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We propose a numerical scheme to solve the semiclassical Vlasov-Maxwell equations for
electrons with spin. The electron gas is described by a distribution function f(t,x,p, s)
that evolves in an extended 9-dimensional phase space (x,p, s), where s represents the
spin vector. Using suitable approximations and symmetries, the extended phase space
can be reduced to 5D: (x, px, s). It can be shown that the spin Vlasov-Maxwell equations
enjoy a Hamiltonian structure that motivates the use of the recently developed geometric
particle-in-cell (PIC) methods. Here, the geometric PIC approach is generalized to the
case of electrons with spin. Total energy conservation is very well satisfied, with a relative
error below 0.05%. As a relevant example, we study the stimulated Raman scattering of
an electromagnetic wave interacting with an underdense plasma, where the electrons are
partially or fully spin polarized. It is shown that the Raman instability is very effective
in destroying the electron polarization.

1. Introduction

The interaction of an electromagnetic pulse with the electronic spins in metallic or
magnetic nano-objects has been the object of intense investigations, both theoretical and
experimental, over the past few decades (Bigot & Vomir 2013). It is well known that
spin effects can play a decisive role in nanometric systems, most notably the Zeeman
effect (coupling the spin to an external magnetic field) and the spin-orbit interaction
(coupling the spin to the orbital motion of the electron). In particular, the ultrafast loss
of magnetization observed in ferromagnetic nano-objects (Beaurepaire et al. 1996; Bigot
et al. 2009; Bigot & Vomir 2013) has been linked to various spin-dependent mechanisms,
although its fundamental origin is still being debated. Metallic and magnetic nano-objects
have many potential technological applications, including to biology and medicine, where
they can be used to absorb electromagnetic energy and release it as heat in order to
destroy cancer cells (hyperthermia) (Mehdaoui et al. 2013). In plasma physics, polarized
electron beams of high spin polarization can now be created and precisely manipulated
in the laboratory (Wu et al. 2019, 2020; Nie et al. 2021). Recently, numerical simulations
of spin-polarized electrons beams interacting with strong laser pulses were performed by
Wen et al. (2017, 2019).
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From a fundamental point of view, modelling the N -body dynamics of a system
of particles possessing both charge and spin, represents an ambitious theoretical and
computational challenge. Several approaches have been proposed in recent decades to
tackle this difficult problem, relying either on hydrodynamic equations (Moldabekov
et al. 2018) or on wave-function-based methods such as density functional theory (DFT)
(Krieger et al. 2015).

Here, we will consider a possible alternative that relies on the use of the phase
space models inspired from classical plasma physics, for which the system is governed
by a probability distribution function that evolves according to a kinetic equation
(Manfredi et al. 2019). The quantum equivalent of the classical distribution function
can be obtained from Wigner’s phase space representation of quantum mechanics. In
this representation, which is completely equivalent to the more standard Schrödinger
or Heisenberg representations, the state of a quantum system can be represented by a
function f of the phase space variables. The Wigner function evolves according to an
integro-differential equation that reduces, in the classical limit, to the Vlasov equation.
The Wigner function can be used to compute averages as in the classical case, but should
not be considered as a proper probability distribution, because it can take negative values.

If one retains the spin degrees of freedom, the Wigner distribution function becomes a
2 × 2 matrix, whose elements represent the spin-up and spin-down components, as well
as entangled states (Arnold & Steinrück 1989). The corresponding semiclassical matrix
spin Vlasov equation, coupled to Maxwell’s equations, constitutes a viable mean-field
model where the electron orbital motion is treated classically, while the spin is a fully
quantum variable (Hurst et al. 2017, 2014). This approach was recently used to study
the generation of spin currents in ferromagnetic thin films (Hurst et al. 2018).

A different, but equivalent, approach consists in defining a scalar distribution function
that evolves in an extended phase space (x,p, s), where the spin is a further variable (in
addition to the position and the momentum) described by a vector on the unit-radius
sphere (Marklund et al. 2010; Asenjo et al. 2012; Zamanian et al. 2010a,b). The geometric
structure of this scalar spin Vlasov model has been highlighted in Marklund & Morrison
(2011).

Both approaches (extended phase space and matrix Wigner function) are mathemati-
cally equivalent. From a computational point of view, the extended phase space method
is more easily simulated using particle-in-cell (PIC) methods, because the corresponding
distribution function is transported along classical trajectories in the extended phase
space. In contrast, the matrix Wigner function method is more naturally amenable to
grid-based Vlasov codes, because the corresponding distribution function only depends
on the six variables of the ordinary phase space.

In this work, we will develop and validate a PIC code for the self-consistent spin
Vlasov-Maxwell (spin-VM) equations in the extended phase space. The adopted model is
semiclassical, in the sense that the orbital electron motion is treated in a classical fashion,
while the spin dynamics is fully quantum. The electron spin intervenes in the dynamics
via the Zeeman effect and a precession term, which are due to the coupling of the spin with
a self-consistent or external magnetic field. These are the first non-relativistic corrections
to the spin-less dynamics.

Despite the plentiful theoretical developments, numerical works on the simulation
of spin effects in plasmas are relatively scarce. Cowley et al. (1986) were perhaps the
first authors to perform computer simulations of polarized electrons in a plasma using
a semiclassical kinetic approach. More recently, Brodin et al. (2013) developed a PIC
code accounting for the magnetic dipole force and the magnetization currents associated
with the electron spin. This work does not follow the extended phase space approach
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adopted here, but rather considers two separate spin-up and spin-down populations
for the electrons, which is less general (this is know as the collinear approximation
in condensed matter physics). In a similar context, Tonge et al. (2004) and Dauger
et al. (2005) have extended classical PIC methods to the quantum regime (but without
spin) using an approach based on Feynman path integrals. Very recently, PIC simulation
methods for particles with spin were developed and validated by Li et al. (2021) for
applications to laser-plasma interactions.

Further, in order to reduce the dimensionality of the problem, we consider a simplified
model widely used to study laser-plasma interactions (Ghizzo et al. 1990; Huot et al. 2003;
Li et al. 2019b) and assume that all quantities depend spatially only on the longitudinal
co-ordinate x (the direction of propagation of the incident electromagnetic wave). We
also make the hypothesis that the electron distribution function can be written in the
form:

F (t, x,p, s) = δ(p⊥ − eA⊥)f(t, x, px, s), (1.1)

where f(t, x, px, s) =
∫
F (t, x,p, s)dp⊥ and p = (px,p⊥) = (px, py, pz). Equation (1.1) is

equivalent to stating that the electrons are cold in the perpendicular plane. Note that this
ansatz is exact, in the sense that, if satisfied by the initial condition, then it is preserved
along the time evolution of the Vlasov-Maxwell equations. By using this approximation,
the extended phase space is reduced from 9 dimensions to 5 (one in space, one in velocity,
and three for the spin).

The Poisson structure proposed in Marklund & Morrison (2011) lays the bases to
construct a geometric PIC method (Qin et al. 2015; Xiao et al. 2015; Kraus et al. 2017;
He et al. 2016; Morrison 2017; Burby 2017) for the spin-VM equations. The geometric
PIC method adopted here is based on a compatible finite-element approximation of
the electromagnetic fields, combined with a particle approximation of the distribution
function. Following Kraus et al. (2017), we have chosen spline spaces, which is a family
of compatible finite elements in the sense that this approach enables to naturally derive
discrete versions of the differential operators. The so-obtained finite-dimensional system
of ordinary differential equations (ODEs) possesses a non-canonical Poisson structure.
Subsequently, one has to implement a time discretization for this large ODE system.
This is performed by decomposing the discrete Hamiltonian into several subsystems
(Crouseilles et al. 2015; Li et al. 2019a; He et al. 2015) and using a time splitting method.
It turns out that each of the subsystem can be solved exactly in time, meaning that their
composition is still a Poisson map and high-order splitting schemes can thus be easily
constructed.

The resulting spin-PIC code is tested on a well-studied problem in the physics of
laser-plasma interactions, namely the stimulated Raman scattering (SRS). SRS describes
the decay of an incident electromagnetic (em) wave into a scattered em wave and a
plasma (Langmuir) wave, through a parametric instability. First, we benchmark our
code against analytical results and former simulations carried out in the spin-less regime.
Then we exploit the full spin Vlasov-Maxwell model to study the effect of the electron
spin polarization on the Raman instability.

The rest of the paper is organized as follows. In section 2, the spin Vlasov models are
presented together with their Poisson bracket formulation. In section 3, the geometric
electromagnetic PIC (GEMPIC) framework (Kraus et al. 2017) is recalled and extended
to our spin context. In section 4, the Hamiltonian time-splitting technique is described,
and finally in section 5 several numerical simulations of the spin-dependent Raman
scattering are presented and discussed. Finally, we draw our conclusions in section 6.
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2. Spin Vlasov-Maxwell equations

2.1. General formalism

Here, we recall the basics of the spin Vlasov-Maxwell system in the extended phase
space (Marklund & Morrison 2011; Marklund et al. 2010; Zamanian et al. 2010a; Manfredi
et al. 2019), satisfied by the scalar electron distribution function:

f : (t,x,p, s) ∈ R+ × R3 × R3 × R3 7→ f(t,x,p, s) ∈ R,

and the self-consistent electromagnetic fields (E,B) : (t,x) 7→ (E,B)(t,x) ∈ R3 × R3.
The spin Vlasov-Maxwell equations read as

∂f

∂t
+

p

m
· ∇f +

[
q
(
E +

p

m
×B

)
+ µe∇(s ·B)

]
· ∂f
∂p

+
2µe
~

(s×B) · ∂f
∂s

= 0,

ε0µ0
∂E

∂t
= ∇×B− µ0J,

∂B

∂t
= −∇×E,

∇ ·E =
ρ− qn0
ε0

,

∇ ·B = 0,
(2.1)

In the original paper on the scalar spin-Vlasov equation (Zamanian et al. 2010a), one
further term was present, which has the form of a modified quantum magnetic dipole
term:

µe∇
(
B · ∂

∂s

)
· ∂f
∂p

.

