
HAL Id: hal-03146446
https://inria.hal.science/hal-03146446

Submitted on 19 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Workshop on Resource Arbitration for Dynamic
Runtimes (RADR)

Pete Beckman, Emmanuel Jeannot, Swann Perarnau

To cite this version:
Pete Beckman, Emmanuel Jeannot, Swann Perarnau. Workshop on Resource Arbitration for Dy-
namic Runtimes (RADR). IPDPS 2020 Workshops - 2020 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, May 2020, New-Orleans / Virtual, United States. pp.2,
�10.1109/IPDPSW50202.2020.00157�. �hal-03146446�

https://inria.hal.science/hal-03146446
https://hal.archives-ouvertes.fr

Workshop on Resource Arbitration for Dynamic Runtimes (RADR)
Pete Beckman
Argonne National Laboratory
Northwestern University
Argonne, IL, USA
beckman@anl.gov

Emmanuel Jeannot
TADaaM Team, Inria
Talence, France
emmanuel.jeannot@inria.fr

Swann Perarnau
Argonne National Laboratory
Argonne, IL, USA
swann@anl.gov

Abstract
The question of efficient dynamic allocation of compute-node resources, such as cores, by
independent libraries or runtime systems can be an nightmare. Scientists writing application
components have no way to efficiently specify and compose resource-hungry components. As
application software stacks become deeper and the interaction of multiple runtime layers
compete for resources from the operating system, it has become clear that intelligent
cooperation is needed. Resources such as compute cores, in-package memory, and even
electrical power must be orchestrated dynamically across application components, with the
ability to query each other and respond appropriately. A more integrated solution would
reduce intra-application resource competition and improve performance. Furthermore,
application runtime systems could request and allocate specific hardware assets and adjust
runtime tuning parameters up and down the software stack.
The goal of this workshop is to gather and share the latest scholarly research from the
community working on these issues, at all levels of the HPC software stack. This include thread
allocation, resource arbitration and management, containers, and so on, from runtime-system
designers to compilers. We will also use panel sessions and keynote talks to discuss these
issues, share visions, and present solutions.

Scope
Over the last five years, the number of nodes in large supercomputers has remained largely
unchanged. In fact, the Oak Ridge National Laboratory computer leading the Top500 list,
Summit, has fewer nodes than its predecessor, which is 20 times slower. Machines are getting
faster not by adding nodes, but by adding parallelism, cores, and hierarchical memory to each
compute node. This shift in how computers are scaled up makes it imperative that parallel
computer resources within a node be carefully orchestrated to achieve maximum
performance. Dynamically allocating and managing threads and the mapping of these threads
to cores is a challenge that requires cooperation and coordination between the different
components of the software stack.

Figure 1: Software stack with different parts using threads

At the application level, a software component might use pthreads to express and coordinate
concurrency. The application might also be linked to computational libraries, such as PETSc or
Intel’s MKL that could be multithreaded. Moreover, other parts of the application may use
OpenMP parallel section (which are implemented with threads). Furthermore, the runtime
system may need its own parallel resources, for example, to spawn progress engines for
message libraries or remote invocation handlers. Currently, each component in this complex
software stack is unaware of the other pieces. Therefore, threads can compete for cores and
cause profound slowdowns to intranode collective operations and barriers. Moreover,
currently, no mechanisms exist to query for unused cores, to reserve some of them, or to
check which part of the application is using them. Resource allocation and partitioning by the
operating system must be adaptive and well connected to user-level software components.
There has been research progress in this field. Tools such as hwloc can provide information on
systems, such as topology. However, hwloc is not designed to handle direct allocation and
partitioning resources. Likewise, it does not provide the interfaces required for software
components to negotiate how to improve performance of the application through
cooperative sharing of resources. Other approaches have been proposed, such as application
composition, dynamic topology management or topology-aware core selection. Resource
partitioning, enforced by the operating system using containers or within multi-kernels are
also being investigated. Each of those approaches brings its own set of benefits and
challenges, that need to be discussed within the community, compared with each other, and
evaluated against benchmarks and use cases yet to be identified. As a relatively new and
specific research area, it is difficult for researchers to find a place where to submit papers and
discuss solution with the whole community. Therefore, we think it is of great interest for the
HPC community to provide a venue to present these work in all their specificity and foster
new discussions.

Program Committee
Program Chairs:

• Pete Beckman
• Emmanuel Jeannot

Publicity Chair:

• Swann Perarnau

Mul$threaded	applica$on	

Mul$threaded	
Com.	Library	

Mul$threaded	
Run$me	
System	

Mul$threaded	Comp.	Library	

Scien$fic		app	

MPI	(progress		
threads)	 OpenMP	

Parallel	Blas	

Hardware	 Mul$core+parallel	

Program Committee:
• Dorian Arnold, Emory University.
• Siegfried Benkner, University of Vienna.
• George Bosilca, Univ Of Tennessee.
• Hal Finkel, Argonne Ntl Lab.
• Karl Fuerlinger, LMU, München.
• Balazs Gerofi, U. Tokyo – Riken.
• Brice Goglin, Inria.
• Raymond Namyst, Univ. Of Bordeaux.
• Stephen Olivier, Sandia Ntl Lab.
• Tapasya Patki, Lawrence Livermore Ntl Lab.
• Marc Perache, CEA.
• Swann Perarnau, Argonne Ntl Lab.
• Rolf Riesen, Intel.
• Sameer Shende, U. of Oregon.
• Christian Terboven, RTW Aachen.

Program
This year, we have selected four papers to be presented at this workshop. They all deal about
cooperation in the software stack: between MPI and TBB, for core allocation, for different
execution models and for multithreaded applications. However, due to the COVID-19 crisis,
we have been forced to implement a virtual meeting where speakers were able to present
their contributions through a video-conferencing system.

