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Abstract—For power grid operations, a large body of research as already pointed out by early work] [1]. This avenue is
focuses on using generation redispatching, load shedding or explored in the present paper. As of today, it is still beyond
demand side management exibilities. However, a less costly and the state-of-the-art to control optimally such grid topology “at

potentially more exible option would be grid topology recon- " u L .
guration, as already partially exploited by Coreso (European scale”, beyond the level of “branch switching’ [S] (e.g. consid-

RSC) and RTE (French TSO) operations. Beyond previous work €ring more complex actions such as “bus splitting”), because
on branch switching, bus recon gurations are a broader class of the non-linear and combinatorial nature of the problem.

of action and could provide some substantial bene ts to route | ately, we demonstrated an augmented expert system ability
electricity and optimize the grid capacity to keep it within safety q) 15 giscover steady-state tactical solutions to unsecure grid

margins. Because of its non-linear and combinatorial nature, no tates b Vi b litti It tabl tati |
existing optimal power ow solver can yet tackle this problem. states by relying on bus spliting. Its acceptable computationa

We here propose a new framework to learn topology controllers time opens new perspectives for a revival of such class of ac-
through imitation and reinforcement learning. We present the tions. In addition, novel and more exible actions should also

design and the results of the rst “Learning to Run a Power pe considered today, intervening not only instantaneously as a
Network” challenge released with this framework. We nally — actic rather independently of other decisions, but over a time
develop a method providing performance upper-bounds (oracle), horizon as astrategyto manage more numerous overlapping
which highlights remaining unsolved challenges and suggests ) ’ s ;
future directions of improvement. and interfering decisions. To exploit such a complex array
of actions, optimal control methods [5] have been explored
but are hard to deploy in control rooms because of limited
computing budget constraints.

With the latest breakthroughs in Arti cial Intelligence (Al)
from AlphaGo at Go[[15] and Libratus at Poker [2], Deep

Grid operators are in charge of ensuring that a reliabReinforcement Learning (RL) seems a promising avenue to
supply of electricity is provided everywhere, at all timesdevelop a control algorithma.k.a. an arti cial agent, able
However, their task is becoming increasingly dif cult undeto operate a complex power system at scale near real-time
the current steep energy transition. On one hand, we obsesyel over time, assisted by existing advanced physical grid
the advent of intermittent renewable energies on the prodwimulators. Recent work [3] has already shown the value of
tion side and of prosumers on the demand side, coupledDeep Learning for accelerating power ow computation and
the globalization of energy markets over a more and morigk assessment applications for power systems, demonstrating
interconnected European grid. This brings a whole new setitf ability to model such system behavior, adding more credit
actors to the power system, adding lots of uncertainties to tib. the Deep RL potential. RL formulations have already been
On the other hand, recent improvements in terms of energgplied to specic power system related problems (s€e [7]
ef ciency have put an end to the total consumption growtlor a review), but not for continuous power system real-
andde factoto the growth in revenues, thus limiting new costltime operations, a problem for which no test cases existed
investments. Public acceptance with regards to the installati@alay, probably limiting any subsequent development. Related
of new infrastructure is also a growing issue. This shiftspplications concern the unit commitment problem with an
the way we traditionally develop the grid, from expandingnteresting multi-stage formulatiori][6], but on an infra-day
its capacity by building new power lines, to optimizing theimeframe with rather simplistic assessment of intra-day real
existing one as it is, closer to its limits, with rather digitatime operation. These authors also promote leveraging the
means and every exibilities at our disposal. capabilities of Deep RL as a catalyst for successful future

Currently, operators must analyze massive amounts of datarks. They nally insist on the real-world challenge of Safe-
to take complex coordinated decisions over time with high&L to manage for instance a power system for which con-
reactivity, to operate under an ever more constrained entingencies, and related overloads, rarely occur but need to be
ronment with greater control. An under-exploited exibility,closely managed, to avoid cascading failures and subsequent
which could alleviate in part the problem, is thad topology, blackouts. More broadly, Safe-RL is a hot research topic in

