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Abstract

Existing studies in black-box optimization for machine learning suffer from low generalizability, caused
by a typically selective choice of problem instances used for training and testing different optimization
algorithms. Among other issues, this practice promotes overfitting and poor-performing user guidelines.
To address this shortcoming, we propose in this work a benchmark suite, OptimSuite, which covers
a broad range of black-box optimization problems, ranging from academic benchmarks to real-world
applications, from discrete over numerical to mixed-integer problems, from small to very large-scale
problems, from noisy over dynamic to static problems, etc. We demonstrate the advantages of such
a broad collection by deriving from it Automated Black Box Optimizer (ABBO), a general-purpose
algorithm selection wizard. Using three different types of algorithm selection techniques, ABBO achieves
competitive performance on all benchmark suites. It significantly outperforms previous state of the art
on some of them, including YABBOB and LSGO. ABBO relies on many high-quality base components.
Its excellent performance is obtained without any task-specific parametrization.

The OptimSuite benchmark collection, the ABBO wizard and its base solvers have all been merged
into the open-source Nevergrad platform, where they are available for reproducible research.

1 Introduction: State of the Art

Many real-world optimization challenges are black-box problems; i.e., instead of having an explicit problem
formulation, they can only be accessed through the evaluation of solution candidates. These evaluations
often require simulations or even physical experiments. Black-box optimization methods are particularly
widespread in machine learning [SGZ+16, WFT20], to the point that it is considered a key research area
of artificial intelligence. Black-box optimization algorithms are typically easy to implement and easy to
adjust to different problem types. To achieve peak performance, however, proper algorithm selection and
configuration are key, since black-box optimization algorithms have complementary strengths and weak-
nesses [Ric76, Smi09, Kot14, BKK+16, KT18, KHNT18]. But whereas automated algorithm selection has
become standard in SAT solving [XHHLB08] and AI planning [VHCM15], a manual selection and configura-
tion of the algorithms is still predominant in the broader black-box optimization context. To reduce the bias
inherent to such manual choices, and to support the automation of algorithm selection and configuration,
sound comparisons of the different black-box optimization approaches are needed. Existing benchmarking
suites, however, are rather selective in the problems they cover. This leads to specialized algorithm frame-
works whose performance suffer from poor generalizability. Addressing this flaw in black-box optimization,
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we present a unified benchmark collection which covers a previously unseen breadth of problem instances.
We use this collection to develop a high-performing algorithm selection wizard, ABBO. ABBO uses high-level
problem characteristics to select one or several algorithms, which are run for the allocated budget of function
evaluations. Originally derived from a subset of the available benchmark collection, in particular YABBOB,
the excellent performance of ABBO generalizes across almost all settings of our broad benchmark suite.
Originally implemented as a fork of Nevergrad [RT18], our benchmark collection OptimSuite, the ABBO
wizard, and its base solvers have all been merged into the main Nevergrad master, where all the components
and all performance data is available open source. Nevergrad automatically reruns all algorithms at certain
time intervals and makes all data available on the public dashboard [RT20]. Note that ABBO is called
NGOpt8 in the main Nevergrad master, to allow for better version control.

In summary, our contributions are as follows:
(1) OptimSuite Benchmark Collection: OptimSuite combines several contributions that recently

led to improved reliability and generalizability of black-box optimization benchmarking, among them
LSGO [LTO+13], YABBOB [HAFR09, LMP+20], Pyomo [HLW+17], MLDA [GS18], and MuJoCo [TET12,
MGR18], and others (novelty discussed in Section 2).

(2) Algorithm Selection Wizard ABBO: Our algorithm selection technique, ABBO, can be seen as

an extension of the Shiwa wizard presented in [LMP+20]. It uses three types of selection techniques: passive
algorithm selection (choosing an algorithm as a function of a priori available features [BS04, LMP+20]), active
algorithm selection (a bet-and-run strategy which runs several algorithms for some time and stops all but
the strongest [MBT+11, PA12, FM14, ME13, MSKH15, CLRT16, KHNT18]), and chaining (running several
algorithms in turn, in an a priori defined order [MLH09]). Our wizard combines, among others, algorithms
suggested in [VGO+19, HO03, SP97, Pow64, Pow94, LMP+20, HB16, Art15, DLMN17, DDL19, DL16].
Another core contribution of our work is a sound comparison of our wizard to Shiwa, and to the long list of
algorithms available in Nevergrad.

Algorithm 1 High-level overview of ABBO. Selection rules are followed in this order, first match applied.
d = dimension, budget b = number of evaluations. Details of ABBO are available in the Nevergrad plat-
form [RT18], where ABBO is listed as NGOpt8.

