj+1 results from the block

flexible Arnoldi orthogonalization. The new compressed form of the abandoned direction Q̃j is given by
the new orthonomal set of vectors

Pj =
[
Pj−1, W̃j

]
W2, (68)

and the complementary part of Vj+1 and their components in the space spanned by Pj are Gj = WH
2 Hj .
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Consequently, in one cycle of IB-BFGMRES-DR, once the maximum size of the space has been
reached, we have

AZm =
[
Vm, [Pm−1, W̃m]

]
F̃m, (69)

AZm = Vm+1Lm + Q̃m, (70)
Xm = X0 + ZmYm, (71)

Rm =
[
Vm, [Pm−1, W̃m]

] (
Λ̃m − F̃mYm

)
, (72)

Ym = argmin
Y ∈Cnm×p

∥∥∥Λ̃m − F̃mY
∥∥∥
F
, Λ̃m = [ΛT1 , 0p×nm ]T .

C.2 Harmonic Ritz vectors and residuals
We first illustrate how to compute the harmonic Ritz vectors used for deflation as described in Propo-

sition 6 and then discuss the relation between the linear system residuals and the residuals of harmonic
Ritz vectors at the restart of IB-BFGMRES-DR.

Proposition 6. At the end of a cycle of IB-BFGMRES-DR, the updating of deflated restarting used in
next cycle relies on the computation of k harmonic Ritz vectors Yk = VmG

(HR)
k ofAZmV H

m with respect
to Range(Vm), where each harmonic Ritz pair (θj ,Vmg

(HR)
j ) computed at the end of cycle is supposed

to satisfy
(Lm + L −Hm H̃HmH̃m)g

(HR)
j = θj g

(HR)
j for 1 ≤ j ≤ k, (73)

where Lm ∈ Cnm×nm and H̃m ∈ Cp×nm .

Proof. According to Definition 1, each harmonic Ritz pair (θj ,Vmg
(HR)
j ) satisfies

∀w ∈ Range(AZmV H
m Vm) wH (AZmV H

m Vmg
(HR)
j − θj Vmg

(HR)
j ) = 0,

which is equivalent to
(AZm)H (AZmg

(HR)
j − θj Vmg

(HR)
j ) = 0,

by the orthonormality of Vm. Substituting (69) into the above equation yields

(
[
Vm, [Pm−1, W̃m]

]
F̃m)H (

[
Vj , [Pm−1, W̃m]

]
F̃m g

(HR)
j − θj Vm g

(HR)
j ) = 0. (74)

Because of the structure of F̃m and the orthonormality of [Vm, Pm−1, W̃m], (74) becomes

(LH
m Lm + H̃HmH̃m)g

(HR)
j = θj LH

m g
(HR)
j , (75)

which completes the proof since Lm is assumed to be nonsingular.

Assume RLSm =
(

Λ̃m − F̃mYm

)
∈ C(nm+p)×p, the residual of linear system presented in (72)

could be simplified as

Rm =
[
Vm, [Pm−1, W̃m]

]
RLSm ∈ Cn×p. (76)

Denote the corresponding residual of harmonic vectors as Rharm similarly, which owns form as

Rharm = AZmG
(HR)
k − VmG

(HR)
k diag(θ1, . . . , θk) ∈ Cn×k. (77)
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Given that both Rm and Rharm are resided in the subspace Range(
[
Vm, [Pm−1, W̃m]

]
) ∈ Cn×(nm+p)

and are orthogonal to the same subspace Range(AZm) ∈ Cn×nm . Therefore, the residuals of linear
system Rm and the residuals of harmonic Ritz vectors Rharm are in the same p-dimensional space denoted
as Range(AZm)⊥ ∩ Range(

[
Vm, [Pm−1, W̃m]

]
), which means there exists a βp×k ∈ Cp×k such that

Rharm = Rmβp×k. According to (76) and (77), such collinear relationship between the linear system
residuals and residuals of harmonic Ritz vectors could be further described as the following formula

AZmG
(HR)
k =

[
Vm, [Pm−1, W̃m]

]
G

[
diag(θ1, · · · , θk)

βp×k

]
, (78)

where G(HR)
k = [g

(HR)
1 , . . . , g

(HR)
k ] ∈ Cnm×k, G =

[
G

(HR)
k

0p×k
RLSm

]
∈ C(nm+p)×(k+p), βp×k =

(β1, · · · , βk) ∈ Cp×k and βi ∈ Cp (1 ≤ i ≤ k).Based on (66) and the orthonormality of
[
Vm, [Pm−1, W̃m]

]
,

relation (78) can be also expressed as

F̃mG
(HR)
k = G

[
diag(θ1, · · · , θk)

βp×k

]
, (79)

which is the block form of Equation (3.4) shown in [2, Lemma3.3].

C.3 Flexible block GMRES with inexact breakdowns at restart

In this subsection, the forthcoming Theorem 2 will be presented to illustrate that the flexible Arnoldi
relation with inexact breakdowns described in (66) and (67) (or in (69) and (70)) still hold at restart.
Firstly, let us denote G = QGRG the reduced QR-factorization of G shown in (79) and the reduced
factors could be partitioned as

QG =

[
Γ1

0p×k
Γ2

]
∈ C(nm+p)×(k+p), (80)

RG =

[
Θ1

0p×k
Θ2

]
∈ C(nm+p)×(k+p), (81)

with Γ1 = QG(1 : nm, 1 : k), Γ2 = QG(:, k + 1 : k + p), Θ1 = RG(1 : nm, 1 : k), Θ2 = RG(:, k + 1 :
k + p) and

G
(HR)
k = Γ1Θ1, (82)
RLSm = QGΘ2. (83)

Theorem 2. At each restart of block flexible GMRES with inexact breakdowns and deflated restarting,
the initial block-flexible-Arnoldi-like relation (66) and (67) still hold in exact arithmtic as

AZ new
1 =

[
V new
1 , [P0, W̃1]new

]
F̃
new

1 , (84)

AZ new
1 = V new

2 L new
1 + Q̃new1 , (85)

Rnew0 = Rm =
[
V new
1 , [P0, W̃1]new

]
Λ̃new1 and Λ̃new1 = Θ2, (86)
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with