Index Terms—Arti cial Intelligence, Control, Power Flow,
Reinforcement Learning, Competition

I. INTRODUCTION
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the whole RL community to eventually address real-worldroduction and loads, and grid topology denoted byThe
challenges for critical systemss|[4]. score function gave incentives to optimize the margins through
In line with those recent development and in order tall lines, in order to maximize the overall residual grid capacity
foster further advances both within the power system and RLCg, given power lines capacitiémax;, aka thermal limits:
communities, we open-sourced a new platform to build and _
run power system synthetic environments to further develop Margin () = max 0;1 .||(t) 8l2L L
and benchmark new controllers for continuous near-real time Imax
operations. We indeed built and released a rst IEEE14 1o manage the grid, an agent could only use topological
environment test case upon which we organized a competitigtions inA on linesL and substationSub in that challenge,
Learning to run a Power Network (LZRPN) with an emphasighile meeting further operational constraints on actions and
on the challenging use of topological exibilities and the safetyyerioads. Some actions could be illegal, violating some
robustness requirement. The L2RPN competition which vperational rules further described in Secfion 111, or result in
will present and analyze here, takes some inspiration frofdiverging power ow computation, most likely due to some
the Learning to run [[14] competition, whose goal was tgojtage issues. Choosing an illegal action resulted in a null
learn a controller of a human body to walk and run. This wagore at that time-step. To assess an agent performance, the

an opportunity for bio mechanical researchers to successfuiiflowing score at time-stepwas used as a proxy for Cg :
address their problem together with the RL community.

The following paper is organized as follows: rst we present " , )

an overview of the objective and results of this rst L2RPN <0 if illegal action or divergence
competition. We further review the design and modelling ofSC0T&t) = . Colt) = P f (Margin | (1))
the related test environment. We then propose a conceptual I=1
Markov Decision Process framework to analyze the nature Ovaery line somehow contribute to the real-time power gnd
the problem for a given test environment. Finally we descrilz%pacity’ represented by the sum in the score. But already
the results through a comparative analysis of the best submitigglded lines should affect more the residual capacity of the
agents and other baselines, and give conclusions. grid as they soon become bottlenecks to transmit more ows.
This is why more value should be given on increasing the
margins of already loaded lines, while increasing the margin

a) Challenge overview:This rst LZRPN competition of 3 line not very loaded does not add up to the overall
ran over 6 weeks starting on May 2019 over the Codal%lapacity. We chosé (x) =1 (1 x)2 shown in Figure
challenge platform. It was based on the pypownét [8] OPEMi in that prospect. Optimizing Cg eventually contributes to
sourced platforff) relying on openGym RL framework. 100 minimizing power losses on the grid, smoothing the power line
participants signed in, 15 of which were particularly activgsage to avoid materials aging too quickly, and maximizing
with many submissions every week. Figlirg 1a showed thepe grid exibility which are all today's challenges for power
best participants who all achieved interesting and successé%s in most developed countries.
scores, with a mix of RL, Machine Learning (ML), expert Finally, and most importantly, overloadv, (that happen
system and tree search approaches we comment in sgdtioRyMeni, > = imax ) had to be solved dynamically to avoid line
They all succeeded in beating simple baselines used to desigftonnection and further cascading failures. Any cascading
the challenge, and RL approaches achieved the best resuligjjure resulted in a game over and a null score for a scenario
S, putting a strong penalty on not being secure:

8

)

II. THEL2ZRPNCOMPETITION

[ momerr ] . .
ENCE. <0 if game-over during s
1 LebronJames (Geirina) 33375, 34837 (13 Scords) = ] FI[ (3)