Case Choice

Discrete decision variables only

Noisy optimization with categorical variables Genetic algorithm mixed with bandits [HMI09, LMP+20].
alphabets of size < 5, sequential evaluations (1 + 1)-Evolutionary Alg. with linearly decreasing stepsize
alphabets of size < 5, parallel case Adaptive (1 + 1)-Evolutionary Alg. [DDL19].

Other discrete cases with finite alphabets Convert to the continuous case using SoftMax as in [LMP+20]

and apply CMandAS2 [RDP+19]
Presence of infinite discrete domains FastGA [DLMN17]

Numerical decision variables only, evaluations are subject to noise
d > 100 progressive optimization as in [Ber16].
d ≤ 30 TBPSA [HB16]
b > 100 sequential quadratic programming
Other cases TBPSA [HB16]

Numerical decision variables only, high degree of parallelism
Parallelism > b/2 or b < d MetaTuneRecentering [MDRT20]
Parallelism > b/5, d < 5, and b < 100 DiagonalCMA-ES [RH08]
Parallelism > b/5, d < 5, and b < 500 Chaining of DiagonalCMA-ES (100 asks), then CMA-

ES+meta-model [AST05]
Parallelism > b/5, other cases NaiveTBPSA as in [CT20]

Numerical decision variables only, sequential evaluations
b > 6 000 and d > 7 Chaining of CMA-ES and Powell, half budget each.
b < 30d and d > 30 (1 + 1)-Evol. Strategy w/ 1/5-th rule [Rec73]
d < 5 and b < 30d CMA-ES + meta-model [AST05]
b < 30d Cobyla [Pow94]

For all other cases and all details, please refer to the source code
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2 Sound Black-Box Optimization Benchmarking

We summarize desirable features and common shortcomings of black-box optimization benchmarks and
discuss how OptimSuite addresses these.

Generalization. The most obvious issue in terms of generalization is the statistical one: we need
sufficiently many experiments for conducting valid statistical tests and for evaluating the robustness of
algorithms’ performance. This, however, is probably not the main issue. A biased benchmark, excluding
large parts of the industrial needs, leads to biased conclusions, no matter how many experiments we perform.
Inspired by [RRSS18] in the case of image classification, and similar to the spirit of cross-validation for
supervised learning, we use a much broader collection of benchmark problems for evaluating algorithms in
an unbiased manner. Another subtle issue in terms of generalization is the case of instance-based choices
of (hyper-)parameters: an experimenter modifying the algorithm or its parameters specifically for each
instance can easily improve results by a vast margin. In this paper, we consider that only the following
problem properties are known in advance (and can hence be used for algorithm selection and configuration):
the dimension of the domain, the type and range of each variable, their order, the presence of noise (but
not its intensity), the budget, the degree of parallelism (i.e., number of solution candidates that can be
evaluated simultaneously). To mitigate the common risk of over-tuning, we evaluate algorithms on a broad
range of problems, from academic benchmark problems to real-world applications. Each algorithm runs on
all benchmarks without any change or task-specific tuning.

Use the ask, tell, and recommend pattern. Formalizing the concept of numerical optimization is
typically made through the formalism of oracles or parallel oracles [Rog87]. A recent trend is the adoption
of the ask-and-tell format [CHP+10]. The bandit literature pointed out that we should distinguish ask,
tell, and recommend : the way we choose a point for gathering more information is not necessarily close to
the way we choose an approximation of the optimum [BMS11, Cou12b, DT13]. We adopt the following
framework: given an objective function f and an optimizer, for i ∈ {1, . . . , T}, do x ← optimizer.ask
and optimizer.tell(x, f(x)). Then, evaluate the performance with f(optimizer.recommend). The re-
quirement of a recommend method distinct from the ask is critical in noisy optimization. A debate
pointed out some shortcomings in the the noisy counterpart of BBOB [AH09] which was assuming that
ask = recommend: [Bey12a, Bey12b, Cou12a] have shown that in the noisy case, this difference was par-
ticularly critical, and a framework should allow algorithms to “recommend” differently than they “ask”. A
related issue is that a run with budget T is not necessarily close to the truncation of a run in budget 10T .