In subsequent works by the same authors, this term was often ignored because of the
semiclassical approximation made there (Brodin et al. 2008; Brodin & Stefan 2013;
Brodin et al. 2011). This can be justified by assuming that variations of f in spin space
are of moderate size (for a more detailed discussion, see (Zamanian et al. 2010a; Brodin
et al. 2011)). It should also be pointed out that this modified quantum dipole term
contains derivatives in both real and spin space, thus making the PIC algorithm much
more involved. For these reasons, such extra term is neglected in the present developments
and will be left to future works on this topic.

The coupling between the Vlasov and Maxwell equations is ensured by the current and
the density (J, ρ) : (t,x) 7→ (J, ρ)(t,x) ∈ R3 × R+, defined respectively as

J = q

∫
R6

pfdpds + µe∇×
∫

R6

sfdpds, ρ = q

∫
R6

fdpds. (2.2)

Here, q = −e is the electron charge, µe = q~
2m is the Bohr magneton, ~ the Planck

constant, m the electron mass, n0 the fixed ion density, and ε0, µ0 denote the permittivity
and the permeability of vacuum (which satisfy ε0µ0 = c−2, with c being the speed of
light). We further note that, in this model, the spin vector s is dimensionless and has
fixed length, ie |s| = 1 or s ∈ S2. Hence, the effective phase space is actually 8D. However,
in order to preserve the geometric structure that will be used in the forthcoming sections,
we will consider that s ∈ R3.

In the above Vlasov equation (2.1), the first three terms are the standard terms present
in the spin-less case, the next term [∇(s · B)] is the Zeeman effect, and the last term
(s×B) represents the spin precession in the magnetic field. In equation (2.2), the second
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term in the current represents the curl of the internal magnetization due to the electron
spin. Further details can be found in Manfredi et al. (2019).

We shall use normalized units, denoted by a tilde and defined as follows:

t

1/ωp
= t̃,

x

λ
= x̃,

p

mc
= p̃,

f

n0/c3
= f̃ ,

E

ωpcm/|q|
= Ẽ,

B

ωpm/|q|
= B̃,

where we introduced the electron plasma frequency, the plasma skin depth, and the scaled
Planck constant:

ωp =

√
n0q2

mε0
, λ =

c

ωp
, h =

~ωp
2mc2

.

The dimensionless version of (2.1) reads as

∂f

∂t
+ p · ∇f + [(E + p×B) + h ∇(s ·B)] · ∂f

∂p
+ (s×B) · ∂f

∂s
= 0,

∂E

∂t
= ∇×B−

∫
R6

pfdpds + h ∇×
∫

R6

sfdpds,

∂B

∂t
= −∇×E,

∇ ·E =

∫
R6

fdpds− 1,

∇ ·B = 0,

(2.3)

where we removed the tilde in order to simplify the notation. The above dimensionless
version of the spin Vlasov-Maxwell model will be used throughout this work.

It has been shown in Marklund & Morrison (2011) that the equations (2.3) enjoy
a noncanonical Poisson structure that enables us to rewrite this complex system in a
more compact way. Let us denote M = {(f,E,B)| ∇ ·B = 0} the infinite dimensional
manifold. The system (2.3) can be expressed using the Poisson bracket introduced in
(Marklund & Morrison 2011). For two functionals (F ,G) acting on M, we consider the
following Poisson bracket, which is the sum of the Vlasov-Maxwell bracket (Marsden &
Weinstein 1982) and a bracket describing spin effects:

{F ,G} = {F ,G}VM + {F ,G}s, with

{F ,G}VM =

∫
R9

f

[
δF
δf

,
δG
δf

]
xp

dxdpds

+

∫
R9

(
δF
δE
· ∂f
∂p

δG
δf
− δG
δE
· ∂f
∂p

δF
δf

)
dxdpds

+

∫
R3

(
δF
δE
·
(
O× δG

δB

)
− δG
δE
·
(
O× δF

δB

))
dx

+

∫
R9

fB ·
(
∂

∂p

δF
δf
× ∂

∂p

δG
δf

)
dxdpds,

{F ,G}s =
1

h

∫
R9

fs ·
( ∂
∂s

δF
δf
× ∂

∂s

δG
δf

)
dxdpds.

(2.4)

Here, [·, ·]xp denotes the Lie bracket for two functions of (x,p). It was proven in Mark-
lund & Morrison (2011) that the bracket (2.4) is indeed a Poisson bracket. With the
Hamiltonian functional defined as follows:

H(f,E,B) =
1

2

∫
R9

|p|2fdxdpds + h

∫
R9

s ·Bfdxdpds +
1

2

∫
R3

(
|E|2 + |B|2

)
dx, (2.5)
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the spin Vlasov-Maxwell system (2.3) can be written in a compact way, using Z :=
(f,E,B) ∈M:

∂Z
∂t

= {Z,H}, (2.6)

where {·, ·} is given by (2.4). This system is supplemented with an initial condition
Z(t = 0) = Z0.

2.2. Reduced spin Vlasov-Maxwell equations

Here, following Ghizzo et al. (1990), we derive a reduced spin Vlasov-Maxwell model
by considering the case of a plasma interacting with an electromagnetic wave propagating
in the longitudinal x direction and assuming that all fields depend spatially on x only.
Choosing the Coulomb gauge ∇ ·A = 0, the vector potential A lies in the perpendicular
(transverse) plane, ie A = (0, Ay, Az) =(0,A⊥). Using E = −∇φ− ∂tA, we then obtain,
using the notations E = (Ex, Ey, Ez) = (Ex,E⊥):

E⊥ = −∂tA⊥ and Ex = −∂xφ.

This prescription implies that the electric field is mainly electromagnetic in the transverse
plane and mainly electrostatic in the longitudinal direction.

We then consider a distribution function of the form: δ(p⊥ −A⊥)f(t, x, px, s), where
p = (px, py, pz) = (px,p⊥) is the linear momentum and p−A is the canonical momentum.
The above assumption on the distribution function is tantamount to prescribing that
the plasma is cold in the transverse plane. After integration with respect to p⊥, the
relevant extended phase space is reduced to 5D (instead of 9D for the general case). The
longitudinal variable px will be simply denoted by p in the sequel.

The reduced spin Vlasov-Maxwell system satisfied by the electron distribution func-
tion f(x, p, s, t) (x, p ∈ R and s ∈ R3), the electric field E(t, x) = (Ex,E⊥)(t, x) =
(Ex, Ey, Ez)(t, x), and the vector potential A(t, x) = (Ax,A⊥)(t, x) = (0, Ay, Az)(t, x)
can be written as:

∂f

∂t
+ p

∂f

∂x
+
[
Ex − h sy

∂2Az
∂x2

+ h sz
∂2Ay
∂x2

−A⊥ ·
∂A⊥
∂x

]∂f
∂p

+ (s×B) · ∂f
∂s

= 0,

B = ∇×A =
[
0,
∂Az
∂x

,−∂Ay
∂x

]T
,

∂Ex
∂t

= −
∫

R4

pfdpds,

∂Ey
∂t

= −∂
2Ay
∂x2

+Ay

∫
R4

fdpds + h

∫
R4

sz
∂f

∂x
dpds,

∂Ez
∂t

= −∂
2Az
∂x2

+Az

∫
R4

fdpds− h
∫

R4

sy
∂f

∂x
dpds,

∂A⊥
∂t

= −E⊥,

∂Ex
∂x

=

∫
R4

fdpds− 1.

(2.7)

This reduced spin Vlasov-Maxwell system also possesses a noncanonical Poisson struc-
ture. For any two functionals F and G depending on the unknowns f,E, and A⊥, the
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Poisson bracket reads

{F ,G} =

∫
R5

f

[
δF
δf

,
δG
δf

]
xp

dxdpds +

∫
R5

(
δF
δEx

∂f

∂p

δG
δf
− δG
δEx

∂f

∂p

δF
δf

)
dxdpds

+

∫
R

(
δG
δA⊥

· δF
δE⊥

− δF
δA⊥

· δG
δE⊥

)
dx+

1

h

∫
R5

fs ·
(
∂

∂s

δF
δf
× ∂

∂s

δG
δf

)
dxdpds,

(2.8)

whereas the Hamiltonian functional, composed of the sum of kinetic, electric, magnetic
and Zeeman (spin-dependent) energies, is defined by

H(f,E,A⊥) =
1

2

∫
R5

p2fdxdpds +
1

2

∫
R5

|A⊥|2fdxdpds︸ ︷︷ ︸
kinetic energy

+
1

2

∫
R
|E|2dx︸ ︷︷ ︸

electric energy

+
1

2

∫
R

∣∣∣∣∂A⊥∂x
∣∣∣∣2 dx︸ ︷︷ ︸

magnetic energy

+ h

∫
R5

(
sy
∂Az
∂x
−sz

∂Ay
∂x

)
fdxdpds︸ ︷︷ ︸

Zeeman energy

.

(2.9)

Thus, the reduced spin Vlasov-Maxwell system of equations (2.7) can be reformulated as

∂Z
∂t

= {Z,H},

where Z = (f,Ex, Ey, Ez, Ay, Az) denotes the unknowns of the system, {·, ·} is defined by
(2.8), and the HamiltonianH is given by (2.9). In this work, periodic boundary conditions
will be considered in the x and s directions (x ∈ [0, L], L > 0, s ∈ R3) and vanishing
boundary condition in p ∈ R. An initial condition Z(t = 0) = Z0 = (f0,E0,A⊥,0)
supplements the system. The Poisson bracket (2.8) can be derived from (2.4) using chain
rules of functional derivatives based on a similar change of unknowns proposed in Li et al.
(2019b).

