
Catala: A Programming Language for the Law

DENIS MERIGOUX, Inria, France
NICOLAS CHATAING, Inria, ENS Paris, France
JONATHAN PROTZENKO,Microsoft Research, USA

Law at large underpins modern society, codifying and governing many aspects of citizens’ daily lives. Often-

times, law is subject to interpretation, debate and challenges throughout various courts and jurisdictions. But

in some other areas, law leaves little room for interpretation, and essentially aims to rigorously describe a

computation, a decision procedure or, simply said, an algorithm.

Unfortunately, prose remains a woefully inadequate tool for the job. The lack of formalism leaves room for

ambiguities; the structure of legal statutes, with many paragraphs and sub-sections spread across multiple

pages, makes it hard to compute the intended outcome of the algorithm underlying a given text; and, as with

any other piece of poorly-specified critical software, the use of informal, natural language leaves corner cases

unaddressed.

We introduceCatala, a new programming language that we specifically designed to allow a straightforward

and systematic translation of statutory law into an executable implementation. Notably, Catala makes it

natural and easy to express the general case / exceptions logic that permeates statutory law. Catala aims to

bring together lawyers and programmers through a shared medium, which together they can understand, edit

and evolve, bridging a gap that too often results in dramatically incorrect implementations of the law. We

have implemented a compiler for Catala, and have proven the correctness of its core compilation steps using

the F
★
proof assistant.

We evaluate Catala on several legal texts that are algorithms in disguise, notably section 121 of the US

federal income tax and the byzantine French family benefits; in doing so, we uncover a bug in the official

implementation of the French benefits. We observe as a consequence of the formalization process that using

Catala enables rich interactions between lawyers and programmers, leading to a greater understanding of the

original legislative intent, while producing a correct-by-construction executable specification reusable by the

greater software ecosystem. Doing so, Catala increases trust in legal institutions, and mitigates the risk of

societal damage due to incorrect implementations of the law.

CCS Concepts: • Software and its engineering → Domain specific languages; Formal language defini-
tions; • Theory of computation→ Programming logic; • Applied computing→ Law.

Additional Key Words and Phrases: law, domain specific language, legal expert systems

1 INTRODUCTION
We now know that since at least 2000 B.C.E. and the Code of Ur-Nammu [49], various societies

have attempted to edict, codify and record their governing principles, customs and rules in a set of

legal texts – the law. Nowadays, most aspects of one’s daily life are regulated by a set of laws or

another, ranging from family law, tax law, criminal law, to maritime laws, business laws or civil

rights law. No law is set in stone; laws are, over time, amended, revoked and modified by legislative

bodies. The resulting legal texts eventually reflect the complexity of the process and embody the

centuries of practice, debates, power struggles and political compromises between various parties.

The practice of law thus oftentimes requires substantial human input. First, to navigate the

patchwork of exceptions, amendments, statutes and jurisprudence relevant to a given case. Second,

to fully appreciate and identify the situation at play; understand whether one party falls in a

given category or another; and generally classify and categorize, in order to interpret a real-world

situation into something the law can talk about.

Authors’ addresses: Denis Merigoux, denis.merigoux@inria.fr, Inria, France; Nicolas Chataing, nicolas.chataing@ens.fr,

Inria, ENS Paris, France; Jonathan Protzenko, Microsoft Research, USA, protz@microsoft.com.

2 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

This latter aspect is perhaps the greatest challenge for a computer scientist: a general classification

system remains an elusive prospect when so much human judgement and appreciation is involved.

Fortunately, a subset of the law, called computational law or sometimes rules as code, concerns
itself with situations where entities are well-defined, and where human appreciation, judgement

or interpretation are not generally expected. Examples of computational law include, but are not

limited to: tax law, family benefits, pension computations, monetary penalties and private billing

contracts. All of these are algorithms in disguise: the law (roughly) defines a function that produces

outcomes based on a set of inputs.

As such, onemight think computational lawwould be easily translatable into a computer program.

Unfortunately, formidable challenges remain. First, as mentioned above, the law is the result of

a centuries-long process: its convoluted structure demands tremendous expertise and training

to successfully navigate and understand, something that a computer programmer may not have.

Second, the language in which legal statutes are drafted is so different from existing programming

languages that a tremendous gap remains between the legal text and its implementation, leaving the

door open for discrepancies, divergence and eventual bugs, all with dramatic societal consequences.

Examples abound. In France, the military’s payroll computation involves 174 different bonuses

and supplemental compensations. Three successive attempts were made to rewrite and modernize

the military paycheck infrastructure; but with a complete disconnect between the military statutes

and the implementation teams that were contracted, the system had to be scrapped [35]. Software

engineering failures are perhaps a fact of life in the IT world; but in this particular case, actual

humans bore the consequences of the failure, with military spouses receiving a 3-cent paycheck, or

learning years later that they owe astronomical amounts to the French state. Perhaps more relevant

to the current news, the US government issued a decree intended to provide financial relief to US

taxpayers whose personal economic situation had been affected by the Covid-19 pandemic. Owing

to an incorrect implementation by the Internal Revenue Service (IRS), nearly one million Americans

received an incorrect Economic Impact Payment (EIP), or none at all [16].