Z new
1 = ZmΓ1,

[
V new
1 , [P0, W̃1]new

]
=
[
Vm, [Pm−1, W̃m]

]
QG,

V new
1 = VmΓ1, [P0, W̃1]new =

[
Vm, [Pm−1, W̃m]

]
Γ2,

F̃
new

1 =

[
L new

1

H̃new1

]
and L new

1 = ΓH1 LmΓ1, H̃new1 = ΓH2 F̃mΓ1,

Vnew2 = [P0, W̃1]newWnewH
1 , V new

2 = [V new
1 Vnew2 ],

L new
2,: = WnewH

1 H̃new1 , L new
1 =

[
L new

1

L new
2,:

]
,

Pnew1 = [P0, W̃1]newWnew
2 , Gnew1 = WnewH

2 H̃new1 , Q̃new1 = Pnew1 Gnew1 ,

where Wnew
1 and Wnew

2 satisfy

Range(Wnew
1 ) = Range(Unew(2)

1 ) with Unew1,L =

[
Unew(1)

1

Unew(2)
1

]
and [Wnew

1 Wnew
2 ] is unitary

with
Λ̃new1 − F̃

new

1 Y new1 = Unew1,L Σnew1 VnewH1,R + Unew2,L Σnew2 VnewH2,R ,

where σmin(Σnew1 ) ≥ ε(R) ≥ σmax(Σnew2 ), the SVD to detect inexact breakdown in the restarting block
residual where

Y new1 = argmin
Y ∈Cn1×p

∥∥∥Λ̃new1 − F̃
new

1 Y
∥∥∥
F
.

Proof. Starting from the relationship between residual and harmonic Ritz vectors as shown in (78), let’s
substituteG by these reduced factorsQG in (80) andRG in (81) obtained by its reducedQR-factorization
and change G(HR)

k by relation (82), then we have

AZmΓ1 =
[
Vm, [Pm−1, W̃m]

]
QGRG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11

by the nonsingularity of Θ1, which could be rewritten as

AZmΓ1 =
[
VmΓ1, [Vm, [Pm−1, W̃m]]Γ2

]
RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 (87)

because of the partition of QG shown in (80). Then, repeating the same processes described above, the
corresponding formula (79) could also be reformed as

F̃mΓ1 = QGRG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 ,

from which, we have

RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 = QHG F̃mΓ1.

According to the structure of QG and Fm as shown in (80) and (66), we obtain

RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 =

[
ΓH
1 LmΓ1

ΓH2 F̃mΓ1

]
. (88)
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If we denote

Z new
1 = ZmΓ1, V new

1 = VmΓ1, [P0, W̃1]new =
[
Vm, [Pm−1, W̃m]

]
Γ2,

L new
1 = ΓH1 LmΓ1, H̃new1 = ΓH2 F̃mΓ1, F̃

new

1 =

[
L new

1

H̃new1

]
,

and substitute (88) into (87), then (84) is proven.
Next, show that equality (85) holds. Given [Wnew

1 ,Wnew
2 ] is unitary, we have

[P0, W̃1]new = [P0, W̃1]new[WnewH
1 Wnew

1 + WnewH
2 Wnew

2 ],

and substituting this into (84) gives

AZ new
1 =

[
V new
1 , [P0, W̃1]new[WnewH

1 Wnew
1 + WnewH

2 Wnew
2 ]

] [ L new
1

H̃new1

]
,

= V new
1 L new

1 + [P0, W̃1]new[WnewH
1 Wnew

1 + WnewH
2 Wnew

2 ]H̃new1 ,

= V new
1 L new

1 + [P0, W̃1]newWnewH
1 Wnew

1 H̃new1 + [P0, W̃1]newWnewH
2 Wnew

2 H̃new1 ,

= V new
1 L new

1 + V new
2 L new

2,: + Pnew1 Gnew1 ,

= [V new
1 V new2 ]

[
L new

1

L new
2,:

]
+ Pnew1 Gnew1 ,

which is relation (85).
From relations (76) and (83), at restart we have

Rnew0 = Rm =
[
Vm, [Pm−1, W̃m]

]
RLSm

=
[
Vm, [Pm−1, W̃m]

]
QGΘ2 =

[
V new
1 , [P0, W̃1]new

]
Λ̃new1 .

This complete the proof.
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D Block Arnoldi with inexact breakdown detection after the initial
residuals
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Algorithm 3 BLOCK ARNOLDI USING R-CRITERION TO DETECT INEXACT BREAKDOWNS.

1: Assuming B = [b(1), · · · , b(p)] ∈ Cn×p is of full rank, choose the initial block guess X0, and
compute the corresponding nonsingular initial block residual R0 = B −AX0.

2: Form initial unitary matrix V1 from initial block residualR0 = V1Λ1 with reducedQR-factorization.
Let P0 = 0, G0 = 0 and L 0 = [ ]. Choose a targeted backward error ε and set the corresponding
ε(R) (or if

∥∥b(i)∥∥
2

= 1, then εV A = [ε(1), · · · , ε(p)] and Dε = diag ((εV A)−1) in step 7. iii.
3: for j = 1, 2, . . . ,m do
4: Orthogonalize AVj against previous block orthonormal vector Vj = [V1, . . . ,Vj ] as

L1,1:j = V H
j (AVj), Wj = AVj − VjL1,1:j , where L1,1:j is a block column matrix.

5: Set Lj =
[
L j−1, L1,1:j

]
∈ Cnj×nj .

6: Orthogonalize Wj against Pj−1 and carry out its reduced QR-factorization as

Ej = PHj−1Wj , W̃jDj = Wj − Pj−1Ej .

7: Compute Yj the solution of the least-squares problem: min
Y ∈Cnj×p

∥∥∥Λ̃j − F̃ jY
∥∥∥
F

with

Λ̃j =

(
Λ1

0

)
∈ C(nj+p)×p, F̃ j =

(
Lj

H̃j

)
∈ C(nj+p)×nj , and H̃j =

(
Gj−1 Ej

0 Dj

)
∈ Cp×nj .