Translation-invariance. Zero frequently plays a special role in optimization. For example, complexity
penalizations often “push” towards zero. In control, numbers far from zero are often more likely to lead
to bang-bang solutions (and therefore extract zero signal, leading to a needle-in-the-haystack optimization
situation), in particular with neural networks. In one-shot optimization, [CCD+19, MDRT20] have shown
how much focusing to the center is a good idea in particular in high-dimension. Our experiments in control
confirm that the scale of the optimization search is critical, and explains the misleading results observed in
some optimization papers (Section 4.2). In artificial experiments, several classical test functions have their
optimum in zero. To avoid misleading conclusions, it is now a standard procedure, advocated in particular
in [HAFR09], to randomly translate the objective functions. This is unfortunately not always applied.

Rotation and symmetrization. Some optimization methods may perform well on separable objective
functions but degrade significantly in optimizing non-separable functions. If the dimension of a separable
objective function is d, these methods can reduce the objective function into d one-dimensional optimization
processes [Sal96]. Therefore, [HAFR09, HRM+11] have insisted that objective functions should be rotated to
generate more difficult non-separable objective functions. However, [BGK+17] pointed out the importance
of dummy variables, which are not invariant per rotation; and [Hol75] and more generally the genetic
algorithms literature insist that rotation does not always makes sense – we lose some properties of a real-
world objective function, and in some real-world scenarios rotating would, e.g., mix temperature, distance
and electric intensity. Permutating the order of variables is also risky, as their order is sometimes critical
- k-point crossovers a la Holland [Hol75] typically assume some order of variables, which would be broken.
Also, users sometimes rank variables with the most important first – and some optimization methods do
take care of this [CCD+19]. In OptimSuite, we do include rotations, but include both cases, rotated or not.
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Table 1: Properties of selected benchmark collections (details in appendix). “+” means that the feature is
present, “-” that the feature is missing, and an empty case that it is not applicable. Far-optimum refers to
problems with optimum far from the center or on the side of the domain; such benchmarks test the ability
of optimization algorithms to answer promptly to a bad initialization [CAH12]. “Translations” applies only
to artificial benchmarks. A “+” in rows “Multimodal”, “symmetrization”, and “real-world” does not imply
that all test functions have this property. “Open sourced” refers to open access to most algorithms involved
in the published comparison; here, “-” refers to license issues for the benchmark itself.

Testbed BBOB MuJoCo LSGO Nevergrad BBComp OptimSuite

Large scale - + + +
Translations + + + + +
Symmetrizations / rotations + + + +
One-line reproducibility - - + +
Periodic automated dashboard + +
Complex or real-world - + - + +
Multimodal + + + + + +
Open sourced / no license - +
Ask/tell/recommend correct - + + + +
Far-optimum + + +
Human excluded / client-server +

For composite functions which use various objective functions on various subsets of variables, we consider
the case with rotations – without excluding the non-rotated case. An extension of symmetrization that we
will integrate later in ABBO, which makes sense for replicating an objective function without exact identity,
consists in symmetrizing some variables: for example, if the ith variable has range [a, b], we can replace xi
by b+ a− xi. Applying this on various subsets of variables leads to 2d symmetries of an objective function,
if the dimension is d. This variation can reduce the bias toward symmetric search operations [LTO+13].

Benchmarking in OptimSuite. We summarize in Table 1 some existing benchmark collections and
their (desirable) properties. We inherit various advantages from Nevergrad, namely the automatic rerun of
experiments and reproducibility in one line. Our fork includes PBT (a small scale version of Population-
Based Training [JDO+17]), Pyomo [HLW+17], Photonics (problems related to optical properties and nano-
metric materials), YABBOB and variants, LSGO [LTO+13], MLDA [GS18], PowerSystems, FastGames,
007, Rocket, SimpleTSP, Realworld [LMP+20], MuJoCo [TET12], and others, including a (currently small)
benchmark of hyperparameters of Scikit-Learn [PVG+11] and Keras-tuning (underlined means: the bench-
mark is either new, or, in the case of PowerSystems or SimpleTSP, significantly modified compared to
previous works, or, in the case of LSGO or MuJoCo, included for the first time inside Nevergrad. For Mu-
JoCo, we believe that interfacing with Nevergrad is particularly useful, to ensure fair comparisons, which
rely very much on the precise setup of MuJoCo. We note that, at present, we do not reproduce the ex-
treme black-box nature of [LG17]. Still, by integrating such a wide range of benchmarks in a single open
source framework, which, in addition, is periodically re-run, we believe that Nevergrad/OptimSuite provides
a significant contribution to benchmarking, and this both for the optimization and the machine learning
community, where most of the benchmark suites originate from.