Both examples are similar, in that a seemingly pure engineering failure turns out to have dramatic

consequences in terms of human livelihoods. When a family is at the mercy of the next paycheck

or EIP, a bug in those systems could mean bankruptcy. In our view, these is no doubt that these

systems are yet another flavor of critical software.

A natural thought is perhaps to try to simplify the law itself. Unfortunately, this recurrent theme

of the political discourse often conflicts with the political reality that requires compromise and

fined-grained distinctions. Hence, the authors do not anticipate a drastic improvement around the

world concerning legal complexity. Therefore, our only hope for improvement lies on the side of

programming languages and tools.

Tax law provides a quintessential example. While many of the implementations around the world

are shrouded in secrecy, the public occasionally gets a glimpse of the underlying infrastructure.

Recently, Merigoux et al. [32] reverse-engineered the computation of the French income tax, only

to discover that the tax returns of an entire nation were processed using an antiquated system

designed in 1990, relying on 80,000 lines of code written in a custom, in-house language, along

with 6,000 lines of hand-written C directly manipulating tens of thousands of global variables. This

particular situation highlights the perils of using the wrong tool for the job: inability to evolve,

resulting in hand-written C patch-ups; exotic semantics which make reproducing the computation

extremely challenging; and a lack of accountability, as the cryptic in-house language cannot be

audited by anyone, except by the handful of experts who maintain it. This is by no means a “French

exception”: owing to an infrastructure designed while Kennedy was still president, the IRS recently

handed over $300,000,000’s worth of fraudulent refunds to taxpayers [3]. The rewrite, decades in

planning, keeps being pushed further away in the future [13].

Catala: A Programming Language for the Law 3

In this work, we propose a new language,Catala, tailored specifically for the purpose of faithfully,
crisply translating computational law into executable specifications. Catala is designed to follow

the existing structure of legal statutes, enabling a one-to-one correspondence between a legal

paragraph and its corresponding translation in Catala. Under the hood, Catala uses prioritized

default logic [5]; to the best of our knowledge, Catala is the first instance of a programming

language designed with this logic as its core system. Catala has clear semantics, and compiles to a

generic lambda-calculus that can then be translated to any existing language. We formalize the

compilation scheme of Catala with F
★
and show that it is correct. In doing so, we bridge the gap

between legal statutes and their implementation; we avoid the in-house language trap; and we

provide a solid theoretical foundation to audit, reproduce, evaluate and reuse computational parts

of the law. Our evaluation, which includes user studies, shows that Catala can successfully express

complex sections of the US Internal Revenue Code and the French family benefits computation.

The benefits of using Catala are many: lawmakers and lawyers are given a formal language

that accurately captures their intent and faithfully mirrors the prose; programmers can derive and

distribute a canonical implementation, compiled to the programming language of their choice;

citizens can audit, understand and evaluate computational parts of the law; and advocacy groups

can shed more light on oftentimes obscure, yet essential, parts of civil society.

2 BACKGROUND ON LEGAL TEXTS & THEIR FORMALIZATION
Legal statutes are written in a style that can be confounding for a computer scientist. While a

program’s control-flow (as a first approximation) makes forward progress, statutes frequently

back-patch previous definitions and re-interpret earlier paragraphs within different contexts. The

result more closely resembles assembly with arbitrary jumps and code rewriting, rather than a

structured language.

To illustrate how the law works, we focus on Section 121 of the US Internal Revenue Code [20],

our running example throughout this paper. Section 121 is written in English, making it accessible

to an international audience without awkward translations; it features every single difficulty we

wish to tackle with Catala; and it is a well-studied and well-understood part of the tax law. We

go through the first few paragraphs of the section; for each of them, we informally describe the

intended meaning, then highlight the surprising semantics of the excerpt. These paragraphs are

contiguous in the law; we intersperse our own commentary in-between the quoted blocks.

2.1 Overview of Section 121
Section 121 is concerned with the “Exclusion of gain from sale of principal residence”. In common

parlance, if the taxpayer sells their residence, they are not required to report the profits as income,

hence making such profits non-taxable. Paragraph (a) defines the exclusion itself.

(a) Exclusion
Gross income shall not include gain from the sale or exchange of property if, during

the 5-year period ending on the date of the sale or exchange, such property has been

owned and used by the taxpayer as the taxpayer’s principal residence for periods

aggregating 2 years or more.

The part of the sentence that follows the “if” enumerates conditions under which this tax exclusion

can be applied. This whole paragraph is valid unless specified otherwise, as we shall see shortly.