Scoreg(t); otherwise

2 learning_RL (lowa State U.) g3573: 11
3 Stephen_Curry (Geirina) t=0
Formalizing the score objective as a maximization problem of
positive gains allows us to easily de ne a penalty as a null
; score if some rules of the environment are violated.
(a) Leaderboard (b) Score function f(Margin b) Evaluation: Along the competition, participants could
Fig. 1. [T& Final leaderboard of the L2RPN competition with cumulatedUbmit their agent on the Codalab platfﬁ}rto be tested
scores and computation tinfe:] 1b Instantaneous line margin score functioon unseen validation scenarios. A score was computed for
each scenario and revealed to the participants, in addition
The goal of the competition was to operate the power grig the time-step of game over if one occurred. At the end
in real-time over several days at a 5 minute time-resolutiog the competition, participants were assessed on new 10

More precisely, the aim was to manage the power OWs secret test scenarios similarly chosen, as described in Section
(in Amperes) at every time-step given injectionsx, aka

(RTE)

00 02 04 06 08
Margin on line | (% of therma it — negative margin = overfiow)

2The challenge has been re-enacted and is open for post-challenge submis-
1GitHub for pypownet framework: https://github.com/MarvinLer/pypownesions af https://competitions.codalab.org/competitions/20767
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[V] with no other information than their cumulative score. a “do nothing” (DN) agent that remains in the reference
Finally, to re ect one main characteristic of real-time op-  topology s and which is already robust most of
erations for which time is limited, resulting in a trade-off the time, much better actually than taking random, and
between exploration and exploitation, participants would only  mostly stupid, actions.

get a score if they managed to nish their scenario within an a single topology agent (DN, which is a DN agent
allocated 20-minute time budget as shown on Fidure la. It running in a constant topology distinct from yef .

was calibrated as being 10 times the running time of the most a greedy (GR) agent that simulate do-nothing and all
simple baseline: a do-nothing (DN) agent. Expert Systems unitary actions at a given time-step, and take the most
and tree-search approaches appeared to be slow, since theyimmediately bene cial one.

relied more extensively on simulations, and had to limit their These agents can nish all together most scenarios, while
exploration to meet the time constraint. highlighting hard to complete ones. Let's now describe in more
c) Bene ts of a ChallengeWhile reproducibility is a hot details the different steps of the challenge design.
issue for scienti c research and further model deployment, a) Choosing a Power Grid and de ne topology:
a challenge format looks appealing to avoid some pitfall§o pe realistic, we rst chose a grid among common IEEE
Indeed, a challenge acts as a benchmark whose goal ispéfver grids. For that rst challenge, we chose a minimalist
decouple the problem modeling from a solver implementatiogid to better ensure feasibility and help analysis, but yet a
Compared to the ne tuning of ones own method, a challenggiq for which topological actions could still be useful to
aims at giving equal chance to every eld expert to tunganage it. Such a grid needed to be meshed with several
its solution in a given time slot and compare against ongectrical paths. We hence chose the IEEE14 grid as it is a
another. Its success also depends on the clarity of the submitigskhed grid with 2 West and East corridors between a meshed
problem, on the ergonomy and robustness of its platforgoyth Transmission Grid and a meshed North Distribution
on the transparency of its results, with an intrinsic need efrig. Even with only 14 substations, the number of potential
reproducibility to faithfully deliver ones score and reliablyoyerall con gurations, hence the combination of actions, is
announce the winners. Finally, winners had to open-sourgemendous. For such a size, we however did not consider the
their code to obtain the price, further enforcing reproducibilityyccurrence of contingencies and maintenance since it will most
often lead to infeasibilities. Overloads were only the result of
IIl. CHALLENGE DESIGN peak productions or peak loads in certain areas of the grid.

The dif culty of setting up this kind of challenge lies in the The reference topologys is the base case topology,
fact that one has to design a whole synthetic and interactfydly meshed, with every lines in service and single electrical
environment to test controllers (like a video game), and not jU&de per substations. However, up to two electrical nodes are

a xed dataset. We designed it following 3 guiding principlesP0SSible per substation, modeled as a 2-bus bar.