3. GEMPIC formalism for the reduced spin Vlasov-Maxwell system

In the framework introduced in Kraus et al. (2017), the Vlasov-Maxwell equations are
discretized through a standard particle-in-cell ansatz for the distribution function and
compatible finite elements for the electromagnetic fields. Then, the semi-discretization
is obtained by inserting the ansatz into the Hamiltonian (2.9) and the Poisson bracket
(2.8) of the reduced spin Vlasov-Maxwell equations. In this section, we will apply and
detail the strategy for our spin Vlasov-Maxwell system (2.7).

Following Kraus et al. (2017), we consider the components of the electromagnetic fields
separately and we consider Ex, By, Bz as 1-forms and Ey, Ez, Ay, Az as 0-forms. 0-forms
and 1-forms are discretized in finite element spaces V0 ⊂ H1 and V1 ⊂ L2 respectively
(H1 denotes the Sobolev space). There exists a commuting diagram (see (3.1)) for the
involved functional spaces in one spatial dimension (with periodic boundary conditions),
between continuous spaces in the upper line and discrete subspaces in the lower line. The
projectors Π0 and Π1 must be constructed carefully in order to assure the diagram to
be commuting (Kraus et al. 2017).

H1
d
dx //

Π0

��

L2

Π1

��
V0

d
dx // V1

(3.1)
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The basis for each of the finite dimensional spaces V0, V1, with dim Vk = Nk (k=0,
1) is denoted as: {Λ0

j}j=1,··· ,N0 , and {Λ1
j}j=1,··· ,N1 . The dual bases of V0 and V1 are

{Σ0
j }j=1,··· ,N0 , and {Σ1

j }j=1,··· ,N1 respectively, ie,
∫
Σk
i Λ

k
jdx = δi,j , k = 0, 1.

In this paper, we choose B-splines as the basis functions, and N0 = N1 = M . The
spatial domain [0, L] is discretized by a uniform grid

xj = (j − 1)∆x, ∆x = L/M, j = 1, · · · ,M.

The B-splines basis functions {Λ0
j}j=1,··· ,N0

, and {Λ1
j}j=1,··· ,N1

for V0 =span
{
{Λ0

j}j=1,··· ,N0

}
,

and V1 =span
{
{Λ1

j}j=1,··· ,N1

}
are given by

Λ0
j (x) =

1

6



(
2− |x− xj+2|

∆x

)3

, 1 6
|x− xj+2|

∆x
6 2,

4− 6

(
|x− xj+2|

∆x

)2

+ 3

(
|x− xj+2|

∆x

)3

, 0 6
|x− xj+2|

∆x
6 1,

0, otherwise,

(3.2)

and

Λ1
j (x) =

1

2



(
x− xj
∆x

)2

, 0 6
x− xj
∆x

6 1,

− 2

(
x− xj
∆x

)2

+ 6

(
x− xj
∆x

)
− 3, 1 6

x− xj
∆x

6 2,

(3− x− xj
∆x

)2, 2 6
x− xj
∆x

6 3,

0, otherwise.

(3.3)

The important relation between Λ1 and Λ0

d

dx
Λ0
j (x) =

1

∆x

(
Λ1
j (x)− Λ1

j+1(x)
)

(3.4)

can be reformulated as

d

dx
(Λ0

1, · · · , Λ0
N0

)(x) = (Λ1
1, · · · , Λ1

N1
)(x)C,

where C is a matrix of size N1 ×N0 = M ×M , given by

C =
1

∆x



1 0 0 0 · · · 0 −1
−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0

0 0
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . . 0
0 0 0 · · · 0 −1 1


. (3.5)

Then, each element of the finite-dimensional spaces V0 and V1 can be expanded on their
respective basis functions. For the electric field components (Ex, Ey, Ez) ∈ L2×H1×H1,
there are approximated by (Ex,h, Ey,h, Ez,h) ∈ V1 × V0 × V0 according to the following
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representation

Ex,h(t, x) =

N1∑
j=1

ex,j(t)Λ
1
j (x), Ey,h(t, x) =

N0∑
j=1

ey,j(t)Λ
0
j (x), Ez,h(t, x) =

N0∑
j=1

ez,j(t)Λ
0
j (x),

(3.6)
whereas for the vector potential components (Ay, Az) ∈ H1×H1, there are approximated
by (Ay,h, Az,h) ∈ V0 × V0 according to

Ay,h(t, x) =

N0∑
j=1

ay,j(t)Λ
0
j (x), Az,h(t, x) =

N0∑
j=1

az,j(t)Λ
0
j (x). (3.7)

Regarding the distribution function f(t, x, p, s), we use the following representation

f(t, x, p, s) ≈ fh(t, x, p, s) =

Np∑
a=1

ωaδ(x− xa(t))δ(p− pa(t))δ(s− sa(t)), (3.8)

where ωa, xa, pa, and sa denote respectively the weight, the position, the momentum
(velocity), and the spin co-ordinates of a-th particle.

3.1. Derivation of the discrete Poisson bracket

Using the above approximation of the electromagnetic fields (3.6)-(3.7) and of the
distribution function (3.8), we shall construct a discrete geometric structure (discrete
Poisson bracket and discrete Hamiltonian) from which the equations of motion will be
derived. Specifically, discrete functional derivatives are derived based on the discrete
representation of the unknowns (3.6)-(3.7) (see Appendix A for more details), which are
inserted into the continuous Poisson bracket (2.8) to derive the discrete Poisson bracket.

We introduce some notations to make the expressions simpler. First, we introduce the
discrete time-dependent unknowns for the electromagnetic fields

ex = (ex,1, · · · , ex,N1
)T ∈ RN1 , ey = (ey,1, · · · , ey,N0

)T ∈ RN0 , ez = (ez,1, · · · , ez,N0
)T ∈ RN0 ,

ay = (ay,1, · · · , ay,N0)T ∈ RN0 , az = (az,1, · · · , az,N0)T ∈ RN0 ,

(3.9)

and for the particles (position, velocity and spin)

X = (x1, · · · , xNp
)T ∈ RNp , P = (p1, · · · , pNp

)T ∈ RNp ,

Si = (s1,i, · · · , sa,i, · · · , sNp,i)
T ∈ RNp , i ∈ {x, y, z},

S = (s1, s2, · · · , sa, · · · , sNp)T ∈ R3Np with sa = (sa,x, sa,y, sa,z) ∈ R3.

(3.10)

Moreover, we will need some matrix notations to take into account the fields-particles
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coupling:

Λk(X) =


Λk1(x1) · · · ΛkNk

(x1)
Λk1(x2) · · · ΛkNk

(x2)
...

. . .
...

Λk1(xNp
) · · · ΛkNk

(xNp
)

 ∈MNp,Nk
(R), for k = 0, 1,

Mk =


∫
Λk1(x)Λk1(x)dx · · ·

∫
Λk1(x)ΛkNk

(x)dx∫
Λk2(x)Λk1(x)dx · · ·

∫
Λk2(x)ΛkNk

(x)dx
...

. . .
...∫

ΛkNk
(x)Λk1(x)dx · · ·

∫
ΛkNk

(x)ΛkNk
(x)dx

 ∈MNk,Nk
(R), for k = 0, 1,

Nk(xa) =


Λk1(xa)Λk1(xa) · · · Λk1(xa)ΛkNk

(xa)
Λk2(xa)Λk1(xa) · · · Λk2(xa)ΛkNk

(xa)
...

. . .
...

ΛkNk
(xa)Λk1(xa) · · · ΛkNk

(xa)ΛkNk
(xa)

 ∈MNk,Nk
(R), for k = 0, 1,

Λk(xa) = (Λk1(xa), · · · , ΛkNk
(xa))T ∈ RNk , for k = 0, 1.

(3.11)

Finally, we introduce the weight matrix and some matrices related to the spin particles

W = diag(ω1, · · · , ωNp
) ∈MNp,Np

(R),

Sa =
1

ωa

 0 sa,z −sa,y
−sa,z 0 sa,x
sa,y −sa,x 0

 ∈M3,3(R),

S = diag(S1, · · · ,SNp
) ∈M3Np,3Np

(R).

(3.12)

Any functional F of a continuous representation of the approximated fields or distri-
bution function (fh, Ex,h, Ey,h, Ez,h, Ay,h, Az,h) is now considered as a new function F of
the discrete unknowns (particles unknowns X,P,S, and fields finite-element coefficients
ex, ey, ez,ay,az), ie:

F (u) := F (X,P,S, ex, ey, ez,ay,az) := F [fh, Ex,h, Ey,h, Ez,h, Ay,h, Az,h].

This representation enables us to replace all functional derivatives in (2.8) by their
discrete counterparts (see Appendix A for more details). We then obtain the semi-discrete
Poisson bracket

{F,G} (u) = {F,G} (X,P,S, ex, ey, ez,ay,az)

=

Np∑
a=1

1

ωa

(
∂F

∂xa

∂G

∂pa
− ∂G

∂xa

∂F

∂pa

)
+

1

h

Np∑
a=1

(
Sa
∂F

∂sa

)
· ∂G
∂sa

+

Np∑
a=1

N1∑
i,j=1

(
∂F

∂ex,i
(M−11 )ijΛ

1
j (xa)

∂G

∂pa

)
−

Np∑
a=1

N1∑
i,j=1

(
∂G

∂ex,i
(M−11 )ijΛ

1
j (xa)

∂F

∂pa

)

+

(
∂G

∂ay

)T

M−10

∂F

∂ey
+

(
∂G

∂az

)T

M−10

∂F

∂ez
−
(
∂F

∂ay

)T

M−10

∂G

∂ey
−
(
∂F

∂az

)T

M−10

∂G

∂ez
.

By rearranging the terms, we are able to obtain the following finite-dimensional Poisson
bracket

{F,G} = (∇uF )
T J(u)∇uG, (3.13)
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where u = (X,P,S, ex, ey, ez,ay,az)
T and the matrix J(u) is defined by

J(u)=



0 W−1 0 0 0 0 0 0
−W−1 0 0 Λ1(X)M−11 0 0 0 0

0 0 1

h
S 0 0 0 0 0

0 −M−11 Λ1(X)T 0 0 0 0 0 0
0 0 0 0 0 0 M−10 0
0 0 0 0 0 0 0 M−10

0 0 0 0 −M−10 0 0 0
0 0 0 0 0 −M−10 0 0


.