4 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

2.2 Out-of-order Definitions
Paragraph (b) immediately proceeds to list limitations, that is, situations in which (a) does not

apply, or needs to be refined. Section 121 thus consists of a general case, (a), followed by a long

enumeration of limitations ranging from (b) to (g). We focus only on (b). The first limitation (b)(1)

sets a maximum for the exclusion, “generally” $250,000. Left implicit is the fact that any proceeds

of the sale beyond that are taxed as regular income.

(b) Limitations
(1) In general
The amount of gain excluded from gross income under subsection (a) with respect

to any sale or exchange shall not exceed $250,000.

We remark that even though (b)(1) is a key piece of information for the application of Section

121, the reader will find it only if they keep going after (a). This is a general feature of legal texts:

relevant information is scattered throughout, and (a) alone is nowhere near enough information to

make a determination of whether the exclusion applies to a taxpayer.

2.3 Backpatching; Exceptions
Entering (b)(2), paragraph (A)modifies (b)(1) in place, stating for “joint returns” (i.e. married couples),

the maximum exclusion can be $500,000.

(A) $500,000 Limitation for certain joint returns
Paragraph (1) shall be applied by substituting “$500,000” for “$250,000” if—

(i) either spouse meets the ownership requirements of subsection (a) with respect to

such property;

(ii) both spouses meet the use requirements of subsection (a) with respect to such

property; and

(iii) neither spouse is ineligible for the benefits of subsection (a) with respect to such

property by reason of paragraph (3).

Several key aspects of paragraph (A) are worth mentioning. First, (A) backpatches paragraph (b)(1);

the law essentially encodes a search-and-replace in its semantics.

Second, (A) overrides a previous general case under specific conditions. In a functional pro-

gramming language, a pattern-match first lists the most specific matching cases, and catches all

remaining cases with a final wildcard. A text of law proceeds in the exact opposite way: the general

case in (a) above is listed first, then followed by limitations that modify the general case under

certain conditions. This is by design: legal statutes routinely follow a “general case first, special

cases later” approach which mirrors the legislator’s intentions.

Third, conditions (i) through (iii) are a conjunction, as indicated by the “and” at the end of (ii).

We note that (iii) contains a forward-reference to (3) which we have not seen yet. (Through our

work, we fortunately have never encountered a circular reference.)

2.4 Re-interpreting
If limitation (A) doesn’t apply, we move on to (B), which essentially stipulates that the exclusion

in (b)(1) should be re-interpreted for each spouse separately as if they were not married; the final
exclusion is then the sum of the two sub-computations.

Catala: A Programming Language for the Law 5

(B) Other joint returns
If such spouses do not meet the requirements of subparagraph (A), the limitation

under paragraph (1) shall be the sum of the limitations under paragraph (1) to which

each spouse would be entitled if such spouses had not been married. For purposes of

the preceding sentence, each spouse shall be treated as owning the property during

the period that either spouse owned the property.

We thus observe that the law is re-entrant and can call itself recursively under different conditions.

This is indicated here by the use of the conditional tense, i.e. “would”.

2.5 Out-of-order Backpatching
In another striking example, (3) cancels the whole exclusion (a) under certain conditions.

(3) Application to only 1 sale or exchange every 2 years
Subsection (a) shall not apply to any sale or exchange by the taxpayer if, during the

2-year period ending on the date of such sale or exchange, there was any other sale

or exchange by the taxpayer to which subsection (a) applied.

Paragraph (3) comes a little further down; a key takeaway is that, for a piece of law, one must

process the entire document; barring that, the reader might be missing a crucial limitation that only

surfaces much later in the text.

2.6 A Final Example
Paragraph (4) concerns the specific case of a surviving spouse that sells the residence within two

years of the death of their spouse, knowing that the conditions from (A) applied (i.e. “returned

true”) right before the date of the death.

(4) Special rule for certain sales by surviving spouses
In the case of a sale or exchange of property by an unmarried individual whose spouse

is deceased on the date of such sale, paragraph (1) shall be applied by substituting

“$500,000” for “$250,000” if such sale occurs not later than 2 years after the date of

death of such spouse and the requirements of paragraph (2)(A) were met immediately

before such date of death.

Paragraph (4) combines several of the complexities we saw above. It not only back-patches (1), but

also recursively calls (2)(A) under a different context, namely, executing (2)(A) at a previous date in
which the situation was different. In functional programming lingo, one might say that there is a

hidden lambda in (2)(A), that binds the date of the sale.

2.7 Formal Insights on Legal Logic
We have now seen how legal statutes are written, the thought process they exhibit, and how one is

generally supposed to interpret them. We wish to emphasize that the concepts described are by no

means specific to tax law or the US legal system: we found the exact same patterns in other parts

of US law and non-US legal systems. Section 121 contains many more paragraphs; however, the

first few we saw above are sufficient to illustrate the challenges in formally describing the law.