3 A New Algorithm Selection Wizard: ABBO

Black-box optimization is sometimes dominated by evolutionary computation. Evolution strategies [BS02,
Bey01, Rec73] have been particularly dominant in the continuous case, in experimental comparisons based
on the Black-Box Optimization Benchmark BBOB [HAFR09] or variants thereof. Parallelization advan-
tages [SGZ+16] are particularly appreciated in the machine learning context. However, Differential Evo-
lution [SP97] is a key component of most winning algorithms in competitions based on variants of Large
Scale Global Optimization (LSGO [LTO+13]), suggesting a significant difference between these benchmarks.
In particular, LSGO is more based on correctly identifying a partial decomposition and scaling to ≥ 1 000
variables, whereas BBOB focuses (mostly, except [VAB+18]) on ≤ 40 variables. Mathematical program-
ming techniques [Pow64, Pow94, NM65, Art15] are rarely used in the evolutionary computation world,

4



Table 2: Nevergrad maintains a dashboard [RT20]. For each experiment, there are many configurations
(budget, objective function, possibly dimension, and noise level). We separate benchmarks used for designing
ABBO, benchmarks used for validation, and those only used for testing. “*” denotes benchmarks used for
designing Shiwa (which is used inside ABBO). We present the rank based on the winning rate of ABBO
in the dashboard. Since the submission of this paper, several variants of bandit-based algorithms have
been added for high-dimensional noisy optimization. They outperform ABBO, hence its poor rank for
these cases. Detailed plots are available in Fig. 4, 7. As expected, DE variants are strong on LSGO and
CMA-ES variants are strong for YABBOB. ABBO also performs well on YABBOB, which was used for
designing its ancestor Shiwa (see Fig. 1). For the MuJoCo testbed, details are available in Table 3 and
Figure 3. Our modifications in the codebase implies an improvement of Shiwa compared to the version
published in [LMP+20]; for example, our chaining implies that the (k+ 1)th code starts from the best point
obtained by the kth algorithm, which significantly improves in particular the chaining CMA-ES+Powell or
CMA-ES+SQP. Experiments with “†” in the ranking of Shiwa correspond to this improved version of Shiwa.

Benchmark Use for ABBO # of configs ranking ABBO best competitor
ABBO Shiwa CMA-ES

HDBO Designing 24 2/21 1† 2 Shiwa

PARAMULTIMODAL Designing 112 1/27 3† 6 DiagonalCMA-ES [RH08]

Realworld Designing 486 1/6 2† 3 Shiwa [LMP+20]

Illcondi Designing 12 1/24 3† 8 Cobyla

Illcondipara Designing 12 5/28 7† 3 DiagonalCMA-ES
YABBOB Designing* 630 1/8 2 5 Shiwa
YAPARABBOB Designing* 630 1/6 4 5 MetaModel
YAHDBBOB Designing* 378 2/19 3 18 (1 + 1)-ES
YANOISYBBOB Designing* 630 2/11 6 10 SQP
YAHDNOISYBBOB Designing* 630 4/24 2 13 SQP
YASMALLBBOB Designing* 378 1/8 2 7 Shiwa

HdMultimodal Validation 42 1/14 2† 4 Shiwa

Noisy Validation 96 16/28 19† NA RecombiningOptimisticNoisyDiscrete(1 + 1)
RankNoisy Validation 72 4/25 NA 19 ProgD13

AllDEs Validation 60 1/28 2† 3 Shiwa [LMP+20]

Pyomo Evaluating 104 1/19 3† 10 Shiwa [LMP+20]

Rocket Evaluating 13 5/18 4† 3 DiagonalCMA-ES [RH08]

SimpleTSP Evaluating 52 3/15 2† 7 PortfolioDiscrete(1 + 1)

Seq. Fastgames Evaluating 20 3/28 4† 23 OptimisticDiscrete(1 + 1)

LSGO Evaluating 45 1/6 4† 6 MiniLHSDE
Powersystems Evaluating 48 10/26 NA 25 (1 + 1)-ES

but they have won competitions [Art15] and significantly improved evolution strategies through memetic
methods [RS94]. Algorithm selection was applied to continuous black-box optimization and pushed in
Nevergrad [LMP+20]: their optimization algorithm combines many optimization methods and outperforms
each of them when averaged over diverse test functions. Closer to machine learning, efficient global op-
timization [JSW98] is widely used, although it suffers from the curse of dimensionality more than other
methods [SLA12]; [WFT20] presented a state-of-the-art algorithm in black-box optimization on MuJoCo,
i.e., for the control of various realistic robots [TET12]. We propose ABBO, which extends [LMP+20] by the
following features:

(1) Better use of chaining [MLH09] and more intensive use of mathematical programming techniques for
the last part of the optimization run, i.e., the local convergence, thanks to Meta-Models (in the parallel case)
and more time spent in Powell’s method (in the sequential case). This explains the improvement visible in
Section 4.1.