(3.14)

The following Theorem states that the bracket defined by (3.13)-(3.14) is indeed a Poisson
bracket.

Theorem 1. The above bracket (3.13)-(3.14) is a Poisson bracket.

Proof. See Appendix B.

3.2. Discrete Hamiltonian and equations of motion

The discrete Hamiltonian is obtained by inserting the representation of the unknowns
(3.6), (3.7) and (3.8) into the Hamiltonian (2.9). With u = (X,P,S, ex, ey, ez,ay,az)

T,
we have

H(u) =
1

2

∫
p2

Np∑
a=1

ωaδ(x− xa)δ(p− pa)δ(s− sa)dxdpds

+
1

2

∫ Np∑
a=1


∣∣∣∣∣∣
N0∑
j=1

ay,jΛ
0
j (x)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N0∑
j=1

az,jΛ
0
j (x)

∣∣∣∣∣∣
2
ωaδ(x− xa)δ(p− pa)δ(s− sa)dxdpds

+
1

2

∫ ∣∣∣∣∣∣
N1∑
j=1

ex,jΛ
1
j (x)

∣∣∣∣∣∣
2

dx+
1

2

∫ 
∣∣∣∣∣∣
N0∑
j=1

ey,jΛ
0
j (x)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N0∑
j=1

ez,jΛ
0
j (x)

∣∣∣∣∣∣
2
 dx

+
1

2

∫ ∣∣∣∣∣ d

dx

N0∑
a=1

ay,jΛ
0
j (x)

∣∣∣∣∣
2

dx+
1

2

∫ ∣∣∣∣∣ d

dx

N0∑
a=1

az,jΛ
0
j (x)

∣∣∣∣∣
2

dx

+ h

∫ Np∑
a=1

sy d

dx

N0∑
j=1

az,jΛ
0
j (x)− sz

d

dx

N0∑
j=1

ay,jΛ
0
j (x)

ωaδ(x− xa)δ(p− pa)δ(s− sa)dxdpds.

Using the notations (3.9), (3.10) and (3.11) introduced in the preceding section, the above
formula can be written more compactly as

H(u) =
1

2
PTWP +

1

2

Np∑
a=1

ωaa
T
y N0(xa)ay +

1

2

Np∑
a=1

ωaa
T
z N0(xa)az

+
1

2
eTxM1ex +

1

2
eTy M0ey +

1

2
eTz M0ez +

1

2
aTy CTM1Cay +

1

2
aTz CTM1Caz

+ haTz CTΛ1(X)TWSy − haTy CTΛ1(X)TWSz.

(3.15)
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From the discrete Poisson bracket (3.13)-(3.14) and the discrete Hamiltonian (3.15),
the equations of motion then read as

u̇ = {u, H} = J(u)∇uH, u(t = 0) = u0, (3.16)

Specifically, we obtain the following equations of motion

Ẋ = P, Ṗ = −W−1
∂H

∂X
+ Λ1(X)ex, Ṡ =

1

h
S
∂H

∂S
,

ėx = −M−11 Λ1(X)TWP,

ėy = −M−10 CTΛ1(X)TWSz + M−10

 Np∑
a=1

ωaN0(xa)ay + CTM1Cay

 ,

ėz = M−10 CTΛ1(X)TWSy + M−10

 Np∑
a=1

ωaN0(xa)az + CTM1Caz

 ,

ȧy = −ey, ȧz = −ez,

where

∂H

∂xa
=
wa
2
aTy Lay +

wa
2
aTz Laz + haTz CT ∂(Λ1(X))T

∂xa
WSy − haTy CT ∂(Λ1(X))T

∂xa
WSz,

with L =
( ∂

∂xa
Λ0(xa)Λ0(xa)T + Λ0(xa)

∂

∂xa
Λ0(xa)T

)
,

(3.17)
and finally for ∂H

∂S (recalling S = (s1, s2, · · · , sa, · · · , sNp)T ∈ R3Np), we get for the spin
variables of a-th particle,

∂H

∂sa,x
= 0,

∂H

∂sa,y
= haTz CTΛ1(xa)ωa,

∂H

∂sa,z
= −haTy CTΛ1(xa)ωa.

4. Hamiltonian splitting method

Once the semi-discretization is performed, the resulting Poisson system has to be
integrated in time. Here a Hamiltonian splitting method (Crouseilles et al. 2015; Li et al.
2019a) is adopted, in which the solution is obtained as compositions of exact solutions
of Hamiltonian subsystems. Hence, such resulting schemes are Poisson integrators in
the sense of Hairer et al. (2002). Moreover, as we will see, each substep is explicit in
time, and can be used to derive higher-order methods, taking into account some specific
commutator relations (Casas et al. 2017; Hairer et al. 2002). By splitting the discrete
Hamiltonian H given by (3.15) into the following four parts

H = Hp +HA +Hs +HE ,
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where

Hp =
1

2
PTWP

HA =
1

2

Np∑
a=1

ωaa
T
y N0(xa)ay +

1

2

Np∑
a=1

ωaa
T
z N0(xa)az +

1

2
aTy CTM1Cay +

1

2
aTz CTM1Caz,

Hs = haTz CTΛ1(X)TWSy − haTy CTΛ1(X)TWSz,

HE =
1

2
eTxM1ex +

1

2
eTy M0ey +

1

2
eTz M0ez,

(4.1)
we are led to solve the four corresponding Hamiltonian subsystems

u̇ = {u, Hp} , u̇ = {u, HA} , u̇ = {u, Hs} , u̇ = {u, HE} , (4.2)

where u = (X,P,S, ex, ey, ez,ay,az)
T, and the corresponding solution flows are denoted

by ϕ
[Hp]
t , ϕ

[HA]
t , ϕ

[Hs]
t and ϕ

[HE ]
t . Then, numerical solutions of (3.16) can be obtained,

for instance, as a first order Lie splitting or a second order Strang splitting:

ϕ
[Hp]
t ◦ ϕ[HA]

t ◦ ϕ[Hs]
t ◦ ϕ[HE ]

t , ϕ
[Hp]

t/2 ◦ ϕ
[HA]
t/2 ◦ ϕ

[Hs]
t/2 ◦ ϕ

[HE ]
t ◦ ϕ[Hs]

t/2 ◦ ϕ
[HA]
t/2 ◦ ϕ

[Hp]

t/2 .

Let us also remark that higher-order splitting schemes can be easily constructed by a

suitable composition of the subflows ϕ
[H∗]
t (see (Casas et al. 2017; Hairer et al. 2002)). It

is worth mentioning that each subflow ϕ
[H∗]
t can be solved exactly, which will be detailed

in the following subsections.

4.1. Subsystem Hp

The subsystem corresponding to Hp = 1
2P

TWP is u̇ = J(u)∇uHp, or specifically

Ẋ = P, Ṗ = 0, Ṡ = 0,

ėx = −M−11 Λ1(X)TWP, ėy = 0, ėz = 0,

ȧy = 0, ȧz = 0.

(4.3)

For this subsystem, we only need to compute X, ex at time t

X(t) = X(0) + tP(0), M1ex(t) = M1ex(0)−
∫ t

0

Λ1(X(τ))TWP(0)dτ. (4.4)

Remark 1. Multiplying CTM1 from left with ėx = −M−11 Λ1(X)TWP, we get

CTM1ėx(t) = −CTΛ1(X)TWP.

As Λ1(X)C = ∂xΛ0(X), we get CTM1ėx(t) = −∂xΛ0(X)TWP and using Ẋ = P, we have

CTM1ėx(t) = −dΛ0(X)T

dt
W1Np

,

with 1Np the vector of size Np composed of 1. Then, the discrete Poisson equation
CTM1ex(t) = −Λ0(X)TW1Np is always satisfied if it holds initially.
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4.2. Subsystem HA

The subsystem corresponding to HA is

Ẋ = 0, Ṗ = −W−1
∂HA

∂X
, Ṡ = 0,

ėx = 0, ėy = M−10

 Np∑
a=1

ωaN0(xa)ay + CTM1Cay

 , ėz = M−10

 Np∑
a=1

ωaN0(xa)az + CTM1Caz

 ,

ȧy = 0, ȧz = 0.
(4.5)

In this subsystem, X,S, ex,ay,az are unchanged. In the sequel, we will use the identities
defined in (3.11) and (3.17)

N0(xa) = Λ0(xa)Λ0(xa)T, L :=
∂

∂xa
N0(xa) =

∂

∂xa
Λ0(xa)Λ0(xa)T +Λ0(xa)

∂

∂xa
Λ0(xa)T.

(4.6)
Then, for each component of P = (p1, . . . , pa, . . . , pNp), an explicit Euler integrator

becomes exact since ay(t) = ay(0) and az(t) = az(0),

pa(t) = pa(0) − t
1

ωa

(
1

2
ωaay(0)T

∂

∂xa
N0(xa)ay(0) +

1

2
ωaaz(0)T

∂

∂xa
N0(xa)az(0)

)
,

= pa(0) − t

(
1

2
ay(0)T

∂

∂xa
N0(xa)ay(0) +

1

2
az(0)T

∂

∂xa
N0(xa)az(0)

)
,

= pa(0) − t

2
ay(0)TLay(0) − t

2
az(0)TLaz(0).

(4.7)
For the transverse electric field, we get

M0ey(t) = M0ey(0) + t

 Np∑
a=1

ωaN0(xa)ay(0) + CTM1Cay(0)

 ,

M0ez(t) = M0ez(0) + t

 Np∑
a=1

ωaN0(xa)az(0) + CTM1Caz(0)

 .

(4.8)

Remark 2. Formula (4.6) turns matrix-vector multiplications into vector-vector mul-
tiplications, which will significantly reduce the computational cost.