The main issue in modeling legal texts therefore lies in their underlying logic, which relies heavily

on the pattern of having a default case followed by exceptions. This nonmonotonic logic is known

as default logic [41]. Several refinements of default logic have been proposed over time; the one

closest to the purposes of the law is known as prioritized default logic [5], wherein default values

6 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

are guarded by justifications, and defaults can be ordered according to their relative precedence.

Lawsky [25] argues that this flavor of default logic is the best suited to expressing the law. We

concur, and adopt prioritized default logic as a foundation for Catala.
In default logic, formulas include defaults, of the form 𝑎 :

®𝑏𝑖/𝑐 , wherein: if formula 𝑎 holds; if the

®𝑏𝑖 are consistent with the set of known facts; then 𝑐 holds. One can think of 𝑎 as the precondition

for 𝑐 , and the
®𝑏𝑖 as a set of exceptions that will prevent the default fact 𝑐 from being applicable.

Prioritized logic adds a strict partial order over defaults, to resolve conflicts when multiple defaults

may be admissible at the same time.

The main design goal of Catala is to provide the design and implementation of a language

tailored for the law, using default logic as its core building block, both in its syntax and semantics.

Catala thus allows lawyers to express the general case / exceptions pattern naturally. We now

informally present Catala.

3 A CATALA TUTORIAL
Our introduction to legal texts in Section 2 mixes informal, high-level overviews of what each

paragraph intends to express, along with excerpts from the law itself. Our English prose is too

informal to express anything precisely; but “legalese” requires a high degree of familiarity with the

law to successfully grasp all of the limitations and compute what may or may not be applicable to

a given taxpayer’s situation.

We now introduce Catala by example, and show how the subtleties of each paragraph can

be handled unambiguously and clearly by Catala. Our guiding principle is twofold: we want to
formally express the intended meaning without being obscured by the verbosity of legal prose;

yet, we wish to remain close to the legal text, so that the formal specification remains in close

correspondence with the reference legal text, and can be understood by lawyers. Catala achieves

this with a dedicated surface language that allows legal experts to follow their usual thinking.

3.1 Metadata: Turning Implicits Into Explicits
Legal prose is very dense, and uses a number of concepts without explicitly defining them in the

text. For instance, in Section 121, the notion of time period is implicit, and so are the various types

of tax returns one might file (individual or joint). Furthermore, entities such as the taxpayers (whom

we will call “Person 1” and “Person 2”) need to be materialized. Finally, for each one of those entities,

there are a number of inputs that are implicitly referred to throughout the legal statute, such as:

time periods in which each Person was occupying the residence as their primary home; whether

there was already a sale in the past two years; and many more, as evidenced by the myriad of

variables involved in (i)-(iii).

Our first task when transcribing legal prose into a formal Catala description is thus to enumerate

all structures, entities and variables relevant to the problem at stake. We provide the definitions

and relationships between variables later on. This is a conscious design choice of Catala: before
even talking about how things are computed, we state what we are talking about. In doing so, we

mimic the behavior of lawyers, who are able to infer what information is relevant based on the

legal text. We call this description of entities the metadata.
1 declaration structure Period:
2 data start content date
3 data end content date
4

5 declaration structure PersonalData:
6 data property_ownership content collection Period
7 data property_usage_as_principal_residence content collection Period

Catala: A Programming Language for the Law 7

8

9 declaration scope Section121SinglePerson:
10 context gain_from_sale_or_exchange_of_property content money
11 context personal content PersonalData
12 context requirements_ownership_met condition
13 context requirements_usage_met condition
14 context requirements_met condition
15 context amount_excluded_from_gross_income_uncapped content money
16 context amount_excluded_from_gross_income content money
17

18 context aggregate_periods_from_last_five_years content duration
19 depends on collection Period

Catala features a number of built-in types. dates are triples of a year, month and a day. Catala
provide syntax for US-centric and non-US-centric input formats. Distinct from date is duration,

the type of a time interval, always expressed as a number of days. If the law introduces durations

such as "two years", it is up to the user to specify how "two years" should be interpreted. Booleans

have type condition. Monetary amounts have type money. The higher-kinded type collection is

also built-in.

The snippet above shows an excerpt from Section 121’s metadata. The first two declarations

declare product types via the structure keyword. The type Period contains two fields, start and

end.

A word about aesthetics: while programmers generally prize compactness of notation, advocating

e.g. point-free-styles or custom operators, non-experts are for the most part puzzled by compact

notations. Our surface syntax was designed in collaboration with lawyers, who confirmed that the

generous keywords improve readability, thus making Catala easier to understand by legal minds.

Line 9 declares Section121SinglePerson, a scope. A key technical device and contribution of

Catala, scopes allow the programmer to follow the law’s structure, revealing the implicit modularity

in legal texts. Scopes are declared in the metadata section: the context keyword indicates that the

value of the field might be determined later, depending on the context. Anticipating on Section 4,

the intuition is that scopes are functions and contexts are their parameters and local variables.