Based on different criteria to carry out the singular value decomposition algorithm to detect inexact
breakdowns in residuals (i.e., implement 7.i., 7.ii. or 7.iii. distinguished by different color for the
forward step)

7.i. if based on Section 2.2, then:(Λ̃j − F̃ jYj) = U1,LΣ1VH1,R + U2,lΣ2VH2,R, with σmin(Σ1) ≥ ε(R) > σmax(Σ2).

7.ii. if computational blocking based on Section 3.1 is considered in subspace expansion policy, then:

(Λ̃j − F̃ jYj) = U1,LCB
Σ1CB

VH1,RCB
+ U2,LCB

Σ2CB
VH2,RCB

, with σmin(Σ1CB
) ≥ ε(R) > σmax(Σ2CB

).

Then, U1 = U1,LCB
(:, 1 : pCBj ) with pCBj = min(pCB , size(Σ1CB

, 2)) and 1 ≤ pCB ≤ p.

7.iii. if individual convergence criterion based on Section 3.2 is considered for each right-hand side, then:

(Λ̃j − F̃ jYj)Dε = U1,LΣ1VH1,R + U2,LΣ2VH2,R, where σmin(Σ1) ≥ ε(R) > σmax(Σ2) with ε(R) = 1.

Compute W1 and W2 such that

Range(W1) = Range(U(2)
1 ) with U1,L =

(
U(1)

1

U(2)
1

)
and [W1, W2] is unitary.

Compute orthonormal matrices Vj+1 and Pj , the last block row matrix Lj+1,: of L j , and Gj as

Vj+1 =
[
Pj−1, W̃j

]
W1, Pj =

[
Pj−1, W̃j

]
W2, Lj+1,: = WH

1 H̃j , Gj = WH
2 H̃j .

8: Set L j =
(

Lj

Lj+1,:

)
.

9: end for Inria
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E The SVD decomposition of the residual block involved and the
solution of the least-squares problem solution

The Inexact Breakdown mechanism (IB) allows to extract from the residual spaces new directions to
expand the search space at the next iteration of the block method. The selection consists in extracting
the directions that contribute the most to the residual block and is based on the SVD of the least-squares
residuals. In this section, we detail how the solution of the least-squares problem (15) enables to compute
easily and cheaply the SVD of the associated residual block. The least-squares problems that writes

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, (89)

is solved using a fullQR-factorization of F j = QLSj RLSj so that the residual of the least-squares problem
is given by (44) that allows to compute it without forming Yj :

Λj −F jYj = Λj −QLSj RLSj Yj

= QLSj
(
(QLSj )HΛj −RLSj Yj

)
= QLSj

(
0nj×p

R`sj

)

where R`sj ∈ Cp×p are the last p rows of (QLSj )HΛj . The SVD of R`sj can be written

R`sj = U`sΣV
H
`s ,

so that the SVD of the least-squares residual is

Λj −F jYj = QLSj

(
0(nj+k)×p Inj+k

U`s 0p×(nj+k)

)
︸ ︷︷ ︸

Unitary

(
Σ

0(nj+k)×p

)
V H`s .
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F Inexact breakdown detection in the initial residuals R1

In that case, only a candidate subspace of the space spanned by R1 will be selected to define the first
search space but abandoned directions should be kept in the basis of the residual space. This has two
main consequences:

1. The first iteration needs some extra attention to setup P0 and G0 defined by (12).

2. A consequence of having abandoned directions in the first search space is that the projection of the
initial residual in the residual space, that defines the right-hand side of the least-squares problem
solved at each block iteration, will not longer have the nested block structure that is expanded by a
p× p zero block at each block iteration as presented in (21).

Let consider the reduced SVD of R1 denoted

R1 = [V1, P0]

[
Σp1

Σq1

]
VHR1

= [V1, P0]Λ̂1

where Σp1 contains the p1 singular values of R1 larger than ε(R), and Σq1 the ones lower than ε(R) with
p1 + q1 = p. Consequently V1 = V1 will serve to span the first search space and P0 will be abandoned
for this first block iteration that will be run as follows.

1. we form W1 = AV1 and orthogonalize it against the set of orthonormal vectors that are part of the
residual space [Ck,V1, P0] by computing B1 = CHk W1, L1,1 = V H

1 W1 and E1 = PH0 W1.

2. we compute W̄1 the resulting block that writes W̄1 = W1 − CkB1 − V1L1,1 − P0E1 and W̄1 =

W̃1D1 its reduced QR-factorization.

3. In matrix form this also writes

W1 = AV1 =
[
Ck,V1, P0, W̃1

]
B1

L1,1

E1

D1


So that we have the first Arnoldi-like relation

A[Uk,V1] = [Ck,V1, P0, W̃1]F 1

with

F 1 =


Ik B1

0(n1+p)×k

L1,1

E1

D1


4. Next, we have to define the minimum norm solution X2 = X1 + [Uk,V1]Y and notice that R1

belongs to the space [Ck,V1, P0, W̃1] where its components in this orthogonal basis are given by
[Ck,V1, P0, W̃1]HR1, we have

‖B −AX2‖F = ‖R1 −A [Uk,V1]Y ‖F
= ‖R1 − [Ck,V1, P0, W̃1]F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]HR1 −F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]H [V1, P0]Λ̂1 −F 1Y ‖F
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so that the right-hand side of the least-squares reads

Λ1 = [Ck,V1, P0, W̃1]H [V1, P0]Λ̂1 =


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

 Λ̂1 ∈ C(k+p1+p)×p.

5. Compute Y1 the solution of the first new least-squares problem

Y1 = argmin
Y ∈C(k+n1)×p

‖Λ1 −F 1Y ‖F .

As in regular IB-BGCRO-DR iteration carry out the singular value decomposition algorithm to
detect inexact breakdown in the new residual block

(Λ1 −F 1Y1) = U1,LΣ1VH1,R + U2,LΣ2VH2,R, where σmin(Σ1) ≥ ε(R) > σmax(Σ2).