1) Realism : the environment should represent real-wor, %Eht?et?)?(t)\:\?(?{irfgz _be changed by actiangt) 2 A, that

power system operational constraints and distributions. . ) o ) i

2) Feasibility : solutions should exist to nish scenarios ~ Binary Line switchinga (2%° possible actions) .
under the available actions given game over conditions. ng ZE’f‘ﬁr switching of elements at a substatiags,

3) Interest : harder scenarios should be challenging to nish (2 ) for 20 lines and 16 injections
and most scenarios should be complex to optimize. There are as many actions as there are topology con gura-

There is a natural trade-off in making a game interestiﬁ&jns' I_Even_tua_llyz the number_ of _reachable con ggrations ata
and feasible: a most interesting game will more likely be mofven time is limited by considering some operational rules.
dif cult with potential feasibility issues arising.

Now a Grid World,aka an environment for a power grid,
is the combination of the following components: o (v pT——— u 3

A power grid (with substations and powerlines of differ Sl \ M "
ent characteristics) and a grid topology ; s
Real-time injectionx(t), next time-step forecastgt+1) WM :
Lines Capacitiesmax; and additional operational rules Jecaner |
Events such as maintenance and contingencies

ion Grid |

The power ows i|(t) are computed by a power- ow
SImUIato.r'The platform then allows sor_ne mterach_ons for aFrilg. 2. a) IEEE14 Grid and production localization. b) Two existing electrical
agent with that environment through actiangt). Participants ¢oridors between Transmission and Distribution Grids.
had the option to simulate the effect of their action before
choosing one, but using some computation time budget. To b) Generating Injections x(t) and Forecasigt+1):
assess how feasible and interesting an environment is While the IEEE 14 grid only had initially thermal production,

agents, we de ned the following simple baseline agents : we introduce renewable wind and solar plants as depicted
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on Figure[? to better represents today's energy mix amN baselines (see Tabé 1) solv@% of the overloads.
dynamics to consider managing resulting issues. The total loBldis demonstrates that our game is both feasible, and has
consumption pro le follows the French consumption one ansbme dif cult interesting situations (following our guiding
individual loads are computed given a constant key factprinciples). Also, the GR baseline does not perform well
from the original IEEE case on Figufg 3. Solar and windn all scenarios : this agent tends to get stuck in bad local
power also follow French related distribution with correlationson gurations.
between wind and solar. The nuclear power plant is a baseloadrinally, real-world problems get complex because of oper-
slowly varying and the thermal power plant compensates fational constraints.We choose to model the following ones:
the remaining production required for balancing (see Fighre 3).  reaction time — time to react to an overload before the
For this Challenge, we restricted the distribution of injeCtionS line get disconnected by protectionS, 2 time_steps here.
to be representative of winter months over which we observe activation time — there is a maximum number of actions
peak loads. Next time frame forecast where also provided for that a human or a technology can performed in a given
injeCtionSX with 5% gaUSSian noise Uncertainty. time period, one action per substation here.

recovery time (cooldown) — due to physical properties of

the assets, there is some time after activation before a

exibility can be reactivated, set to 3 time-steps here.

You can look at exibilities as a kind of budget. When you
use one, you consume part of your budget before recovering it
some time after. This induces some credit assignment problem.
Let's now formalize the whole problem under those settings
with the generic framework of Markov Decision Processes.