Context variables are declarative; once aCatala program is compiled to a suitable target language,

it is up to the programmer to invoke a given scope with suitable initial values for those context

variables that are known to be inputs of the program; after the Catala program has executed, the

programmer can read from the context variables that they know are outputs of the program. From

the point of view of Catala, there is no difference between input and output variables; but we are

planning a minor syntactic improvement to allow programmers to annotate these variables for

readability and simpler interoperation with hand-written code. If at run-time the program reads

the value of a context variable that was left unspecified by the programmer, execution aborts.

The main purpose of Section 121 is to talk about the gain that a person derived from the sale

of their residence (line 10), of type money. Paragraph (a) implicitly assumes the existence of time

periods of ownership and usage of the residence; we materialize these via the personal field which

holds two collection Periods. These in turn allow us to define whether the ownership and usage

requirements are met (of type condition, lines 12-13). A further condition captures whether all
requirements are met (line 14). The outcome of the law is the amount that can be excluded from

the gross income, of type money (line 16). (The need for an intermediary variable at line 15 becomes

apparent in Section 3.3.) A local helper computes the aggregate number of days in a set of time

periods; the helper takes a single argument of type collection Period (line 18) and, being a local

closure, can capture other context variables.

8 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

3.2 Scopes and Contexts: Declarative Rules and Definitions
We now continue with our formalization of (a) and define the context-dependent variables, as

well as the relationships between them. Catala is declarative: the user relates context variables

together, via the definition keyword, or the rule keyword for conditions. We offer separate syntax

for two reasons. First, for legal minds, conditions and data are different objects and reflecting that

in the surface syntax helps with readability. Second, there is a core semantic difference: booleans

(conditions) are false by default in the law; however, other types of data have no default value.

Internally, Catala desugars rules to definitions equipped with a default value of false (§4.1).

1 scope Section121SinglePerson:
2 rule requirements_ownership_met under condition
3 aggregate_periods_from_last_five_years of personal.property_ownership >=^
4 730 day
5 consequence fulfilled
6 rule requirements_usage_met under condition
7 aggregate_periods_from_last_five_years of
8 personal.property_usage_as_principal_residence >=^ 730 day
9 consequence fulfilled
10 rule requirements_met under condition
11 requirements_ownership_met and requirements_usage_met
12 consequence fulfilled
13 definition amount_excluded_from_gross_income_uncapped equals
14 if requirements_met then gain_from_sale_or_exchange_of_property else $0

Lines 2-4 capture the ownership requirement, by calling the helper aggregate_periods_... with

argument property_ownership, a previously-defined context variable. (The full definition of the

helper, which involves another context variable for the date of sale, is available in the artifact [10].)

Paragraph (a) states “for periods aggregating 2 years or more”: for the purposes of Section 121, and

as defined in Regulation 1.121-1(c)(1), a year is always 365 days. Catala resolves the ambiguity by

simply not offering any built-in notion of yearly duration, and thus makes the law clearer. The ^

suffix of the comparison operator >=^ means that we are comparing durations.

The ownership requirement is “fulfilled” (i.e. defined to true) under a certain condition. This

is our first taste of prioritized default logic expressed through the syntax of Catala: the built-in
default, set to false, is overridden with a rule that has higher priority. This is a simple case and

more complex priorities appear in later sections. However, this example points to a key insight of

Catala: rather than having an arbitrary priority order resolved at run-time between various rules,

we encode priorities statically in the surface syntax of the language, and the pre-order is derived

directly from the syntax tree of rules and definitions. We explain this in depth later on (Section 4.1).

Similarly, lines 5-7 define the usage requirement using the rule keyword to trigger a condition:

the value of requirements_usage_met is false unless the boolean expression at lines 6-7 is true.

One legal subtlety, implicit in (a), is that ownership and usage periods do not have to overlap. The

Catala program makes this explicit by having two collections of time periods.

The requirements are met if both ownership and usage requirements are met (lines 9-11). In that

case, the income gain can be excluded from the income tax (lines 12-13). The latter is defined via

the definition keyword, as rule is reserved for booleans.

We have now formalized Paragraph (a) in Catala. At this stage, if the user fills out the remaining

inputs, such as the gain obtained from the sale of the property, and the various time periods, the

interpreter automatically computes the resulting value for the amount to be excluded from the gross

income. The interpreter does so by performing a control-flow analysis and computing a topological

Catala: A Programming Language for the Law 9

sort of assignments. Cycles are rejected, since the law is not supposed to have dependency cycles.

(Section 4 describes the full semantics of the language.)

We note that a single sentence required us to explicitly declare otherwise implicit concepts, such

as the definition of a year; and to clarify ambiguities, such as whether time periods may overlap.

With this concise example, we observe that the benefits of formalizing a piece of law are the same

as formalizing any piece of critical software: numerous subtleties are resolved, and non-experts are

provided with an explicit, transparent executable specification that obviates the need for an expert

legal interpretation of implicit semantics.