(2) Better performance in discrete optimization, using additional codes recently introduced in Nevergrad,
in particular adaptive step-sizes.

(3) Better segmentation of the different cases of continuous optimization. We still entirely rely on the base
algorithms as available in Nevergrad; that is, we did not modify the tuning of any method. We acknowledge
that our method only work thanks to the solid base components available in Nevergrad, which are based on
contributions from various research teams.
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The obtained algorithm selection wizard, ABBO, is presented in Algorithm 1. The performances of
ABBO is summarized in Table 2 and a detailed dashboard is available at https://dl.fbaipublicfiles.

com/nevergrad/allxps/list.html.

4 Experimental Results

When presenting results on a single benchmark function, we present the usual average objective function
value for different budget values. When a collection comprises multiple benchmark problems, we present our
aggregated experimental results with two distinct types of plots:

(1) Average normalized objective value for each budget, averaged over all problems. The normalized
objective value is the objective value linearly rescaled to [0, 1].

(2) Heatmaps, showing for each pair (x, y) of optimization algorithms the frequency at which Algorithm x
outperforms Algorithm y. Algorithms are ranked by average winning frequency. We use red arrows to
highlight ABBO.

4.1 Benchmarks in OptimSuite Used for Designing and Validating ABBO

YABBOB (Yet Another Black-Box Optimization Benchmark [RDP+19]), is an adaptation of
BBOB [HAFR09], with extensions such as parallelism and noise management. It contains many variants,
including noise, parallelism, high-dimension (BBOB was limited to dimension < 50). Several extensions,
for the high-dimensional, the parallel or the big budget case, have been developed: we present results in
Figures 1 and 4. The high-dimensional one is inspired by [LTO+13], the noisy one is related to the noisy
counterpart of BBOB but correctly implements the difference between ask and recommend as discussed in
Section 2. The parallel one generalizes YABBOB to settings in which several evaluations can be executed
in parallel. Results on PARAMULTIMODAL are presented in Figure 6 (left). In addition, ABBO was
run on ILLCONDI & ILLCONDIPARA (ill conditionned functions), HDMULTIMODAL (a multimodal case
focusing on high-dimension), NOISY & RANKNOISY (two noisy continuous testbeds), YAWIDEBBOB (a
broad range of functions including discrete cases and cases with constraints).

Figure 1: Average normalized loss and heatmap for YABBOB. Additional plots for High-dimensional (HD),
NoisyHD, and Large budgets are available in Fig. 4. Other variants include parallel, differences of budgets,
and combinations of those variants, with excellent results for ABBO. Up-to-date results from the periodically
rerun experiments are available on Nevergrad’s dashboard https://dl.fbaipublicfiles.com/nevergrad/

allxps/list.html, where ABBO is merged under the name NGOpt8.

AllDEs and Hdbo are benchmark collections specifically designed to compare DE variants (AllDEs)
and high-dimensional Bayesian Optimization (Hdbo), respectively [RT18]. These benchmark functions are

6

https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html


Figure 2: Additional problems: Pyomo (covering Knapsack, P-median and others), SequentialFastgames
(presented as heatmaps due to the high noise: GuessWho, War, Batawaf, Flip). Rockets, SimpleTSP,
PowerSystems, and LSGO plots are available in Figures 7, and 8. Pyomo and SimpleTSP include discrete
variables. Pyomo includes constraints. Rocket, PowerSystems, SequentialFastGames are based on open
source simulators and are already merged from OptimSuite to Nevergrad.

similar to the ones used in YABBOB. Many variants of DE (resp. BO) are considered. Results are presented
in Figure 5. They show that the performance of ABBO, relatively to DE or BO, is consistent over a wide
range of parametrizations of DE or BO, at least in their most classical variants, which are all available in
Nevergrad for empirical comparisons.

Realworld: A test of ABBO is performed on the Realworld optimization benchmark suite proposed
in [RT18]. This suite includes testbeds from MLDA [GS18] and from [LMP+20]. Results for this suite,
presented in Figure 6, confirm that ABBO performs well also on benchmarks that were not explicitly used
for its design - however, this benchmark was used for designing Shiwa, which was the basis of our ABBO.
A rigorous cross-validation, on benchmarks totally independent from the design of Shiwa, is provided in the
next sections.