4.3. Subsystem Hs

The subsystem of ODEs corresponding toHs = haTz CTΛ1(X)TWSy−haTy CTΛ1(X)TWSz
is

Ẋ = 0, Ṗ = −W−1
∂Hs

∂X
, Ṡ =

1

h
S
∂Hs

∂S
,

ėx = 0, ėy = −hM−10 CTΛ1(X)TWSz, ėz = hM−10 CTΛ1(X)TWSy,

ȧy = 0, ȧz = 0.

(4.9)
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For this subsystem, we first solve Ṡ = 1

h
S∂Hs

∂S . For the a-th particle, we have

ṡa =

ṡa,xṡa,y
ṡa,z

 =

 0 Ya Za
−Ya 0 0
−Za 0 0

sa,xsa,y
sa,z

 =: r̂asa, (4.10)

where Ya = aTy CTΛ1(xa), Za = aTz CTΛ1(xa), Λ1(xa) = (Λ1
1(xa), · · · , Λ1

N1
(xa))T. Let us

define the vector ra = (0, Za,−Ya) ∈ R3, then the Rodrigues’ formula gives the following
explicit solution for (4.10)

sa(t) = exp(tr̂a)sa(0) =

I +
sin(t|ra|)
|ra|

r̂a +
1

2

(
sin( t2 |ra|)
|ra|
2

)2

r̂2a

 sa(0), (4.11)

where I is the 3× 3 identity matrix.

Next, we integrate in time the equation on the transverse electric field to get (using
Ẋ = 0)

M0ey(t) = M0ey(0)− hCTΛ1(X)TW
∫ t

0

Sz(τ)dτ,

M0ez(t) = M0ez(0) + hCTΛ1(X)TW
∫ t

0

Sy(τ)dτ,

(4.12)

where we recall Si(τ) = (s1,i, · · · , sa,i, · · · , sNp,i)
T ∈ RNp , i ∈ {y, z}, see (3.10). We then

have to integrate in time the spin variable. This is done using (4.11)∫ t

0

sa(τ)dτ =

∫ t

0

exp(τ r̂a)sa(0)dτ

=

(
tI − cos(t|ra|)

|ra|2
r̂a +

1

|ra|2
r̂a +

2

|ra|2

(
t

2
− sin(t|ra|)

2|ra|

)
r̂2a

)
sa(0).

Now we focus on the impulsion variable P. Using the fact that Ẋ = 0, ȧy = ȧz = 0, we
integrate in time each component of P to get

pa(t) = pa(0)− aTz (0)CT ∂Λ
1(xa)

∂xa

∫ t

0

sa,y(τ)dτ + aTy (0)CT ∂Λ
1(xa)

∂xa

∫ t

0

sa,z(τ)dτ.

4.4. Subsystem HE

The subsystem corresponding to HE = 1
2e

T
xM1ex + 1

2e
T
y M0ey + 1

2e
T
z M0ez is

Ẋ = 0, Ṗ = Λ1(X)ex, Ṡ = 0,

ėx = 0, ėy = 0, ėz = 0,

ȧy = −ey, ȧz = −ez.
(4.13)

Since Ẋ = 0, ėx = 0, the equation on P can be solved easily

P(t) = P(0) + tΛ1(X)ex(0). (4.14)

Similarly, the transverse vector potential can be computed exactly in time:

ay(t) = ay(0)− tey(0), az(t) = az(0)− tez(0).
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5. Numerical simulations of stimulated Raman scattering with
polarized electrons

This part is devoted to numerical simulations of a laser-plasma model using the
geometric PIC method detailed in the preceding sections. Laser-plasma interactions play
a decisive role in many areas of plasma physics, most notably inertial fusion and plasma
accelerators. Recently, the interaction of an intense laser pulse with a polarized electron
beam was studied numerically using PIC methods (Wen et al. 2017, 2019). In these
works, different models were developed based either on classical considerations or on the
semiclassical limit of the Dirac Hamiltonian in the Foldy-Wouthuysen representation. The
electrons’ emission of radiation was taken into account via the Landau-Lifshitz force.

One of the most topical problems in laser-plasma interactions is the efficient accel-
eration of charged particles (electrons) by large-amplitude longitudinal plasma waves.
An efficient way to create such large-amplitude plasma waves involves the stimulated
Raman scattering (SRS) mechanism (Forslund et al. 1975), which can be viewed as
a parametric instability. During SRS, an incident electromagnetic wave decays into a
scattered electromagnetic wave and a Langmuir (plasma) wave, which is responsible for
the electron acceleration (see figure 1). Our purpose is to investigate the effect of the
electron spin on the SRS instability.

As the full system is rather complex, we will proceed step by step. First, we consider
the SRS problem without spin, which was studied in several past works using a grid-
based (Eulerian) Vlasov code (Huot et al. 2003; Ghizzo et al. 1990; Li et al. 2019b).
As Eulerian codes are particularly stable and accurate over the entire phase space, we
will use them as a benchmark for our PIC simulations. The benchmark will be carried
out in the spin-less case, for which an Eulerian code is available. Second, we consider
the spin Vlasov-Maxwell model studied in Sec. 2.2, but remove the effect of the plasma
on the propagation of the electromagnetic wave. This amounts to assuming that the
wave propagates freely (as in vacuum) and interacts with the plasma, but the plasma
does not impact the propagation of the wave. In contrast, the longitudinal nonlinearity
due to Poisson’s equation is maintained. In this case, an approximate solution of the
spin dynamics can be obtained analytically, which enables us to validate the numerical
simulations. Finally, we simulate the complete spin-dependent model (2.7) and study
the influence of the various physical parameters: amplitude of the electromagnetic wave,
temperature, initial electron polarization, and scaled Planck constant.

5.1. SRS without spin

We consider the model put forward in Huot et al. (2003); Ghizzo et al. (1990); Li
et al. (2019b), which corresponds to our equations (2.7) where the spin dependence
has been removed. The distribution function f(t, x, p) and the electromagnetic fields
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Figure 1. Schematic view of the geometry of the laser-plasma interaction during stimulated
Raman scattering.

(Ex,E⊥,A⊥)(t, x) obey the equations

∂f

∂t
+ p

∂f

∂x
+
[
Ex −A⊥ ·

∂A⊥
∂x

]∂f
∂p

= 0,

∂Ex
∂t

= −
∫

R
pfdp,

∂Ey
∂t

= −∂
2Ay
∂x2

+Ay

∫
R
fdp,

∂Ez
∂t

= −∂
2Az
∂x2

+Az

∫
R
fdp,

∂Ay
∂t

= −Ey,

∂Az
∂t

= −Ez.

(5.1)

As initial condition for f , we use a perturbed Maxwellian

f(t = 0, x, p) = (1 + α cos(kex))
1√

2πvth
e
− p2

2v2
th , x ∈ [0, L], p ∈ R, (5.2)

so that the initial longitudinal electric field is: Ex(t = 0, x) = α
ke

sin(kex). Here, α and ke
are the amplitude and the wave number of the perturbation, respectively, and vth is the
electron thermal speed. For the transverse fields, we consider an electromagnetic wave
with circular polarization:

Ey(t = 0, x) = E0 cos(k0x), Ez(t = 0, x) = E0 sin(k0x),

Ay(t = 0, x) = −E0

ω0
sin(k0x), Az(t = 0, x) =

E0

ω0
cos(k0x),

(5.3)
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where k0 is the wave number and E0 is the amplitude of the transverse electric field.
We use periodic boundary conditions with spatial period L = 4π/ke. The circular
polarization is chosen because it is likely to have maximum impact on the electron spin,
which will be considered in the next two subsections.

In the SRS instability, the incident electromagnetic wave (ω0, k0) drives two waves
inside the plasma: a scattered electromagnetic wave (ωs, ks) and an electron plasma
wave (ωe, ke), where ω and k denote respectively the frequency and wave number of each
wave. These waves are matched according to the conditions (conservation of energy and
momentum):

ω0 = ωs + ωe, and k0 = ks + ke, (5.4)

with ω2
0,s = 1 + k20,s and ω2

e = 1 + 3v2thk
2
e .

A schematic view of this configuration is shown in figure 1.
Following Ghizzo et al. (1990), we take the following values for the physical parameters

of the plasma and the wave (recall that frequencies are normalized to ωp, velocities to c,
wave numbers to ωp/c, and electric fields to ωpmc/e):

α = 0.02, ke = 1.22, k0 = 2ke, vth = 0.17.

Using the matching conditions (5.4), this yields:

ks = ke, ω0 = 2.63, ωs = 1.562, ωe = 1.061.

As a reference value, we take for the amplitude of the incident wave Eref = 0.325. The
actual values used in the simulations will be in the range 0.25Eref 6 E0 6 2Eref In all
cases, the quiver velocity vosc = E0/ω0 is smaller than unity, which ensures that the
present non-relativistic approximation is valid.

In order to check the accuracy of our PIC code in the spin-less regime, we also developed
a grid-based Eulerian code (see (Li et al. 2019b) for more details). For the PIC code, the
numerical parameters are as follows: Nx = 512, Npart = 5 × 105, ∆t = 0.01, whereas for
the grid code we take: Nx = 128, Nv = 128, ∆t = 0.01. Both codes preserve the total
energy with a relative error less than 0.05%.

In figure 2, we plot the time evolutions of the longitudinal electric field norm

‖Ex(t)‖ =

(
1

2

∫ L

0

E2
xdx

)1/2

(in semi-loge scale) for two values of the incident wave amplitude (E0 = 0.325 and
E0 = 0.65). The initial conditions are the same for both codes, but the PIC code displays
a higher level of initial fluctuations (noise) that is inherent to the numerical method. This
is also why we had to take a somewhat high initial perturbation (α = 0.02), so that it
is significantly larger than the noise level. We can observe a relatively good agreement
between these two numerical methods in the linear phase. The observed growth rate
(γ ≈ 0.03 for E0 = 0.325 and γ ≈ 0.06 for E0 = 0.65) is proportional to the amplitude
E0 and close to the value expected from the linear theory (γ ≈ 0.04, see (Ghizzo et al.
1990)).