3.3 Split Scopes: Embracing the Structure of the Law
We now move on to limitations (§2.2). A key feature of Catala is that it enables a literate program-

ming style [22], where each paragraph of law is immediately followed by its Catala transcription.

Now that we’re done with (a), we insert a textual copy of the legal prose for (b), then proceed to

transcribe it in Catala.
1 scope Section121SinglePerson:
2 definition gain_cap equals $250,000
3 definition amount_excluded_from_gross_income equals
4 if amount_excluded_from_gross_income_uncapped >=$ gain_cap then gain_cap
5 else amount_excluded_from_gross_income_uncapped

In Paragraph (b)(1), the law overwrites the earlier definition from (a) and re-defines it to be capped

by $250,000. In line with our earlier design choices, we rule out confusion and rely on the auxiliary

variable (the “uncapped” variant), to then compute the final amount excluded from the gross income

(lines 4-8). Out-of-order definitions that are provided at a later phase in the source are an idiomatic

pattern in Catala.

3.4 Complex Usage of the Default Calculus; Exceptions
Before making any further progress, we need to introduce new entities to take into account the

fact that we may now possibly be dealing with a joint return. We introduce a new abstraction or, in

Catala lingo, scope: Section121Return.

1 declaration structure CoupleData:
2 data personal1 content PersonalData
3 data personal2 content PersonalData
4

5 declaration enumeration ReturnType:
6 -- SingleReturn content PersonalData
7 -- JointReturn content CoupleData
8

9 declaration scope Section121Return:
10 context return_data content ReturnType
11 context person1 scope Section121SinglePerson
12 context person2 scope Section121SinglePerson
13 context gain_cap content money

We follow the out-of-order structure of the law; only from here on do we consider the possibility

of a joint return. Having introduced a new level of abstraction, we need to relate the ReturnType to

the persons involved. We do so by introducing new equalities, of which we show the first one.

1 scope Section121Return:
2 definition person1.personal equals match return_data with

10 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

3 -- SingleReturn of personal1 : personal1
4 -- JointReturn of couple : couple.personal1

Having set up a proper notion of joint return, we now turn our attention to (b)(2)(A) (§2.3).

1 scope Section121Return:
2 definition gain_cap equals person1.gain_cap
3 rule paragraph_A_applies under condition
4 (return_data is JointReturn) and
5 (person1.requirements_ownership_met or person2.requirements_ownership_met) and
6 (person1.requirements_usage_met and person2.requirements_usage_met) and
7 (not (paragraph_3_applies of person1.other_section_121a_sale)) and
8 (not (paragraph_3_applies of person2.other_section_121a_sale))
9 consequence fulfilled
10 exception definition gain_cap under condition paragraph_A_applies
11 consequence equals $500,000

Until now, the gain cap was defined to be that of the taxpayer, that is, Person 1 (line 2). We now need

to determine whether the conditions from Paragraph (A) apply (line 3). To that end, we introduce

an intermediary variable, paragraph_A_applies. This variable will be used later on for (B), whose

opening sentence is “if such spouses do not meet the requirements of (A)”.

We now introduce the notion of exception (line 10). In Catala, if, at run-time, more than a single

applicable definition for any context variable applies, program execution aborts with a fatal error. In

the absence of the exception keyword, and in the presence of a joint return that satisfies paragraph

(A), the program would be statically accepted by Catala, but would be rejected at run-time: there

are two definitions for gain_cap, both their conditions hold (true and paragraph_A_applies), and

there is no priority ordering indicating how to resolve the conflict. The exception keyword allows

solving this very issue. The keyword indicates that, in the pre-order of definitions, the definition at

line 10 has a higher priority than the one at 2.

Generally, Catala allows an arbitrary tree of definitions each refined by exceptions, including

exceptions to exceptions (which we have encountered in the law); the rule of thumb remains: only

one single definition should be applicable at a time, and any violation of that rule indicates either

programmer error, or a fatal flaw in the law.

3.5 Recapping
Modeling the law is labor-intensive, owing to all of the implicit assumptions present in what is

seemingly “just legalese”. In our experience, this process is best achieved through pair-programming,

in which a Catala expert transcribes a statute with the help of a legal expert. We thus stop here our

Catala tutorial and defer the full modelization of Section 2 to the artifact [10]. Briefly, modeling

(B) requires introducing a new scope for a two-pass processing that models the re-entrancy (“if

such spouses had not been married”). Modeling the forward-reference to (3) requires introducing a

helper paragraph_3_applies whose definition is provided later on, after Paragraph (3) has been

suitably declared (line 7, above).

As this tutorial wraps up, we look back on all of the language features we presented. While

Catala at first glance resembles a functional language with heavy syntactic sugar, diving into the

subtleties of the law exhibits the need for two features that are not generally found in lambda-calculi.