4.2 New Benchmarks in OptimSuite Used Only for Evaluating ABBO

Pyomo is a modeling language in Python for optimization problems [HLW+17]. It is popular and has
been adopted in formulating large models for complex and real-world systems, including energy systems and
network resource systems. We implemented an interface to Pyomo for Nevergrad. Experimental results are
shown in Figure 2. They show that ABBO also performs decently in discrete settings and in constrained
cases.

Additional new artificial and real-world functions: LSGO (large scale global optimization) com-
bines various functions into an aggregated difficult testbed including composite highly multimodal functions.
Correctly decomposing the problem is essential. Various implementations of LSGO exist; in particular we
believe that some of them do not match exactly. Our implementation follows [LTO+13] , which introduces
functions with subcomponents (i.e., groups of decision variables) having non-uniform sizes and non-uniform,
even conflicting, contributions to the objective function. Furthermore, we present here experimental re-
sults on SequentialFastgames from the Nevergrad benchmarks, and three newly introduced benchmarks,
namely Rocket, SimpleTSP (a set of traveling salesman problems), power systems (unit commitment prob-
lems [Pad04]). Experimental results are presented in Figures 2, 7, and 8. They show that ABBO performs
well on new benchmarks, never used for its design nor for that of the low-level heuristics used inside ABBO.

MuJoCo. Many articles [SK20, WFT20] studied the MuJoCo testbeds [TET12] in the black-box setting.
MuJoCo tasks correspond to control problems. Defined in [WFT20, MGR18], the objective is to learn a linear
mapping from states to actions. It turned out that the scaling is critical [MGR18]: for reasons mentioned

7



Figure 3: Results on the MuJoCo testbeds. Dashed lines show the standard deviation. Compared to the
state of the art in [WFT20], with an algorithm adapted manually for the different tasks, we get overall better
results for Humanoid, Ant, Walker. We get worse results for Swimmer (could match if we had modified our
code for the 3 easier tasks as done in [WFT20]), similar for Hopper and Cheetah: we reach the target for
5 of the 6 problems (see text). Runs of Shiwa correspond to the improvement of Shiwa due to chaining, as
explained in Table 2.

in Section 2, solutions are close to 0. We chose to scale all the variables of the problem at the power of
0.1 the closest to 1.2/d, for all methods run in Figure 3. We remark that ABBO and Shiwa perform well,
including comparatively to gradient-based methods in some cases, while having the ability to work when the
gradient is not available. When the gradient is available, black-box methods do not require computation of
the gradient, which saves time.

We use the same experimental setup as [WFT20] (linear policy, offline whitening of states). We get results
better than LA-MCTS, in a setting i.e., does not use any expensive surrogate model (Table 3). Our runs with
CMA-ES and Shiwa are better than those in [WFT20]. We acknowledge that LMRS [SK20] outperforms our
method on all MuJoCo tasks, using a deep network as a surrogate model: however, we point out that a part
of their code is not open sourced, making the experiments not reproducible. In addition, when rerunning
their repository without the non open sourced part, it solved Half-Cheetah within budget 56k, which is larger
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Table 3: Results for a linear policy in the black-box setting from the latest black-box paper [WFT20] and
references therein, compared to results from ABBO. Two last columns = average reward for the maximum
budget tested in [WFT20], namely 1k, 4k, 4k, 40k, 30k, 40k, respectively. “ioa” = iterations on average
for reaching the target. “iter” = iterations for target reached for median run. “*” refers to problems for
which the target was not reached by [WFT20]: then BR means “best result in 10 runs”. ABBO reaches
the target for Humanoid and Ant whereas previous (black-box) papers did not; we get nearly the same ioa
for Hopper and HalfCheetah (Nevergrad computed the expected value instead of computing the ioa, so we
cannot compare exactly; see Figure 3 for curves). ABBO is slower than LA-MCTS on Swimmer. Note
that we keep the same method for all benchmarks whereas LA-MCTS modified the algorithm for 3 rows.
On HDMULTIMODAL, ABBO performs better than LA-MCTS, as detailed in the text, and as confirmed
in [WFT20], which acknowledges the poor results of LA-MCTS for high-dimensional Ackley and Rosenbrock.
Task Target LA-MCTS results ABBO result LA-MCTS avg reward ABBO avg reward