5.2. Spin-dependent model without wave self-consistency

In this part, we study the propagation of a circularly polarized wave into a plasma
which does not retroact on the wave. Hence, the electromagnetic wave propagates as if
it was in vacuum. In this case, there is no SRS instability.
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(a) (b)

Figure 2. SRS simulations without spin. Time evolution of the amplitude of the longitudinal
electric field norm ‖Ex(t)‖ on a semi-loge scale. We compare the results of the Eulerian grid
code (black curves) and the PIC code (red curves), for two values of the initial amplitude of
the electromagnetic wave. Left frame: E0 = Eref = 0.325 (observed slope in the linear regime:
γ ≈ 0.03). Right frame: E0 = 2Eref = 0.65 (γ ≈ 0.06).

With the notations of Sec. 2.2, the model we consider here reads

Ż =
{
Z, H̃

}
,

where Z = (f,Ex, Ey, Ez, Ay, Az), {·, ·} is the bracket defined in (2.8) and H̃ is the
Hamiltonian defined as

H̃(f,E,A⊥) =
1

2

∫
R5

p2fdxdpds +
1

2

∫
R

(
|E|2 +

∣∣∣∂A⊥
∂x

∣∣∣2)dx

+ h

∫
R5

(
sy
∂Az
∂x
− sz

∂Ay
∂x

)
fdxdpds,

(5.5)

which means that the term A⊥ · ∂A⊥∂x
∂f
∂p disappears from the Vlasov equation in (2.7), and

the terms Ay
∫

R4 fdpds, Az
∫

R4 fdpds disappear from the Maxwell equations in (2.7). In
this case, the electromagnetic wave is not coupled to the plasma and can be determined
exactly by solving the corresponding Maxwell equations for Ey and Ez. In contrast, the
longitudinal nonlinearity is kept in the model, hence Ex is a solution of Poisson’s equation.
The resulting reduced system preserves the geometric structure of the full system.

The initial condition on the distribution function is as follows (see Appendix D):

f(t = 0, x, p, s) =
1

4π
(1+ηsz)(1+α cos(kex))

e
− p2

2v2
th

√
2πvth

, x ∈
[
0,

4π

ke

]
, p ∈ R, s ∈ S2, (5.6)

ie, it is the product of the initial spin-less distribution function (5.2) times a spin-
dependent part. Hence, the spin variables are initially uncorrelated with the positions and
velocities of the particles. The spin-dependent part should be fully quantum mechanical,
and is therefore obtained from the 2 × 2 density matrix for spin-1/2 fermions, with the
additional assumption that the spin must be directed either parallel or antiparallel to
the z axis (Manfredi et al. 2019) (collinear approximation). More details are given in
the Appendix D. The variable η represents the degree of polarization of the electron gas:
η = 0 for an unpolarized gas and η = 1 for a fully polarized one. Here, we use η = 0.5 and
h = 0.00022. This value of the scaled Planck constant corresponds to a dense electron
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gas of density n0 = 1031 m−3 and temperature kBT = 100 eV. All other parameters take
the same values as in the spin-less case treated in Sec. 5.1.

Neglecting the spatial dependence of the magnetic fields, an approximate closed
equation for the dynamics of the macroscopic spin S(t) =

∫
sfdxdpds ∈ R3 can be

obtained by integrating the Vlasov equation (2.7) in (x, p, s). We get the following ODE
system

Ṡ = S×B, (5.7)

with B = (0,−∂xAz, ∂xAy)T. Considering a circularly polarized electromagnetic wave,
the magnetic field is (still neglecting spatial effects) B(t) = (0, B0 sin(ω0t),−B0 sin(ω0t),
with B0 = E0k0/ω0. In the regime B0/ω0 � 1 (ie, when the Larmor precession frequency
eB0/m is much smaller than the laser frequency), it can be shown that the spin Sz(t)
oscillates with a frequency ωspin = B2

0/(2ω0) (see Appendix C for details).
Here, this solution will be compared to the evolution of S(t) obtained from the

numerical solution of the spin Vlasov-Maxwell equations. As the retroaction terms were
removed from the Vlasov equation, there is no SRS instability. Then, the magnetic field
of the incident wave remains approximately constant in amplitude, thus justifying the
use of (5.7) as a valid approximation.

We use the same physical parameters as in Sec. 5.1 and define the reference magnetic
field of the incident wave as

Bref =
Erefk0
ω0

= 0.123k0, so that
B2

ref

2ω0
= 0.017.

We have that Bref/ω0 = 0.123k0/ω0 ≈ 0.11. We will use values up to B0 = 2Bref , so that
the condition B0/ω0 � 1 is always satisfied, albeit marginally.

In figure 3, we plot the time evolution of the z component of the macroscopic spin
vector Sz(t) =

∫
szfdxdpds and its frequency spectrum (the frequencies are expressed

in units of 2π/T , where T is the final simulation time), for three different value of E0

(and hence B0): E0 = 0.5Eref , E0 = Eref , and E0 = 2Eref . Sz displays a damped
oscillatory behaviour, with a spectrum that is well-localized around a single frequency.
This dominant frequency is close to the theoretical value ωspin = B2

0/(2ω0), which yields
ωspin = 0.0043, 0.018, and 0.068 for the three cases considered here. In particular, the
quadratic scaling between ωspin and B0 is well respected.

The observed damping is likely to be due to phase mixing in the phase space and its
rate also increases rapidly with E0. The effect of the temperature on the damping will
be studied in more details in the next subsection.

5.3. Full spin-dependent model

In this section, we consider the full spin Vlasov-Maxwell model (2.7) and study the
influence of several physical parameters on the spin dynamics. In particular, we will
analyze the effect of the incident wave amplitude, the electronic temperature, the initial
spin polarization, and the scaled Planck constant. The remaining physical parameters
are those of Sec. 5.1.

We will consider two types of initial conditions for the distribution function. The first
(labeled ‘Wigner’) is the one already used in the preceding subsection, see (5.6), and
corresponds to a quantum density matrix for an ensemble of spins directed parallel to
the z axis. The second initial condition (labeled ‘Dirac’) corresponds to an ensemble
of classical spins all having directions along the z axis; it does not correspond to any
quantum state and is used here only to illustrate more clearly the loss of spin polarization
in the electron gas.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Spin-dependent model without wave self-consistency, for three values of the incident
wave amplitude: E0 = 0.5Eref (top), E0 = Eref (middle), and E0 = 2Eref (bottom). Left panels:
time history of Sz(t) (time is in units of ω−1

p ). Right panels: corresponding frequency spectrum,
in units of ωp. The expected values of the spin precession frequencies are (from top to bottom):
ωspin = 0.0043, 0.018, and 0.068.

5.3.1. Wigner initial condition

The initial condition is the Maxwell-Boltzmann distribution of equation (5.6), whose
derivation is detailed in the Appendix D. The physical parameters are the same as in
our reference case described in Sec. 5.1. The electromagnetic fields are initialized as in
equation (5.3). The numerical parameters are as follows: ∆t = 0.04, Np = 2× 104, Nx =
128.

Laser field amplitude. In figure 4, we study the influence of the incident wave amplitude
E0, using h = 0.00022. The two columns in the figure refer to two values of E0: Eref



22 N. Crouseilles, P.-A. Hervieux, Y. Li, G. Manfredi, and Y. Sun

on the left and 2Eref on the right. Conservation of the total energy is good for PIC
code standards, with an error on the relative energy |Etot(t) − Etot(0)|/Etot(0) of about
3× 10−4. This good conservation property is due to the fact that our algorithm is a fully
discrete structure-preserving method.

The instability rate, measured from the growth of the longitudinal electric field am-
plitude ‖Ex(t)‖, is very similar to the one observed in the spin-less simulations, namely
γ = 0.03 (E0 = Eref) and γ = 0.06 (E0 = 2Eref).

The instability has a strong impact on the spin dynamics. In particular, the z com-
ponent of the macroscopic spin Sz(t) =

∫
szfdxdpds is damped much more efficiently

in the large-amplitude case (right column), for which the instability develops faster and
saturates at a higher level. The frequency spectrum of Sz(t) displays in both cases a
well-defined peak. There is a factor of about 5.5 between the spin precession frequencies
observed for E0 = Eref and E0 = 2Eref . This is slightly larger that the quadratic scaling
with E0 predicted by our simple model ωspin = B2

0/(2ω0) (see Sec. 5.2 and Appendix
C for further details). However, one must recall that this expression was derived under
the assumption of an incident wave of constant amplitude E0. Here, in contrast, the
amplitude is modulated in time, which then affects the quadratic scaling.

Thermal effects. Next, we study the influence of the temperature, by considering two
values of the thermal speed: vth = 0.17 (as in the previous results of figure 3) and
vth = 0.51, while the field amplitude is fixed to E0 = Eref and h = 0.00022. The wave
number ke also changes, as it is dependent on the temperature (ke = 1.22 and ke = 1.46,
for the low-temperature and high-temperature cases, respectively), but the matching
conditions (5.4) are still satisfied with k0 = 2ke and ω2

0 = 1 + k20.
The simulation results are shown in figure 5. In the high-temperature case, the

instability is clearly suppressed, but nevertheless the spin is damped much more quickly
than in the ‘cold’ case. On the other hand, we checked that when no laser pulse is present
at all (ie, E0 = 0, not shown here) no loss of the polarization is observed.

This is an intriguing result. First, it reveals that the laser pulse is mandatory to
induce some loss of polarization. When the laser wave amplitude E0 is sufficiently high
and the plasma sufficiently cold, the SRS instability is triggered, and this induces a
loss of spin polarization in the electron gas. This loss of polarization is faster for larger
wave amplitudes (figure 4). For warmer plasmas, the SRS instability is suppressed, but
depolarization still occurs due to temperature effects (figure 5). Nevertheless, the presence
of the electromagnetic wave is still necessary to observe this ‘thermal’ loss of polarization.