Fig. 3. a) Production, thermal and renewable, pro les over a typical month IV. PROBLEM FORMALIZATION
of January. b) Load pro les, all similar modulo a proportional factor. Markov Decision Processes (MDPﬂ Eare useful and gen-

eral abstractions to solve a number of problems in optimization
and control. We decide to further formalize our problem here
using this framework, which will help determine the nature
of the problem under different settings. An MDP is generally
represented by a tuplsS; A; P;r; i with:
S the state space of observations from the environment.
A the action space, the potential agent interactions with
the environment.
P the stochastic transition functige(s(t + 1) js(t); a(t))

Fig. 4. Number of overloads per day and hours over 50 monthly representative Wthh CompUt_eS the system dynamlcs. It de nes a Marko-
scenarios. Overloads mainly appear on weekdays at peak load hours or under vian assumption.

peak solar production around noon on the distribution grid. r(t) = r(s(t); a(t)) the immediate reward function.
he policy determines the next actia(t+1) as a function
s(t) andr(t). The policy can adapt itself (by reinforcement

¢) Line capacities imax and operational rules:

The second part of the game design was about setting u
the right thermal limits (no thermal limits are given for thé®' S{t e , 4
IEEE14 case) so that some overloads appear, not all belﬁarm_ng) to maximize the expectation (over all possible tra-
easily solvable, but many of them that can be solved by Igctories) of this function:
least a baseline to remain feasible. From the grid structure N
perspective, only 2 electrical corridors exists as illustrated on G(t) = k t (k) (4)
Figure[2. We cannot allow both of them being overloaded K=t+1

at the same time, since there will not exist any more patq‘| _ )
where 2 [0;1] is the discount rate.

to reroute electricity with topology to relieve all overloads. L2RPN bi ; I ‘ MDP (Fi
We hence chose to preferably constrain line capacities on Hur L2k problem is actually a two-factor (Figure
, & special case of MDP in which the st&és a quadruplet:

West Corridor (buseg! 5! 6! 13), while keeping spatial
consistency for thermal limits overall from a grid development ~ : unobserved in uences on inpuss.
perspective. Overloads eventually appear 3% of the time over X: observed inputs of the system, not in uenced by the
those lines in the scenarios running DN agent. Other lines had actions of the agent.
their capacities rated above the max power ow observe inthe ~ : other observed inputs of the system, in uenced by the
reference topo|ogy' actions of the agent.

To make the game more interesting, we also want to have a Y: observed outputs of the systesn= F(x; ).
spread distribution on the time of occurrence of overloads asFunctionF speci es the system of interest and y is essen-
shown on Figurg]4. Running an ensemble of expertly selectiéally here power owsi; and overload©v;. F is a function of
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two factors x and (injections and topology in our case). Theoracle approach to derive a near upper-bound for the scores,
“observed inputsX may or may not be organized in a timeto better assess the optimization gap of the agents.

series. In our case they are. Injections are continuous time- a) Validation and test scenariosin order to select in-
series. For , it is only changing under limited agent actiongeresting scenarios, we tried to combine multiple criteria that
and some rare events such as contingencies and maintenaweee identically set for both validation and test scenarios:

The agent's actions only in uence. Although there are
many ways in which (t); x(t); y(t) could inuence (t+1)
variables, we only considered the following:

x I x:injections are timeseries.

! : agent's "position” (t + 1) is constrained by
past positions (t) given the limited action ruleje facto
limiting the freedom of the agent to in uence y.

y!
or cascading failure, hence in uencing the topology .
I a: recovery time constrains future actions.

Without operational constraints and robustness considera-
tion of cascading failures, the problem is mostly an instance

of the contextual bandit more speci c case on Figure 5 (on
x(t) ! x(t+1)) under which more speci c algorithm than RL
can be preferred and perform quite well. Adding! by

limiting instantaneous actions makes it a regular RL problem.

Our platform could actually run this latter setting as easy

mode to make an agent's training easier at rst. However

the problem we proposed in this rst challenge, duard

: overloaded ows can lead to line disconnections,

Dif culty levels: dif culty ranges from easy (no overload

at all for the DN agent) to hard (no known solution has
been found using our ensemble of Didgent baseline).