Swimmer-v2 325 132 ioa around 450 iter 358 365
Hopper-v2 3120 2897 ioa around 3 000 iter 3292 1787
HalfCheetah-v2 3430 3877 ioa around 4 000 iter 3227 4730
Walker2d-v2* 4390 BR: 3314 (not reached) BR: 4398, budget < 64 000 (reached!) 2769 2949
Ant-v2* 3580 BR: 2791 (not reached) BR: 5325, budget < 32 000 (reached!) 2511 3532
Humanoid-v2* 6 000 BR: 3384 (not reached) BR (budget 5 00000): 4870 2511 4620

Figure 4: YAHDBBOB (dimension ≥ 50) and YANOISYHDBBOB (noisy + dimension ≥ 50) heatmaps.

than ours. For Humanoid, the target was reached at 768k, which is again larger than our budget. Results
from ABBO are comparable to, and usually better than (for the 3 hardest problems), results from LA-MCTS,
while ABBO is entirely reproducible. In addition, it runs the same method for all benchmarks and it is not
optimized for each task specifically as in [SK20, WFT20]. In contrast to ABBO, [WFT20] uses different
underlying regression methods and sampling methods depending on the MuJoCo task, and it is not run on
other benchmarks except for some of the HDMULTIMODAL ones. On the latter, ABBO performances are
significantly better for Ackley and Rosenbrock in dimension 100 (expected results around 100 and 10−8 after
10k iterations for Rosenbrock and Ackley respectively for ABBO, vs 0.5 and 500 in [WFT20]). From the
curves in [WFT20] and in the present work, we expect LA-MCTS to perform well with an adapted choice
of parametrization and with a low budget, for tasks related to MuJoCo, whereas ABBO is adapted for wide
ranges of tasks and budgets.

5 Conclusions

This paper proposes OptimSuite, a very broad benchmark suite composed of real-world and of artificial
benchmark problems. OptimSuite is implemented as a fork of Nevergrad [RT18], from which it inherits
a strong reproducibility: our (Python) code is open source, tests are rerun periodically, and up-to-date
results are available in the public dashboard [RT20]. A whole experiment can be done as a one-liner.
OptimSuite fixes several issues of existing benchmarking environments. The suite subsumes MuJoCo, Pyomo,
LSGO, YABBOB, MLDA, and several new real-world problems. We also propose ABBO, an improved
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Figure 5: ABBO vs specific families of optimization algorithms (DE, and BO in the high-dimensional case) on
Cigar, Hm, Ellipsoid, Sphere functions. Not all run algorithms are mentioned, for short. Bayesian optimiza-
tion (Nevergrad uses [Nog ]), often exploring boundaries first, is outperformed in high dimension [WFT20].

Figure 6: Up: experiments for the parallel multimodal setting PARAMULTIMODAL. Budget up to 100 000,
parallelism 1 000, Ackley+Rosenbrock+DeceptiveMultimodal+Griewank+Lunacek+Hm. Bottom: Real-
world benchmark from Nevergrad: games, Sammon mappings, clustering, small traveling salesman instance,
small power systems.

Figure 7: Additional problems (1): on left, Rocket (26 continuous variables, budget up to 1600, sequential
or parallelism 30) and on right, SimpleTSP (10 to 1 000 decision variables).

algorithm selection wizard. Despite its simplicity, ABBO shows very promising performance across the
whole benchmark suite, often outperforming the previous state-of-the-art, problem-specific solvers: (a) by
solving 5 of the 6 cases without any task-specific hyperparameter tuning, ABBO outperforms LA-MCTS,
which was specialized for each single task, (b) ABBO outperforms Shiwa on YABBOB and its variants, which
is the benchmark suite used to design Shiwa in the first place, (c) ABBO is also among the best methods on
LSGO and almost all other benchmarks.

Future work. OptimSuite subsumes most of the desirable features outlined in Section 2, with one notable
exception, the true black-box setting, which other benchmark environments have implemented through a

10



Figure 8: Additional problems (2): on left, PowerSystems (1806 to 9646 neural decision variables) and on
right, LSGO (mix of partially separable, overlapping, shifted cases as in [LTO+13]).

client-server interaction [LG17]. A possible combination between our platform and such a challenge, using
the dashboard to publish the results, could be useful, to offer a meaningful way for cross-validation. Further
improving ABBO is on the roadmap. In particular, we are experimenting with the automation of the
still hand-crafted selection rules. Note, though, that it is important to us to maintain a high level of
interpretability, which we consider key for a wide acceptance of the wizard. Another avenue for future
work is a proper configuration of the low-level heuristics subsumed by ABBO. At present, some of them
are merely textbook implementations, and significant room for improvement can therefore be expected.
Newer variants [Los14, AH16, LGB18] of CMA-ES, of LMRS [SK20], recent Bayesian optimization libraries
(e.g. [EPG+19]), as well as per-instance algorithm configuration such as [BDSS17] are not unlikely to result
in important improvements for various benchmarks. We also plan on extending OptimSuite further, both
through interfacing existing benchmark collections/problems, and by designing new benchmark problems
ourselves.
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A APPENDIX

We specify the properties mentioned in Table 1.