Such depolarization mechanisms are akin to the ultrafast demagnetization observed
in metallic nanostructures irradiated with femtosecond laser pulses (Beaurepaire et al.
1996; Bigot et al. 2009; Bigot & Vomir 2013).

Scaled Planck constant and initial polarization. In figure 6, the time history of
Sz(t) is displayed for η = 0.5 and different values of the scaled Planck constant:
h = 0.00022, 0.05, 0.1, and 0.2. The influence of h on the spin dynamics is rather modest,
and becomes appreciable only for values that are approaching unity. The main observable
effect is an increase of the oscillation period with the scaled Planck constant.

Figure 7 shows the influence of the initial electron polarization (η = 0.2, 0.5, and 1) for
two different values of the scaled Planck’s constant, h = 0.00022 and h = 0.2. The initial
value of the macroscopic spin Sz is given by Sz(t = 0) = L〈sz〉 = Lη/3 ≈ 3.42η, see also
the Appendix D. Hence, in order to compare results with different values of η, we plot
the quantity Sz(t)/η. At low h, the effect of η is weak. In contrast, for large h, a larger
initial polarization is associated with a stronger damping of the macroscopic spin.

Spin dynamics. In order to investigate the microscopic spin dynamics in some more
details, we have divided the interval of values taken by the spin component sz ∈ [−1,+1]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 4. Full spin-dependent model. We illustrate the influence of the amplitude E0 of the
incident wave. Left column E0 = Eref ; right column E0 = 2Eref . First line from top: time
history of the the relative total energy |Etot(t) − Etot(0)|/Etot(0) (semi-loge scale). Second line:
time history of the longitudinal electric field norm ‖Ex‖ (semi-loge scale); the red straight lines
have slopes 0.03 (left) and 0.06 (right). Third line: magnetic energy 1

2

∫
|B|2dx. Fourth line: time

history of the spin component Sz(t). Bottom line: frequency spectrum of Sz.
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Figure 5. Full spin-dependent model. Influence of the electron temperature using two values of
the thermal speed: vth = 0.17 (left column) and vth = 0.51 (right column). For both cases, the
field amplitude is E0 = Eref . The top panels show the time history of the longitudinal electric
field norm (semi-loge scale). The bottom panels show the time history of the spin component
Sz(t). The inset in the top left panel displays a zoom of the longitudinal electric field evolution
in the time range ωpt ∈ [0, 200], showing the development of the linear instability.

into 200 bins of size 0.01 each. We call N(sz) the number of particles having the spin
component sz in an interval around sz, and Np the total number of particles. In figure
8(a)-(k), we show the histograms of N(sz)/Np as a function of sz at different times.
The electron distribution at t = 0 is linear in sz, as shown in equation (5.6) and in the
Appendix D. In this case, the electron gas is initially fully polarized along the positive z
direction, so that the distribution goes from N(sz)/Np = 0 for sz = −1 to N(sz)/Np = 1
for sz = 1.

For instance, one can see that at ωpt = 200 [figure 8(c)] the spin direction has
completely reversed, indicating that the global spin now points along the negative z
direction. In contrast, at ωpt = 1500 [figure 8(i)] the distribution is flat, indicating that
the global spin is close to zero. The slope of the spin distribution decreases progressively
with time, thus revealing some amount of damping. This behaviour is confirmed by the
time history of the global spin component Sz(t), shown in figure 8(l).

5.3.2. Dirac initial condition

We consider the following initial condition for the distribution function

f0(x, p, s) = (1 + α cos(kex))
1√

2πvth
e
− p2

2v2
th δ(s− (0, 0, 1)T), x ∈

[
0,

4π

ke

]
, p ∈ R, s ∈ S2,

which corresponds to an ensemble of classical spins which are all directed along the
positive z axis. This distribution does not have a clear quantum-mechanical meaning, as
it does not correspond to any actual Wigner function or density matrix. However, it is
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(a) (b)

(c) (d)

Figure 6. Full spin-dependent model. Influence of h on Sz(t): (a) h = 0.00022; (b) h = 0.05; (c)
h = 0.1; (d) h = 0.2. For all cases, the initial spin polarization is η = 0.5.

(a) (b)

Figure 7. Full spin dependent model. Influence of the initial polarization η for two values of
the scaled Planck constant h. We plot the ratio Sz(t)/η, which is initially independent of η. (a)
h = 0.00022, η = 0.2, 0.5, and 1; (b) h = 0.2, η = 0.2, 0.5, and 1.

useful to perform some numerical simulations with this initial condition, as it enables us
to better highlight the dynamics of the particles spin on the unit sphere.

The parameters of the electromagnetic fields are the same as in Sec. 5.1, with E0 = Eref

and h = 0.00022. In the figures 9 and 10, we show the spins s of the electrons at different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Full spin dependent model. Histograms of sz at different times,
for a case with h = 0.00022, vth = 0.17, η = 1. From (a) to (k):
ωpt = 0, 100, 200, 300, 400, 500, 600, 1000, 1500, 3000, and 4000. N(sz) the number of particles
having the z spin component in an interval around sz and Np is the total number of particles.
The frame (l) shows the time history of the global spin component Sz(t). The red dots
corresponds to the times of the different histograms displayed in (a)-(k).

instants t, together with the time history of the global spin components Sy(t) and Sz(t),
for two values of the thermal speed vth = 0.17 (figure 9) and vth = 0.51 (figure 10). At
t = 0, the spin variables of all particles are localized at the north pole of the sphere, as
indicated by the single red dot in the initial condition.

First, we remark that the spin vector of each particle remains on the unit sphere:
|sa(t)| = 1,∀a = 1, . . . , Np and ∀t > 0. This is of course the case for the continuous
model, but it is worth emphasizing that our numerical scheme is capable of capturing
this important geometric property exactly.

At later times, the spin distribution broadens and explores most of the surface of



Geometric PIC for the Vlasov-Maxwell equations with spin effects 27

the sphere. For vth = 0.17, the distribution moves around the surface of the sphere
but remains rather localized on it. This is in line with the evolution of the global spin
components Sy,z(t) [figure 9(j)-(k)], which oscillate with little damping. For vth = 0.51,
the distribution covers the surface of the sphere more uniformly, although the motion is
not completely ergodic, and some ring-shaped structures are still visible at times ωpt &
1000. This is also consistent with the corresponding evolution of the spin components
Sy,z(t) [figure 10(j)-(k)], which are more heavily damped than in the low-temperature
case.

6. Conclusion

Spin effects in plasmas have been studied extensively during the last two decades (for a
recent review, see (Manfredi et al. 2019)). From an experimental point of view, polarized
electron beams can now be created and precisely manipulated in the laboratory (Wu
et al. 2019, 2020; Nie et al. 2021). Most theoretical works report on various analytical
developments aimed at including ever more sophisticated effects, such as relativistic
corrections or spin-orbit coupling. However, hardly any efforts have been devoted to
the development of numerical methods that are suitable for simulating spin-polarized
plasmas in realistic situations. The main objective of the present study was to implement
an accurate numerical code for plasmas where the spin of the electrons plays a non-
negligible role.

Just like for ordinary plasmas, numerical methods for spin-polarized plasmas also come
in two main families: Eulerian (grid-based) and Lagrangian (particle-based). This dis-
tinction is even more pertinent for spin plasmas. Indeed, the relevant quantum evolution
equations can be formulated in terms of a Wigner distribution function, characterizing
a quantum state in the classical phase space. The Wigner function for a particle with
spin can be written either as a 2 × 2 matrix in the ordinary phase space (x,p) or,
equivalently, as a scalar function in an extended phase space (x,p, s) where the spin s
is now an independent variable. Naturally, Eulerian methods are better adapted to the
matrix form of the Wigner distribution function, whereas PIC methods are more suitable
for the extended phase space representation (Manfredi et al. 2019).

In the semiclassical limit, the Wigner equation becomes a Vlasov-like equation that
incorporates spin effects. In this approximation, the electron motion is described by
classical trajectories, while the spin is treated as a fully quantum variable.

Here, we have developed a geometric PIC method for the spin Vlasov-Maxwell system,
based on a noncanonical Hamiltonian structure (Marklund & Morrison 2011) that pre-
serves some of the main properties of the continuous equation (Kraus et al. 2017). This
approach is coupled to a Hamiltonian splitting for the time discretization, which ensures
long-time robustness, very good total energy conservation, and exact preservation of
certain invariants (Poisson constraint or |sa| = 1).

The PIC code has been tested on a standard laser-plasma problem, namely the
stimulated Raman scattering of an electromagnetic wave interacting with an underdense
plasma. In this case, the electrons of the plasma are spin-polarized, with different degrees
of polarization. We have studied the influence of several physical parameters (temper-
ature, electromagnetic field amplitude, quantum effects,...) on the Raman instability.
The main result is that an initially polarized electron gas can lose its polarization
through a combination of thermal effects and the Raman instability. These results may
be interesting for current and future laser-plasma experiments that make use of polarized
electron beams (Wu et al. 2020; Nie et al. 2021), and also in condensed matter physics
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 9. Full spin dependent model, with Dirac initial condition and vth = 0.17.
Frames from (a) to (i): distribution of the spins on the unit sphere, at times
ωpt = 0, 100, 200, 300, 400, 500, 600, 1000, and 1500. Frames (j) and (k) show time history of
Sy(t) and Sz(t), the red dots correspond to the times of the different snapshots displayed in
(a)-(i).

for the understanding of the ultrafast demagnetization observed in magnetic materials
irradiated with femtosecond laser pulses (Bigot & Vomir 2013).