It reduces the likeliness of having tie contestants.
Diverse tasks: some scenarios focus on handling over-
loads in the morning, while others test evening peak
consumption management. In a scenario, no overload
appeatrs, to test agents does not react randomly. In others,
overloads vanish naturally, to test agents do not overreact.
Diverse context: we include variability by changing the
day of the week of the scenarios, to make sure the
powergrid can be handled for all days of the week, and
not only at some very restrictive times.

Diverse horizons: we nally have scenarios of different
length, varying from 1 day (288 time-steps) to 3 days (864
time-steps), to test agents in different kind of settings:
longer scenarios favor stable agents with longer horizon,
shorter scenarios favor greedy agents.

Those scenarios were mainly selected to test the robustness

ly

mode, already involved some more complexity as depicted & agents, that is their ability to .nish a g.iven scenario.. How-
Figure[5. Successful approaches in the easy mode would RYEN _be5|de be_lng robL_Jst, participants still _had to continuously
necessarily work in the hard mode, especially since it involv@®timize the grid margins. Let's now describe the best agents

robustness issues in the latter case.

Fig. 5. a) Contextual Bandit frameworlb) L2RPN MDP formalization.

and examine their behavior on the test scenarios.

b) Agent Description:From Figure[ Ta, we can see that
only the groups called “Lebron James” (LB), “LearningRL"
(LR) and “Stephan Curry” (2nd team from Geirina, so we only
consider LB) managed to nish all test scenarios, with ML +
RL approaches. Both codes are open-source and referenced on
the challenge Websi@ “Kamikaze” (KM, ML approach) and
“Smart Dispatcher” (SD, Expert system + greedy validation)
each failed on one, whereas they previously managed all
validation scenarios. “Menardpr” (MD, greedy tree search
approach) failed on one, on both test and validation scenarios.
Winners were less computationally intensive at test time,
thanks to Machine Learning, while also being more effcicient,
making them relevant in a setting of real-time decision making.

Comparing LB and LR from a code analysis, LR appeared

These causal diagrams are hence useful for understandfd@€ the only participant to never query the simulate function
the problem proposed. It helps the designer anticipate if mdg_.vahdate or explore additional actions at test time: this is
eling a new constraint will change the nature and complexity 8¥it€ an achievement to only rely on what the agent learnt, and
the problem and it helps the participant select the approprié'EHSt it. Its model was based on the actor critic (A3C) algorithm

class of methods to solve it. In particular, ML and RL metho

indeed appeared suited for this rst challenge as expected.

V. RESULT ANALYSIS

d41]. This is an architecture with two main components, a

policy network (actor) and a value network (critic). A3C
aim at learning a policy function directly, through the actor
module. The critic module then criticize the actor given the
new state value after taking an action, to adjust and improve its

We now review the challenge results, by rst describingepayior. Actor and critic modules are learnt asynchronously
the properties of the scenarios on which participants Wel6 nooling multiple workers that learn independently and

tested, and giving a description of the best agents. Then

Wprove a global agent.

analyze the agents behavior on these and eventually present a
post-analysis of their performance. Finally we will propose an3Benchmark competition & github of winners |at [2rpn.chalearn.org
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LB agent on the other hand combined an RL model based
on a dueling DQN algorithmi_[17], coupled to a set of actions
selected through extended prior analysis and imitation learn-
ing. Dueling DQN is most similar to DQN [10] except that the
neural network architecture explicitly try to encode separately
at its core a state value function and an action advantage
function, later combined to better estimate the Q-value.
In addition, LB uses few expert rules, especially "don't
do anything if all your margins are good enough, below a
threshold of 80%”, and make extensive use of the simulate
function when deciding on taking an action, to strongly
validate a set of suggested action. This is representative mg 7. Agent behavior over validation scenario 3 showing the depth of agent
how operators have been doing until today. Their approachaigions at a given time-step, 0 meaning the agent is in the reference topology
closer to an assistant: an RL model suggests some actions and

an expert model make a cautious choice among them and theLB h her hand did . vsi
ones he knows, validating with a simulator. team on the other hand did an extensive analysis on

in uential topologies on a batch of sampled grid states to
initialize their learning. At the end, they used quite a diverse
set of assets. Figufg 6 summarizes the number and diversity
of actions agents used on test scenarios.