First, we allow the user to define context variables through a combination of an (optional) default

case, along with an arbitrary number of special cases, either prioritized or non-overlapping. The

theoretical underpinning of this feature is the prioritized default calculus. Second, the out-of-order
nature of definitions means that Catala is entirely declarative, and it is up to the Catala compiler to

compute a suitable dependency order for all the definitions in a given program. Fortunately, the law

Catala: A Programming Language for the Law 11

Scope name 𝑆

Sub-scope instance 𝑆𝑛

Location ℓ ::= 𝑥 scope variable

| 𝑆𝑛[𝑥] sub-scope variable

Type 𝜏 ::= bool | unit base types

| 𝜏 → 𝜏 function type

Expression 𝑒 ::= 𝑥 | true | false | () variable, literals

| _ (𝑥 : 𝜏). 𝑒 | 𝑒 𝑒 _-calculus

| ℓ location

| 𝑑 default term

Default 𝑑 ::= ⟨®𝑒 | 𝑒 :- 𝑒⟩ default term

| ⊛ conflict error term

| ∅ empty error term

Atom 𝑎 ::= def ℓ : 𝜏 = ⟨®𝑒 | 𝑒 :- 𝑒⟩ location definition

| call 𝑆𝑛 sub-scope call

Scope declaration 𝜎 ::= scope 𝑆 : ®𝑎
Program 𝑃 ::= ®𝜎

Fig. 1. The scope language, our first intermediate representation

does not have general recursion, meaning that we do not need to compute fixed points, and do not

risk running into circular definitions. Hence, our language is not Turing-complete, purposefully.

We mentioned earlier (Section 2.7) that we have found both US and French legal systems to

exhibit the same patterns in the way their statutes are drafted. Namely, the general case / exceptions

control-flow; out-of-order declarations; and overrides of one scope into another seem to be universal

features found in all statutes, regardless of the country or even the language they are drafted in.

Based on conversations with S. Lawsky, and a broader assessment of the legal landscape, we thus

posit that Catala captures the fundamentals of legal reasoning.

4 FORMALIZING CATALA
We now formally introduce the semantics and compilation of Catala. Notably, we focus on what

makes Catala special: its default calculus. To that end, we describe a series of compilation steps: we

desugar the concrete syntax to a scope language; we define the semantics of scopes via a translation

to a default calculus; we then finally compile the default calculus to a language equipped with

exceptions, such as OCaml. This last part is where the most crucial compilation steps occur: we

prove its soundness via a mechanization in the F
★
proof assistant.

4.1 From Catala to the Scope Language
The scope language resembles Catala’s user-facing language: the notion of scope is still present;

rules and definitions remain, via a unified def declaration devoid of any syntactic sugar. Perhaps

more importantly, definitions are provided in-order and our usage of default calculus becomes

clear.

Figure 1 presents the syntax of the scope language. We focus on the essence of Catala, i.e. how
to formalize a language with default calculus at its core; to that end, and from this section onwards,

we omit auxiliary features, such as data types, in order to focus on a core calculus.

To avoid carrying an environment, a reference to a sub-scope variable, such as person1.personal

earlier, is modeled as a reference to a sub-scope annotated with a unique identifier, such as

Section121SinglePerson1 .personal. Therefore, locations are either a local variable 𝑥 , or a sub-scope

12 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

variable, of the form 𝑆𝑛[𝑥]. Note that sub-scoping enables scope calls nesting in all generality.

However, we do not allow in our syntax references to sub-scopes’ sub-scopes like 𝑆𝑛[𝑆
′
𝑛′[𝑥]], as

this would unnecessarily complicate our semantics model.

Types and expressions are standard, save for default terms𝑑 of the form ⟨®𝑒𝑖 | 𝑒 ′ :- 𝑒 ′′⟩. This form
resembles default logic terms 𝑎 :

®𝑏𝑖/𝑐 introduced earlier (Section 2.7); the exceptions ®𝑏𝑖 become ®𝑒𝑖 ;
the precondition 𝑎 becomes 𝑒 ′; and the consequence 𝑐 becomes 𝑒 ′′. We adopt the following reduction

semantics for 𝑑 . Each of the exceptions 𝑒𝑖 is evaluated; if two or more are valid (i.e. not of the

form ∅), a conflict error ⊛ is raised. If exactly one exception 𝑒𝑖 is valid, the final result is 𝑒𝑖 . If no

exception is valid, and 𝑒 ′ evaluates to true the final result is 𝑒 ′′. If no exception is valid, and 𝑒 ′

evaluates to false, the final result is ∅. We provide a full formal semantics of default terms in §4.2.

The syntactic form ⟨®𝑒𝑖 | 𝑒 ′ :- 𝑒 ′′⟩ encodes a static tree of priorities, baking the pre-order directly
in the syntax tree of each definition. We thus offer a restricted form of prioritized default logic, in

which each definition is its own world, equipped with a static pre-order.

Atoms 𝑎 either define a new location, gathering all default cases and exceptions in a single place;

or, rules indicate that a sub-scope needs to be called to compute further definitions.

We now explain how to desugar the surface syntax, presented in Section 3, to this scope language.