Acknowledgements

The authors wish to thank Pierre Navaro (CNRS, Rennes) for his help in the code
development. Much of this work has been done during the one year stay of the author



Geometric PIC for the Vlasov-Maxwell equations with spin effects 29

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 10. Full spin dependent model, with Dirac initial condition and vth = 0.51.
Frames from (a) to (i): distribution of the spins on the unit sphere, at times
ωpt = 0, 100, 200, 300, 400, 500, 600, 1000, and 1500. Frames (j) and (k) show time history of
Sy(t) and Sz(t), the red dots correspond to the times of the different snapshots displayed in
(a)-(i).
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Appendix A. Computation of the functional derivatives

In this Appendix, we give some details on the discrete functional derivatives. We also
refer to Kraus et al. (2017) for a more general context. The main point is to consider
any functional F of the semi-discretized unknown Ex,h, Ey,h, . . . as a function F of the

coefficients ex, ey, . . . . Thus, as Ex,h(t) =
∑N1

i=1 ex,i(t)Λ
1
i (x), any functional F [Ex,h] will

be considered as a function F (ex). We then have the discrete functional derivatives by
using the calculations in Kraus et al. (2017),

δF [Ex,h]

δEx
=

N1∑
i=1

∂F (ex)

∂ex,i
Σ1
i (x) =

N1∑
i,j=1

∂F (ex)

∂ex,i
(M−11 )ijΛ

1
j (x). (A 1)

Similarly, for the other fields, we have

δF [Ey,h]

δEy
=

N0∑
i=1

∂F (ey)

∂ey,i
Σ0
i (x) =

N0∑
i,j=1

∂F (ey)

∂ey,i
(M−10 )ijΛ

0
j (x),

δF [Ez,h]

δEz
=

N0∑
i=1

∂F (ez)

∂ez,i
Σ0
i (x) =

N0∑
i,j=1

∂F (ez)

∂ez,i
(M−10 )ijΛ

0
j (x),

δF [Ay,h]

δAy
=

N0∑
i=1

∂F (ay)

∂ay,i
Σ0
i (x) =

N0∑
i,j=1

∂F (ay)

∂ay,i
(M−10 )ijΛ

0
j (x),

δF [Az,h]

δAz
=

N0∑
i=1

∂F (az)

∂az,i
Σ0
i (x) =

N0∑
i,j=1

∂F (az)

∂az,i
(M−10 )ijΛ

0
j (x).

(A 2)

Regarding the distribution function f , we assume a particle-like distribution function for
Np particles

fh(x, p, s, t) =

Np∑
a=1

ωaδ(x− xa(t))δ(p− pa(t))δ(s− sa(t)). (A 3)

And a functional of the distribution function F [f ] can be considered as a function of the
particle phase space trajectories F (X,P,S). From Kraus et al. (2017), we have

∂F

∂xa
= ωa

∂

∂x

δF
δf

∣∣∣
(xa,pa,sa)

,
∂F

∂pa
= ωa

∂

∂p

δF
δf

∣∣∣
(xa,pa,sa)

,
∂F

∂sa
= ωa

∂

∂sa

δF
δf

∣∣∣
(xa,pa,sa)

.

Appendix B. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Since the matrix (3.14) is clearly
skew symmetric, we only need to verify the Jacobi identity (the dependence on u of J
will be omitted for clarity)∑

`

(
∂Jij
∂u`

J`k +
∂Jjk
∂u`

J`i +
∂Jki
∂u`

J`j

)
= 0, for all i, j, k. (B 1)

As the Poisson matrix J = J(u) depends only on X and S, we only need to sum ` over
1 6 ` 6 Np and 2Np + 1 6 ` 6 5Np. There are two cases we need to consider.
• Two of i, j, k ∈ Z lie in [Np + 1, 2Np], and the other one lies in [5Np + 1, 5Np +N1].

We take the case that Np + 1 6 i, j 6 2Np and 5Np + 1 6 k 6 5Np +N1 for example. In
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this case, Eq. (B 1) becomes

Np∑
`=1

(
∂Jjk
∂u`

J`i +
∂Jki
∂u`

J`j

)
= 0.

As Jjk in the above depends only on xj−Np
, Jki depends only on xi−Np

, the left hand
side of the above identity becomes

∂Jjk
∂uj−Np

J(j−Np)i +
∂Jki
∂ui−Np

J(i−Np)j . (B 2)

When i 6= j, J(j−Np)i = 0, and J(i−Np)j = 0, then the quantity (B 2) is zero. When i = j,

we have J(j−Np)i = J(i−Np)j , and
∂Jjk

∂uj−Np
= − ∂Jki

∂ui−Np
, then the quantity (B 2) is also zero

which ends the proof.
• When 2Np + 1 6 i, j, k 6 5Np, we only need to sum ` over 2Np + 1 6 ` 6 5Np. In

this case, (B 1) is easy to verify.

Appendix C. Derivation of the spin precession frequency

We consider the following ODE system

Ṡ(t) = S(t)×B(t, x), s(t = 0) = (0, 1, 0), (C 1)

with B(t, x) = (0, B0 sin(ω0t),−B0 cos(ω0t)) (which corresponds to a circularly-polarized
incident wave). With the normalization t̄ = B0t and ε = B0/ω0 which is assumed to be
small, we obtain the following system

Ṡx(t̄) = −Sy(t̄) cos(t̄/ε)− Sz(t̄) sin(t̄/ε),

Ṡy(t̄) = Sx(t̄) cos(t̄/ε),

Ṡz(t̄) = Sx(t̄) sin(t̄/ε).

(C 2)

The system can then be rewritten as u̇ = F (t̄/ε,u), where u = S and F (·,u) is 2π-
periodic. Introducing the augmented unknown U(t̄, τ = t̄/ε) = u(t), the system is recast
into

∂tU +
1

ε
∂τU = F (τ, U). (C 3)

We can perform a decomposition of this PDE: U(t̄, τ) = U0(t̄) + U1(t̄, τ) where U0(t̄) =
ΠU(t̄, ·), the operator Π being the average on [0, 2π]. Inserting the decomposition into
(C 3) leads to  ∂tU0 = ΠF (·, U0 + U1),

∂tU1 +
1

ε
∂τU1 = (I −Π)F (·, U0 + εU1).

The asymptotic limit ε → 0 is obtained by inserting the approximation obtained from
the second equation U1 = ε∂−1τ (I −Π)F (·, U0) +O(ε2) into the first equation. It comes

∂tU0 = ΠF (·, U0 + ε∂−1τ (I −Π)F (·, U0)) +O(ε2). (C 4)

First, we compute U1

U1 =ε∂−1τ (I −Π)F (·, U0)+O(ε2)

=ε(I −Π)

∫ τ

0

F (s, U0)ds+O(ε2)=ε

−U0,y sin τ + U0,z cos τ
U0,x sin τ
−U0,x cos τ

+O(ε2).
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Then, (C 4) becomes

∂t

U0,x

U0,y

U0,z

 = Π

−(U0,y + εU0,x sin τ) cos τ − (U0,z − εU0,x cos τ) sin τ
(U0,x + ε(−U0,y sin τ + U0,z cos τ)) cos τ
(U0,x + ε(−U0,y sin τ + U0,z cos τ)) sin τ

 =

 0
ε/2 U0,z

−ε/2 U0,y


The first component does not depend on time and the asymptotic model for the two last
component u(t) = (U0,y(t), U0,z(t))

T then reads, in the original time variable t = t̄/B0

u̇(t) =
εB0

2
Ju,

with J the symplectic matrix. The solution then reads (using ε = B0/ω0)

u(t) = exp

(
B2

0

2ω0
tJ

)
u(0) =

(
cos(B2

0/(2ω0)t) sin(B2
0/(2ω0)t)

− sin(B2
0/(2ω0)t) cos(B2

0/(2ω0)t)

)
u(0),

whose frequency is ω =
B2

0

2ω0
.

Appendix D. Spin-dependent initial condition

The spin Vlasov model adopted here is a semiclassical approximation whereby the
mechanical motion (position and momentum) is treated classically, while the spin degrees
of freedom are fully quantum variables. Hence, the spin-dependent part of the initial
distribution function should be determined using the rules of quantum mechanics for
spin-1/2 fermions. We will do this by making use of Wigner functions (representation of
quantum mechanics in the classical phase space). The derivation follows closely Manfredi
et al. (2019).

For spin-1/2 particles, the relevant Wigner function F is a 2× 2 matrix:

F =

(
f↑↑ f↑↓

f↓↑ f↓↓

)
(D 1)

where the symbols ↑, ↓ denotes respectively the spin-up and spin-down components. It is
convenient to project the matrix F onto the Pauli basis set

F =
1

2
σ0F0 +

1

2
F · σ, (D 2)

where σ = (σx, σy, σz) is the vector of the 2× 2 Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (D 3)

σ0 is the 2× 2 identity matrix, and

F0 = Tr {F} = f↑↑ + f↓↓, F = Tr (Fσ) . (D 4)

The scalar distribution function in the extended phase space f(x,p, s) is related to the
matrix Wigner function through Marklund et al. (2010); Manfredi et al. (2019):

f(x,p, s) =
1

4π

2∑
α,β=1

(1 + s · σαβ)Fβα(x,p)

In the so-called collinear approximation, the spin is directed either parallel or antipar-
allel to the z axis, so that only the diagonal terms in (D 1) survive. Using (D 4), we get:
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F0 = f↑↑ + f↓↓, Fz = f↑↑ − f↓↓, and Fx = Fy = 0. Using these expressions, it is easy to
show that

f(x,p, s) =
1

4π
(F0 + szFz). (D 5)

For a Maxwell-Boltzmann equilibrium, F0 is a standard Maxwellian distribution, and
one can prove that Fz(p) = ηF0(p), where η ∈ [0, 1] is a number that characterizes the
degree of polarization of the electron gas (Manfredi et al. 2019). Hence, one can write:

f(x,p, s) =
1

4π
(1 + ηsz)F0(p). (D 6)

We also note that, using the distribution (D 6), the average values of the spin components
are:

〈sx〉 = 〈sy〉 = 0, 〈sz〉 = η/3.

The global spin components used in the main text are then: Si(t) = L〈si〉, with i =
(x, y, z), where L is the length of the periodic computational box.
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