d) Behavior analysis :Looking at agent actions in real-
time from Figurg ¥ on a test scenario, we can detect different
kinds of behavior. SD is indeed doing lots of actions, trying
to optimize the score continuously, but somehow going back
and forth erratically when the grid is loaded: overloads might
be appearing due to its actions. LB is a pretty stable agent,
anticipating soon enough potential overloads through its expert

Fig. 6. Number of actions used at different substations (red) or lines (bluélxle' However its topology .Seem.s to always .be drifting from
e reference topology which might be detrimental on long

ordered by indices, for different agents and our oracle over test scenariost ) : ) ! : .
scenarios. Finally, LR is also quite stable due to its small action

c) Agents action spaceAll participants tried with dif- space but has the ability to go back and forth. Extended Al
ferent strategies to reduce the action space to exploreagent behavior analysis will be conducted in future works, as
rst. SD relied on its operator's expertise to identify relevantt is an emerging eld[[13] with new tools being released|[12].
substations and lines to test on, still using a diverse set of asseté/e eventually ran an additional post analysis experiment on
with selected topologies. MD only focused on line switchintprger batch of monthly scenarios given for training. It showed
to meet the time constraint with a tree search approadhat all agents are still failing on several scenarios (LB: 5 fails,
However, most participants let aside line switching, sometimé®: 11 fails, SD: 9 fails), highlighting some instabilities on the
an interesting option when no overloads exist to reroute sonogg term. Scenario 37 appeared especially dif cult with no
ows, but often detrimental when the grid is overloaded. agent succeeding. We should hence aposteriori adjust or aug-

LR also used some domain knowledge over the symm@@ent our selection criteria to develop a more comprehensive
tries in a substation to reduce the number of true actiognchmark of this task. Also, beyond robustness, the challenge
More interestingly, they started their exploration from scratdhas also about continuously optimizing the ows on the grid.
and learnt robust actions automatically through a curriculum €) Revised scores with oracle baselintn the short
learning. They indeed started to learn in an easy mode (éloration of the competition, participants mainly focused on
game over), upsampling the scenarios to quickly see mdheir agent robustness, as a single gameover prevented them
diverse situations. They somehow already learnt useless #om winning. From the behavior analysis, agents do not
tions and potentially useful actions to route the ows. The@ppear to take many actions over a scenario, except from SD
then switched to the hard mode with the appropriate tinggent, which might indicate that agents did not try to optimize
resolution to learn managing overloads and being robustttte ows beside avoiding overloads. To assess how good they
them. They used their own reward function when learning ®id on this second task, we need to de ne an upper-bound
penalize strongly on overloads when occurring, different frofaseline to get a better idea of what a good score should be.
our score in (2). Our score is not a good reward function While imperfect information is given to the participants
to learn from in that prospect, as its gradient, and hence taeng the game as they don't know yet the future, as organizers
learning signal, is null in the overload regime. They eventuallye can make use of the full scenario information to compute
converged to only act on two substations, a bit restrictive. Thas oracle baseline, our upper-bound. For our method, we rely
might be changed by relaxing their reward function. on the connection there exists between topology con guration
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transitions in dashed green. The oracle optimal path (in red) misses a m

h : . - nts, compared to an oracle with
immediate reward ats as no direct transition is allowed betweenand 3.