Compute W1 and W2 such that Range(W1) = Range(U(2)
1 ) ∈ Cp×p2 with U1,L =

(
U(1)

1

U(2)
1

)
∈

C(k+n1+p)×p2 and [W1, W2] is unitary and W2 ∈ Cp×q2 with p2 + q2 = p.
Compute new orthonormal matrices V2 and P1, the last block row matrix L2,: of L 1, and G1 as

V2 = [P0, W̃1]W1 ∈ Cn×p2 , P1 = [P0, W̃1]W2 ∈ Cn×q2 ,L2,: = WH
1 H1 ∈ Cp2×p1 , G1 = WH

2 H1 ∈ Cq2×p1 .

6. Set L 1 =
(

L1

L2,:

)
∈ C(p1+p2)×p1 = Cn2×p1 .

Refer to Algorithm 4 for the corresponding pseudocode form of these contents described in above item
1-6. The subsequent iterations will then be run by IB-BGCRO-DR as discussed in the core of the report.

Whenever an inexact breakdown is detected in R1, some of its directions, namely P0 are abandoned
and put into the residual space for the first iteration. The beauty of the IB mechanism is that the aban-
doned directions at a given iteration can be re-introduced in some subsequent iterations. One of the
consequences, is that the last q1 columns of the least-squares residual will evolve from one iteration to
the next, depending on how P0 directions will be re-introduced in the search space along the iterations.
There is still a way to incrementally update it as discussed in the next proposition.

Proposition 7. If an inexact breakdown is detected in R1, that is

R1 = [V1, P0]

[
Σp1

Σq1

]
VHR1

= [V1, P0]Λ̂1,

where Σp1 contains the p1 singular values of R1 larger than ε(R), and Σq1 the ones lower than ε(R) with
p1 + q1 = p.

At each iteration of IB-BGCRO-DR, the new least-squares problem reads

Yj+1 = argmin
Y ∈C(k+nj+1)×p

∥∥Λj+1 −F j+1Y
∥∥
F
, Λj+1 ∈ C(k+nj+1+p)×p, j = 0, 1, 2, · · · (90)

with the updated right-hand sides being

Λj+1 =


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1 0pj+1×q1

 Λ̂1 with Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1
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and

Φj+1 =

 Φj(1 : nj , :)

[W1,W2]
H

[
Φj(nj + 1 : nj + qj , :)

0pj×q1

]  ∈ C(nj+p)×q1 for j = 1, 2, · · · ,

where qj = p− pj and [W1,W2] is unitary as defined in step 7 of Algorithm 3.

Proof. The initial residuals with inexact breakdown detection at restart could be described as

R1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]HR1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]H [V1, P0]Λ̂1

= [Ck,V1, P0, W̃1]Λ1 with Λ1 =


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

 Λ̂1 ∈ C(k+n1+p)×p,

That can also be written

Λ1 =


0k×p1 0k×q1
Ip1

0q1×p1
Φ1

0p1×p1 0p1×q1

 Λ̂1.

The right-hand sides of the least-squares problem at iteration (j + 1) for j = 1, 2, · · · , is defined by

Λj+1 = [Ck,Vj+1, [Pj , W̃j+1]]HR1 = [Ck,Vj , Vj+1, [Pj , W̃j+1]]HR1

=
[
Ck,Vj , [Pj−1, W̃j ]W1, [Pj−1, W̃j ]W2, W̃j+1

]H
R1

=
[
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
[V1, P0]Λ̂1

=


CHk V1 CHk P0

V H
j V1 V H

j P0

[Vj+1, Pj ]
H V1 [W1,W2]

H
[
Pj−1, W̃j

]H
P0

W̃H
j+1V1 W̃H

j+1P0

 Λ̂1 =



0k×p1 0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj , :)

0p×p1 [W1,W2]
H

[
PHj−1
W̃H
j

]
P0

0pj+1×p1 0pj+1×q1

 Λ̂1

=


0k×p1 0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj , :)

0p×p1 [W1,W2]
H

[
Φj(nj + 1 : nj + qj , :)

0pj×q1

]
0pj+1×p1 0pj+1×q1

 Λ̂1 =


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1 0pj+1×q1

 Λ̂1

where Φj+1 ∈ C(nj+p)×q1 for j = 1, 2, · · · .

Note that we denote the new solver with constant right-hand sides of least-squares problem as shown
in (15) or (21) as IBa-BGCRO-DR, where IBa stands for carrying out Inexact Breakdown after initial
iteration (or without IB in the initial residuals), for contrasting with IB-BGCRO-DR that with updating
right-hand sides of least-squares problem as shown in (90). The pseudocode for IBa-BGCRO-DR for
constant and slowly-changing left-hand sides with massive number of right-hand sides are presented in
Algorithm 5 in Appendix G and Algorithm 6 in Appendix H, respectively.

Figure 7 displays the results of adding the performance of IBa-BGCRO-DR to Figure 2 in Section 4.2
to illustrate the benefit of introducing IB in the initial residuals.
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Figure 7: Comparison of IB-BGCRO-DR with IBa-BGCRO-DR, BGCRO-DR and IB-BGMRES-DR by solving
bidiagonal Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of the largest/smallest backward
errors ηb(i) at each mvps for 2 consecutive families. Right: varying blocksize comparison along iterations.
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G IBa-BGCRO-DR without IB in the initial residuals R1 for con-
stant left-hand side and massive number of right-hand sides
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Algorithm 4 SUBSPACE RECYCLING WITH INEXACT BREAKDOWN DETECTION IN INITIAL
RESIDUALS R1.

1: Let L 0 = [ ] and the reduced SVD of R1 as R1 = [V1, P0]

[
Σp1

Σq1

]
VHR1

= [V1, P0]Λ̂1,

where V1 ∈ Cn×p1 and P0 ∈ Cn×q1 with p1 + q1 = p and Ck⊥[V1, P0].
2: Orthogonalize AV1 against Ck as W1 = (I−CkCHk )AV1. Then orthogonalize W1 against previous

block orthonormal vector V1 = [V1] as

L1,1 = V H
1 (W1) = V H

1 (AV1) ∈ Cn1×p1 , W1 = W1−V1L1,1 = AV1−CkCHk AV1−V1L1,1 ∈ Cn×p1 .