• Large scale: includes dimension ≥ 1 000.

• Translations: in unbounded continuous domains, a standard deviation σ has to be provided, for
example for sampling the first and second iterates of the optimization algorithm. Given a standard
deviation σ, we consider that there is translation when optima are randomly translated by a N (0, σ2)
shift. Only interesting for artificial cases.

• Far-optimum: optima are translated far from the optimum, with standard deviation at leastN (0, 25×
σ2).

• Symmetrizations / rotations (here assuming an optimum, up to translation, in 0). Rotation:
with a random rotation matrixM , the function x 7→ f(x) is replaced by x 7→ f(M(x)). Symmetrization:
x 7→ f(x) can be replaced by x 7→ f(S(x)), with S a diagonal matrix with each diagonal coefficient
equal to 1 or −1 with probability 50%. We do not request all benchmarks to be rotated: it might be
preferable to have both cases considered.

• One-line reproducibility: Where reproducibility requires significant coding, it is unlikely to be of
great use outside of a very small set of specialists. One-line reproducibility is given when the effort to
reproduce an entire experiment does not require more than the execution of a single line. We consider
this to be an important feature.

• Periodic automated dashboard: are algorithms re-run periodically on new problem instances?
Some platforms do not collect the algorithms, and reproducibility is hence not given. An automated
dashboard is convenient also because new problems can be added “on the go” without causing problems,
as all algorithms will be executed on all these new problem instances. This feature addresses what we
consider to be one of the biggest bottlenecks in the current benchmarking environments.

• Complex or real-world: Real-world is self-explanatory; complex means a benchmark involving a
complex simulator, even if it is not real world. MuJoCo is in the “complex” category.

• Multimodal: whether the suite contains problems for which there are local optima which are not
global optima.

• Open sourced / no license: Are algorithms and benchmarks available under an open source agree-
ment? BBOB does not collect algorithms, MuJoCo requires a license, LSGO and BBOB are not
realworld, Mujoco requires a license, BBComp is no longer maintained, Nevergrad does not include
complex ML problems without license issue before our work: some people have already applied Nev-
ergrad to MuJoCo, but with our work MuJoCo becomes part of Nevergrad so that people can upload
their code in Nevergrad and it will be run on all benchmarks, including MuJoCo.

• Ask/tell/recommend correctly implemented [CHP+10, BMS11]: The ask and tell idea (de-
velopped in [CHP+10]) is that an optimization algorithm should not come under the format
Optimizer.minimize(objective− function) because there are many settings in which this is not pos-
sible: you might think of agents optimizing concurrently their own part of an objective function, and
problems of reentrance, or asynchronicity. All settings can be recovered from an ask/tell optimization
method. This becomes widely used. However, as well known in the bandit literature (you can think
of pure exploration bandits [BMS11]), it is necessary to distinguish ask, tell and recommend: the
“recommend” method is the one which proposes an approximation of the optimum. Let us develop
an example explaining why this matters: the domain is {1, 2, 3, 4}, and we have a budget of 20 in a
noisy case. NoisyBBOB assumes that the optimum is found when “ask” returns the optimum arm:
then, the status remains “found” even if the algorithm has no idea where is the optimum and never
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comes back nearby. So an algorithm which just iteratively “asks” 1, 2, 3, 4, 1, 2, 3, 4, . . . reaches the
optimum in at most 4 iterations. This does not mean anything in the noisy case, as the challenge
is to figure out which of the four numbers is the optimum. With a proper ask/tell/recommend, the
optimizer chooses an arm at the end of the budget. A simple regret is then computed. Actually this
also matters in the noise-free case, but the issue is much more critical in noisy optimization. The
case of continuous noisy optimization also has counter-examples and all the best noisy optimization
algorithms use ask/tell/recommend. We add the reference to the paper above.

• Human excluded / client-server: The problem instances are truly black-box. Algorithms can
only suggest points and observe function values, but neither the algorithm nor its designer have access
to any other information about the problem apart from the number of variables, their type, ranges,
and order. It is impossible to repeat experiments for tuning hyperparameters without “paying” the
budget of the HP tuning. This is something we could not do, as everything is public and open sourced:
however, we believe that we mitigate this issue by considering a large number of benchmarks.
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