% Selected unitary actions at subs . . )

lines for oracle. In bold, the ones us; p(_)lnts. Ther(_e still exists an op-

previsously for thermal limit designiMization gap to improve on.
TABLE |

and topological action: given one action we can deduce the
topology con guration we reach, knowing which con guration

to reach to get some reward we can deduce the necess@tichmarf This highlights that controlling the topology still

action. We deC|de(_3I to run test scenarios ungler _thousands(émains a hard problem given a huge action space requiring
topology con gurations in parallel (not all, which is too hardgts of exploration. It also challenges us as organizers to offer
computationally) to later identify what would have been veny,gre representative scores that will give more incentives to

good topologies at a given time and infer the preferred courgg, participants to perform better on a related task.
of actions. Ultimately, it is framed as a longest path problem

as on Figurg 8. Our method can be decomposed in 5 steps: VI. CONCLUSIONS
1) De ne a dictionary of interesting unitary actior3, The challenge was successful in addressing safety consider-
from n unitary selected assets as on Tdble | ations and was necessary to open a new research avenue for a

2) Identify all combinations oD, actions to create the broad community, extended to Machine Learning researchers.

oracle action spac@oace and related topology con- It demonstrated that developing topological controllers for
guration spaceS( )orace When applied to ¢ . A real-time decision making is indeed possible, especially when

topology can ben action away from the reference oneusing reinforcement learning. Framing the problem as a two-
3) Apply all 2 S( )orace independently and run themfactor MDP allowed us to also expose the dif culties faced

in parallel on scenarios to compute the reward of eaé]y reinforcement Iearning solutions to such control problems.
conguration at each time-step t. This results inThe diversity of submissions and behaviors helped us ap-
directed chain& with edgeseg (t) = reward( ;t) preciate thepros and consof each approach. Evaluating the
4) From allfG g, build the overall connex grap® of pos- Participants' performance pushed us to de ne new interesting
sible topology trajectories, given allowed topology tranbaselines and scoring metrics for future research and challenge
sitions from operational rule. Add edges between reaciesigns. Our post-challenge analyses revealed both the feasi-
able con gurations (s, b): € ,: ,)(t) = reward( p;t). bility of such approaches and the important gap to optimality,
5) Compute the best score through the longest path Barticularly forcontinuouspower ow optimization, giving us
the directed acyclic grapts and determine the relatedan incentive to take the design of a new benchmark to the next
course of action$a(t)gi=o .1 2 Aoracle - level, including scaling up the dimensions of the grid.

Our score is always greater than all agents while respectingknowledgements
the operational rules, effectively de ning on upper-bound. To
determine how good other agents did, we de ne a revised SCO|
taking DN as a zero-reference score (computed in easy m
considering the optimization task only), oracle as a max:

Many people have contributed to the design and implementation of the
%PN challenge. We would like to acknowledge the contributions of Marc
o0zgawa, Kimang Khun, Joao Arajo, Marc Schoenauer, Patrick Panciatici,
Olivier Pietquin, and Gabriel Dulac-Arnold. The challenge is running on the

s _ Scoreagem Scorepy 5 Codalab platform, administered by Universit Paris-Saclay and maintained by
COMeormalized = SCOreyace  SCOrény ®) CKCollab LLC, with primary developers Eric Carmichael and Tyler Thomas
The revised scores in Taljle | suggest that there still exists a gap REFERENCES

b_etween our Or_ade upper-bound and the _beSt submitted ager$-Rr. Bacher and H. Glavitsch. Network topology optimization with

Figure[6 highlights that our oracle continuously took some  security constraintslEEE Trans. Power Syst., vol. 1, no, 4986.

actions, every 2to 3 timesteps on average, as opposed to otlf%r!\'- Brown_and T. _Sandholm. Safe and nested subgame solving for
Thi that agents did not do quite well on thi imperfect-information gamesNIPS 2017.

agents. IS conrms that ag q ?3] B. Donnot, I. Guyon, and al. Anticipating contingencies in power grids

optimizing task. Thus we reopened the challenge test case as ausing fast neural net screeningEEE WCC| 2018.
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