Set L1 = [L 0,L1,1] ∈ Cn1×n1 = Cp1×p1 .
3: Orthogonalize W1 against P0 and carry out its reduced QR-factorization as

E1 = PH0 W1 ∈ Cq1×p1 , W̃1D1 = W1 − P0E1 with W̃1 ∈ Cn×p1 , D1 ∈ Cp1×p1 .

4: Arnoldi relation at the end of first step

A[Uk,V1] = [Ck,V1, P0, W̃1]F 1

with

F 1 =


Ik B1

0(n1+p)×k

L1,1

E1

D1

 ∈ C(k+n1+p)×(k+n1), B1 = CHk AV1,H1 =

[
E1

D1

]
∈ Cp×p1

5: Compute R1 = [Ck,V1, P0, W̃1]Λ1 with Λ1 =


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

 Λ̂1 ∈ C(k+n1+p)×p

6: Compute Y1 the solution of the first new least-squares problem

Y1 = argmin
Y ∈C(k+n1)×p

‖Λ1 −F 1Y ‖F .

Carry out the singular value decomposition algorithm to detect inexact breakdown in first new block
residuals

(Λ1 −F 1Y1) = U1,LΣ1VH1,R + U2,LΣ2VH2,R, where σmin(Σ1) ≥ ε(R) > σmax(Σ2).

Compute W1 and W2 such that Range(W1) = Range(U(2)
1 ) ∈ Cp×p2 with U1,L =

(
U(1)

1

U(2)
1

)
∈

C(k+n1+p)×p2 and [W1, W2] is unitary and W2 ∈ Cp×q2 with p2 + q2 = p.
Compute new orthonormal matrices V2 and P1, the last block row matrix L2,: of L 1, and G1 as

V2 = [P0, W̃1]W1 ∈ Cn×p2 , P1 = [P0, W̃1]W2 ∈ Cn×q2 ,L2,: = WH
1 H1 ∈ Cp2×p1 , G1 = WH

2 H1 ∈ Cq2×p1 .

7: Set L 1 =
(

L1

L2,:

)
∈ C(p1+p2)×p1 = Cn2×p1 .
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Algorithm 5 IBa-BGCRO-DR FOR CONSTANT LEFT-HAND SIDE AND MASSIVE NUMBER OF
RIGHT-HAND SIDES.
1: Suppose the `th family of linear systems is currently to be solved. Let the current p linearly independent right-hand sides be
B = [b(1), b(2), . . . , b(p)] given simultaneously. Choose the maximal dimension m of the underlying block approximation
subspace in each cycle, k the desired number of approximate targeted eigenvectors, ε the targeted backward error, X0 =

[x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] the initial block guess. Let r(i)0 = b(i) − Ax(i)0 , i = 1, . . . , p. Denote R0 = [r

(1)
0 , r

(2)
0 , . . . , r

(p)
0 ]

the initial full-rank block residual. The recast problems are A(x(i) − x(i)0 ) = r
(i)
0 , i = 1, . . . , p. Set ncycle = 1.

2: if an (`− 1)st family of linear systems has been solved, that is if Ck , Uk , Ûk andDk are defined from solving a previous (the
(`− 1)st) family of linear systems then

3: X1 = X0 + UkC
H
k R0, and R1 = R0 − CkC

H
k R0

4: else
5: Form the initial unitary matrix V1 from the initial block residual R0 = V1Λ1 with reduced QR-factorization. Implement

an initial cycle of IB-BGMRES within m matrix-vector products.
6: Xm = X0 + VmYm

7: Rm =
[
Vm, Pm−1, W̃m

] (
Λ̃m − F̃mYm

)
. Check convergence, and proceed if not satisfied.

8: Compute k harmonic Ritz vectors of A with respect to Range(Vm) and store them in Ỹk . That is, compute k eigenvectors
gj of Lm +L −H

m HH
mHm associated with the smallest magnitude eigenvalues θj and store inGk , such that Ỹk = VmGk .

9: Let [Q,R] be the reduced QR-factorization of F̃mGk .

10: Ck =
[
Vm, Pm−1, W̃m

]
Q, Uk = VmGkR

−1

11: Set X1 = Xm and R1 = Rm.
12: end if
13: if ncycle = 1 then
14: if an (`− 1)st family of linear systems has been solved then
15: Form the initial unitary matrix V1 from the initial block residual R1 = V1Λ1 with reduced QR-factorization.
16: else
17: Let [Q,R] be the reduced QR-factorization of Λ̃m − F̃mYm. Set V1 =

[
Vm, Pm−1, W̃m

]
Q and Λ1 = R.

18: end if
19: else
20: Let [Q,R] be the reduced QR-factorization of Λm −FmYm. Set V1 = V̂m+pQ and Λ1 = R.
21: end if
22: ncycle = ncycle + 1
23: if the current family is the first one being solved then
24: To reduce unnecessary ill-conditioning of the rightmost matrix in (14) or (19), letDk be a diagonal scaling matrix such that

Ûk = UkDk , where the columns of Ûk have unit norm [27, Section 2.4].
25: end if
26: Perform the block Arnoldi with inexact breakdowns as in Algorithm 3 within md − k matrix-vector products with the linear

operator (I−CkC
H
k )A and solve the least-squares problem as min ‖Λm −FmY ‖F for Ym ∈ C(k+nm)×p with right-hand

sides Λm =

 0k×p

Λ1

0nm×p

 ∈ C(k+nm+p)×p, generating Ym, RLS
m , Vm,

[
Vm, Pm−1, W̃m

]
, F̃m, and Bm = CH

k AVm.

27: Ŵm = [Ûk Vm], V̂m+1 = [Ck,Vm, Pm−1, W̃m]

28: Fm =

[
Fm

Hm

]
∈ C(k+nm+p)×(k+nm), Fm =

[
Dk Bm

0(nm+p)×k Lm

]
∈ C(k+nm)×(k+nm) and Hm =[

0p×k
Gm−1 Em

0 Dm

]
∈ Cp×(k+nm)

29: Xm = X1 + ŴmYm
30: Rm = V̂m+1RLS

m . Check convergence, and go to 37 if satisfied or else proceed.
31: if the current family is the first one being solved then
32: Compute k harmonic Ritz vectors of A with respect to Range(Ŵm) = [Ûk,Vm] and store them in Ỹk . That is, keep k

eigenvectors gj from solving the generalized eigenvalue problem FH
mFmgj = θjF

H
mV̂ H

m+1Ŵmgj associated with the

smallest magnitude eigenvalues θj and store in Gk , such that Ỹk = ŴmGk .
33: Let [Q,R] be the reduced QR-factorization of FmGk .
34: Ck = V̂m+1Q, Uk = ŴmGkR

−1

35: end if
36: Restart with X1 = Xm and R1 = Rm, i.e., go to 13.
37: Retain Ck , Uk , Ûk and Dk for the next (i.e., (`+ 1)st) family of linear systems.
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H IBa-BGCRO-DR without IB in the initial residuals R1 for slowly-
changing left-hand sides and massive number of right-hand sides
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Algorithm 6 IBa-BGCRO-DR FOR SLOWLY-CHANGING LEFT-HAND SIDES AND MASSIVE
NUMBER OF RIGHT-HAND SIDES.
1: Suppose the `th family of linear systems is currently to be solved. Let the current p linearly independent right-hand sides be
B = [b(1), b(2), . . . , b(p)] given simultaneously. Choose the maximal dimension m of the underlying block approximation
subspace in each cycle, k the desired number of approximate targeted eigenvectors, ε the targeted backward error, X0 =

[x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] the initial block guess. Let r(i)0 = b(i) − Ax(i)0 , i = 1, . . . , p. Denote R0 = [r

(1)
0 , r

(2)
0 , . . . , r

(p)
0 ]

the initial full-rank block residual. The recast problems are A(x(i) − x(i)0 ) = r
(i)
0 , i = 1, . . . , p. Set ncycle = 1.

2: if Ỹk is defined from solving a previous (the (`− 1)st) family of linear systems then
3: Let [Q,R] be the reduced QR-factorization of AỸk .
4: Ck = Q, Uk = ỸkR

−1

5: X1 = X0 + UkC
H
k R0

6: R1 = R0 − CkC
H
k R0

7: else
8: Form the initial unitary matrix V1 from the initial block residual R0 = V1Λ1 with reduced QR-factorization. Implement

an initial cycle of IB-BGMRES within m matrix-vector products.
9: Xm = X0 + VmYm

10: Rm =
[
Vm, Pm−1, W̃m

] (
Λ̃m − F̃mYm

)
. Check convergence, and proceed if not satisfied.

11: Compute k harmonic Ritz vectors of A with respect to Range(Vm) and store them in Ỹk . That is, compute k eigenvectors
gj of Lm +L −H

m HH
mHm associated with the smallest magnitude eigenvalues θj and store inGk , such that Ỹk = VmGk .

12: Let [Q,R] be the reduced QR-factorization of F̃mGk .

13: Ck =
[
Vm, Pm−1, W̃m

]
Q, Uk = VmGkR

−1

14: Set X1 = Xm and R1 = Rm.
15: end if
16: if ncycle = 1 then
17: if an (`− 1)st family of linear systems has been solved then
18: Form the initial unitary matrix V1 from the initial block residual R1 = V1Λ1 with reduced QR-factorization.
19: else
20: Let [Q,R] be the reduced QR-factorization of Λ̃m − F̃mYm. Set V1 =

[
Vm, Pm−1, W̃m

]
Q and Λ1 = R.

21: end if
22: else
23: Let [Q,R] be the reduced QR-factorization of Λm −FmYm. Set V1 = V̂m+1Q and Λ1 = R.
24: end if
25: ncycle = ncycle + 1
26: To reduce unnecessary ill-conditioning of the rightmost matrix in (14) or (19), let Dk be a diagonal scaling matrix such that

Ûk = UkDk , where the columns of Ûk have unit norm [27, Section 2.4].
27: Perform the block Arnoldi with inexact breakdowns as in Algorithm 3 within md − k matrix-vector products with the linear

operator (I−CkC
H
k )A and solve the least-squares problem as min ‖Λm −FmY ‖F for Ym ∈ C(k+nm)×p with right-hand

sides Λm =

 0k×p

Λ1

0nm×p

 ∈ C(k+nm+p)×p, generating Ym, RLS
m , Vm,

[
Vm, Pm−1, W̃m

]
, F̃m, and Bm = CH

k AVm.

28: Ŵm = [Ûk Vm], V̂m+1 = [Ck,Vm, Pm−1, W̃m]

29: Fm =

[
Fm

Hm

]
∈ C(k+nm+p)×(k+nm), Fm =

[
Dk Bm

0(nm+p)×k Lm

]
∈ C(k+nm)×(k+nm) and Hm =[

0p×k
Gm−1 Em

0 Dm

]
∈ Cp×(k+nm)

30: Xm = X1 + ŴmYm
31: Rm = V̂m+1RLS

m . Check convergence, and go to 36 if satisfied or else proceed.
32: Compute k harmonic Ritz vectors of A with respect to Range(Ŵm) = [Ûk,Vm] and store them in Ỹk . That is, keep k

eigenvectors gj from solving the generalized eigenvalue problem FH
mFmgj = θjF

H
mV̂ H

m+1Ŵmgj associated with the

smallest magnitude eigenvalues θj and store in Gk , such that Ỹk = ŴmGk .
33: Let [Q,R] be the reduced QR-factorization of FmGk .
34: Ck = V̂m+1Q, Uk = ŴmGkR

−1

35: Restart with X1 = Xm and R1 = Rm, i.e., go to 16.
36: Retain Ỹk = Uk for the next (i.e., (`+ 1)st) family of linear systems.
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I IB-BGCRO-DR with inexact breakdown detection in the initial
residuals R1 for constant left-hand side and massive number of
right-hand sides
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Algorithm 7 IB-BGCRO-DR WITH INEXACT BREAKDOWN DETECTION IN INITIAL RESIDU-
ALS FOR CONSTANT LEFT-HAND SIDE AND MASSIVE NUMBER OF RIGHT-HAND SIDES.
1: Suppose the `th family of linear systems is currently to be solved. Let the current p linearly independent right-hand sides be
B = [b(1), b(2), . . . , b(p)] given simultaneously. Choose the maximal dimension m of the underlying block approximation
subspace in each cycle, k the desired number of approximate targeted eigenvectors, ε the targeted backward error, X0 =

[x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] the initial block guess. Let r(i)0 = b(i) − Ax(i)0 , i = 1, . . . , p. Denote R0 = [r

(1)
0 , r

(2)
0 , . . . , r

(p)
0 ]

the initial full-rank block residual. The recast problems are A(x(i) − x(i)0 ) = r
(i)
0 , i = 1, . . . , p. Set ncycle = 1.

2: Following step 2-12 of Algorithm 5 in Appendix G
3: if ncycle = 1 then
4: if an (`− 1)st family of linear systems has been solved then
5: Carry out the economic singular value decomposition algorithm to detect inexact breakdown in R1

R1 = U1,LΣ1VH
1,R + U2,LΣ2VH

2,R = [V1, P0]

[
Σp1

Σq1

]
VH
R1

= [V1, P0]Λ̂1, (91)

where σmin(Σ1) ≥ ε(R)
j > σmax(Σ2).

6: Set V1 = U1,L ∈ Cn×p1 , P0 = U2,L ∈ Cn×q1 with p1 + q1 = p and Λ̂1 =

[
Σp1

Σq1

]
VH
R1
∈ Cp×p.

7: else
8: Compute RLS

m = Λ̃m − F̃mYm = V H
m+1Rm =

[
Vm, [Pm−1, W̃m]

]H
Rm ∈ C(nm+p)×p the least-squares

residuals at the end of of one cycle of Algorithm 3 with operatorA. Carry out the economic singular value decomposition
algorithm to detect inexact breakdown in RLS

m as shown in equation (91) where R1 changed into RLS
m .

9: Set V1 = Vm+1U1,L ∈ Cn×p1 , P0 = Vm+1U2,L ∈ Cn×q1 with p1 + q1 = p and Λ̂1 ∈ Cp×p.
10: end if
11: else
12: Compute RLS

m = Λm −FmYm = V̂ H
m+1Rm =

[
Ck,Vm, [Pm−1, W̃m]

]H
Rm ∈ C(k+nm+p)×p the least-squares

residuals at the end of of one cycle of Algorithm 3 with operator (I − CkC
H
k )A. Carry out the economic singular value

decomposition algorithm to detect inexact breakdown in RLS
m as shown in equation (91) where R1 changed into RLS

m .
13: Set V1 = V̂m+1U1,L ∈ Cn×p1 , P0 = V̂m+1U2,L ∈ Cn×q1 with p1 + q1 = p and Λ̂1 ∈ Cp×p.
14: end if
15: ncycle = ncycle + 1. Perform Algorithm 4 to fulfill the initialization of Algorithm 3.
16: if the current family is the first one being solved then
17: To reduce unnecessary ill-conditioning of the rightmost matrix in (14) or (19), letDk be a diagonal scaling matrix such that

Ûk = UkDk , where the columns of Ûk have unit norm [27, Section 2.4].
18: end if
19: Then perform the block Arnoldi with inexact breakdowns as in Algorithm 3 for j = 2, . . . ,m with the linear oper-

ator (I − CkC
H
k )A and update the least-squares right-hand sides (90) as description in Proposition 7, generating Vm,[

Vm, Pm−1, W̃m

]
, F̃m, Ym, RLS

m = Λm −FmYm, and Bm = CH
k AVm.

20: Ŵm = [Ûk Vm], V̂m+1 = [Ck,Vm, Pm−1, W̃m],

21: Fm =

[
Fm

Hm

]
∈ C(k+nm+p)×(k+nm), Fm =

[
Dk Bm

0(nm+p)×k Lm

]
∈ C(k+nm)×(k+nm), Hm =[

0p×k
Gm−1 Em

0 Dm

]
∈ Cp×(k+nm)

22: Xm = X1 + ŴmYm
23: Rm = V̂m+1RLS

m . Check convergence, and go to 30 if satisfied or else proceed.
24: if the current family is the first one being solved then
25: Compute k harmonic Ritz vectors of A with respect to Range(Ŵm) = [Ûk,Vm] and store them in Ỹk . That is, keep k

eigenvectors gj from solving the generalized eigenvalue problem FH
mFmgj = θjF

H
mV̂ H

m+1Ŵmgj associated with the

smallest magnitude eigenvalues θj and store in Gk , such that Ỹk = ŴmGk .
26: Let [Q,R] be the reduced QR-factorization of FmGk .
27: Ck = V̂m+1Q, Uk = ŴmGkR

−1

28: end if
29: Restart with X1 = Xm and R1 = Rm, i.e., go to 3.
30: Retain Ck , Uk , Ûk and Dk for the next (i.e., (`+ 1)st) family of linear systems.
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J IB-BGCRO-DR with inexact breakdown detection in the initial
residuals R1 for slowly-changing left-hand side and massive num-
ber of right-hand sides
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Algorithm 8 IB-BGCRO-DR WITH INEXACT BREAKDOWN DETECTION IN INITIAL RESIDU-
ALS FOR SLOWLY-CHANGING LEFT-HAND SIDE AND MASSIVE NUMBER OF RIGHT-HAND
SIDES.
1: Suppose the `th family of linear systems is currently to be solved. Let the current p linearly independent right-hand sides be
B = [b(1), b(2), . . . , b(p)] given simultaneously. Choose the maximal dimension m of the underlying block approximation
subspace in each cycle, k the desired number of approximate targeted eigenvectors, ε the targeted backward error, X0 =

[x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] the initial block guess. Let r(i)0 = b(i) − Ax(i)0 , i = 1, . . . , p. Denote R0 = [r

(1)
0 , r

(2)
0 , . . . , r

(p)
0 ]

the initial full-rank block residual. The recast problems are A(x(i) − x(i)0 ) = r
(i)
0 , i = 1, . . . , p. Set ncycle = 1.

2: Following step 2-15 of Algorithm 6 in Appendix H
3: if ncycle = 1 then
4: if an (`− 1)st family of linear systems has been solved then
5: Carry out the economic singular value decomposition algorithm to detect inexact breakdown in R1 as shown in (91). Set

V1 = U1,L ∈ Cn×p1 , P0 = U2,L ∈ Cn×q1 with p1 + q1 = p and Λ̂1 =

[
Σp1

Σq1

]
VH
R1
∈ Cp×p.

6: else
7: Compute RLS

m = Λ̃m − F̃mYm = V H
m+1Rm =

[
Vm, [Pm−1, W̃m]

]H
Rm ∈ C(nm+p)×p the least-squares

residuals at the end of of one cycle of Algorithm 3 with operatorA. Carry out the economic singular value decomposition
algorithm to detect inexact breakdown in RLS

m as shown in equation (91) where R1 changed into RLS
m .

8: Set V1 = Vm+1U1,L ∈ Cn×p1 , P0 = Vm+1U2,L ∈ Cn×q1 with p1+q1 = p and Λ̂1 =

[
Σp1

Σq1

]
VH
RLS

m
∈

Cp×p.
9: end if

10: else
11: Compute RLS

m = Λm −FmYm = V̂ H
m+1Rm =

[
Ck,Vm, [Pm−1, W̃m]

]H
Rm ∈ C(k+nm+p)×p the least-squares

residuals at the end of of one cycle of Algorithm 3 with operator (I − CkC
H
k )A. Carry out the economic singular value

decomposition algorithm to detect inexact breakdown in RLS
m as shown in equation (91) where R1 changed into RLS

m .

12: Set V1 = V̂m+1U1,L ∈ Cn×p1 , P0 = V̂m+1U2,L ∈ Cn×q1 with p1 + q1 = p and Λ̂1 =

[
Σp1

Σq1

]
VH
RLS

m
∈

Cp×p.
13: end if
14: ncycle = ncycle + 1. Perform Algorithm 4 to fulfill the initialization of Algorithm 3.
15: To reduce unnecessary ill-conditioning of the rightmost matrix in (14) or (19), let Dk be a diagonal scaling matrix such that

Ûk = UkDk , where the columns of Ûk have unit norm [27, Section 2.4].
16: Then perform the block Arnoldi with inexact breakdowns as in Algorithm 3 for j = 2, . . . ,m with the linear oper-

ator (I − CkC
H
k )A and update the least-squares right-hand sides (90) as description in Proposition 7, generating Vm,[

Vm, Pm−1, W̃m

]
, F̃m, Ym, RLS

m = Λm −FmYm, and Bm = CH
k AVm.

17: Ŵm = [Ûk Vm], V̂m+1 = [Ck,Vm, Pm−1, W̃m]

18: Fm =

[
Fm

Hm

]
∈ C(k+nm+p)×(k+nm), Fm =

[
Dk Bm

0(nm+p)×k Lm

]
∈ C(k+nm)×(k+nm) and Hm =[

0p×k
Gm−1 Em

0 Dm

]
∈ Cp×(k+nm)

19: Xm = X1 + ŴmYm
20: Rm = V̂m+1RLS

m . Check convergence, and go to 25 if satisfied or else proceed.
21: Compute k harmonic Ritz vectors of A with respect to Range(Ŵm) = [Ûk,Vm] and store them in Ỹk . That is, keep k

eigenvectors gj from solving the generalized eigenvalue problem FH
mFmgj = θjF

H
mV̂ H

m+1Ŵmgj associated with the

smallest magnitude eigenvalues θj and store in Gk , such that Ỹk = ŴmGk .
22: Let [Q,R] be the reduced QR-factorization of FmGk .
23: Ck = V̂m+1Q, Uk = ŴmGkR

−1

24: Restart with X1 = Xm and R1 = Rm, i.e., go to 3.
25: Retain Ỹk = Uk for the next (i.e., (`+ 1)st) family of linear systems.
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K Numerical results for various target accuracy
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Figure 8: History of Section 4.3 for the behavior in case of different target accuracy (10−2, 10−3 and 10−4) for
the families constructed by bidiagonal Matrix 1 with parameters setting as p = 20, md = 300 and k = 30. Left:
convergence histories of IB-BGCRO-DR, BGCRO-DR and IB-BGMRES-DR on the largest/smallest backward errors
ηb(i) at each mvps for 10 consecutive families. Right: Gain (l) of the block methods with respect to IB-BGCRO-DR
along family index.
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L Numerical results for IB-BGMRES-DR-CB
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Figure 9: Comparison of IB-BGMRES-DR to IB-BGMRES-DR-CB on families constructed by bidiagonal Matrix 1
with parameters setting as pCB = 1, p = 20, md = 300 and k = 15. Left: convergence histories of largest/smallest
backward errors ηb(i) at each mvps for 3 consecutive families. Right: number of consumed mvps verse family
index.

Family number Method mvps its

3
IB-BGMRES-DR 8069 515
IB-BGMRES-DR-CB (pCB = 15) 7844 561
IB-BGMRES-DR-CB (pCB = 1) 7820 7250

30
IB-BGMRES-DR 80861 5198
IB-BGMRES-DR-CB (pCB = 1) 78308 72608

Table 8: Numerical results of IB-BGMRES-DR, IB-BGMRES-DR-CB with parameter pCB = 1, 15 in terms of
mvps and its, where the involving parameters for bidiagonal Matrix 1 are set to be p = 20, md = 300 and k = 30.
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M Numerical results for IB-BGMRES-DR-VA
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Figure 10: Comparison of IB-BGMRES-DR to IB-BGMRES-DR-VA on families built by bidiagonal Matrix 1 with
parameters as p = 20, md = 300 and k = 15. Left: convergence histories of largest/smallest backward errors ηb(i)
at each mvps for 3 consecutive families. Right: Gain (`) of IB-BGMRES-DR-VA to IB-BGMRES-DR verse family
index.

Family number Method mvps its

3
IB-BGMRES-DR 8066 515
IB-BGMRES-DR-VA 5903 490

30
IB-BGMRES-DR 80717 5191
IB-BGMRES-DR-VA 59069 4957

Table 9: Numerical results of IB-BGMRES-DR and IB-BGMRES-DR-VA in terms of mvps and its, where the
coefficient matrix is bidiagonal Matrix 1 with involving parameters defined as p = 20, md = 300 and k = 30.
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