Syntactic sugar. Table 1 presents rewriting rules, whose transitive closure forms our desugaring.

These rules operate within the surface language; Table 1 abbreviates surface-level keywords for

easier typesetting.

In its full generality, Catala allows exceptions to definitions, followed by an arbitrary nesting

of exceptions to exceptions. This is achieved by a label mechanism: all exceptions and definitions

are labeled, and each exception refers to the definition or exception it overrides. Exceptions to

exceptions are actually found in the law, and while we spared the reader in our earlier tutorial, we

have found actual use-cases where this complex scenario was needed. Exceptions to exceptions

remain rare; the goal of our syntactic sugar is to allow for a more compact notation in common

cases, which later gets translated to a series of fully labeled definitions and exceptions.

After desugaring, definitions and exceptions form a forest, with exactly one root definitions

node for each variable 𝑋 , holding an 𝑛-ary tree of exception nodes.

We start with the desugaring of rule which, as mentioned earlier, is a boolean definition with a

base case of false (i). Definitions without conditions desugar to the trivial true condition (ii).

The formulation of (iiia) allows the user to provide multiple definitions for the same variable

𝑋 without labeling any of them; thanks to (iiia), these are implicitly understood to be a series of

exceptions without a default case. The surface syntax always requires a default to be provided;

internally, the nodefault simply becomes condition true consequence equals ∅.
We provide another alternative to the fully labeled form via (iiib); the rule allows the user to

provide a single base definition, which may then be overridden via a series of exceptions. To that

end, we introduce a unique label 𝐿𝑋 which un-annotated exceptions are understood to refer to (iv).

Materializing the default tree. Equipped with our default expressions 𝑑 , we show how to translate

a scattered series of Catala definitions into a single def rule from the scope language. We write

𝑋, 𝐿⇝ 𝑑 , meaning that the definition of 𝑋 labeled 𝐿, along with all the (transitive) exceptions to

𝐿, collectively translate to 𝑑 . We use an auxiliary helper lookup(𝑋, 𝐿) = 𝐶, 𝐷, ®𝐿𝑖 , meaning that at

label 𝐿, under condition 𝐶 , 𝑋 is defined to be 𝐷 , subject to a series of exceptions labeled 𝐿𝑖 .

Rule D-Label performs the bulk of the work, and gathers the exception labels 𝐿𝑖 ; each of them

translates to a default expression 𝑑𝑖 , all of which appear on the left-hand side of the resulting

translation; if all of the 𝑑𝑖 are empty, the expression evaluates to 𝐷 guarded under condition 𝐶 . As

Catala: A Programming Language for the Law 13

Syntactic sugar . . . rewrites to

(i) rule X under cond. Y cons. fulfilled label L𝑋 def. X equals false (inserted once)
exception L𝑋 def. X under cond. Y cons. equals true

(ii) def. X equals Y def. X under cond. true cons. equals Y

(iiia) def. X . . .
(multiple definitions of X, no exceptions)

label L𝑋 def. X nodefault (inserted once)
exception L𝑋 def. X . . .

(iiib) def. X . . .
(single definition of X)

label L𝑋 def. X . . .

(iv) exception def. X exception L𝑋 def. X

Table 1. Desugaring the surface language into an explicit surface syntax

D-Label

lookup(𝑋, 𝐿) = 𝐶, 𝐷, ®𝐿𝑖 𝑋, 𝐿𝑖 ⇝ 𝑑𝑖

𝑋, 𝐿⇝ ⟨ ®𝑑𝑖 | 𝐶 :- 𝐷⟩

D-EntryPoint

𝑋, 𝐿⇝ ⟨ ®𝑑𝑖 | 𝐶 :- 𝐷⟩

label 𝐿 definition 𝑋 . . .⇝ def 𝑋 = ⟨ ®𝑑𝑖 | 𝐶 :- 𝐷⟩

Fig. 2. Building the default tree and translating surface definitions

an illustration, if no exceptions are to be found, the translation is simply ⟨ | 𝐶 :- 𝐷⟩. Finally, rule
D-EntryPoint states that the translation starts at the root definition nodes.

Reordering definitions. Our final steps consists in dealing with the fact that defs remain unordered.

To that end, we perform two topological sorts. First, for each scope 𝑆 , we collect all definitions and

re-order them according to a local dependency relation →:
𝑦 → 𝑥 if def 𝑥 = . . . 𝑦 . . .

𝑆𝑛 → 𝑥 if def 𝑥 = . . . 𝑆𝑛 [𝑦] . . .
𝑦 → 𝑆𝑛 if def 𝑆𝑛 [𝑥] = . . . 𝑦 . . .

After re-ordering, we obtain a scope 𝑆 where definitions can be processed linearly. Sub-scope

nodes of the form 𝑆𝑛 become calls, to indicate the position at which the sub-scope computation

can be performed, i.e. once its parameters have been filled and before its outputs are needed.

We then topologically sort the scopes themselves to obtain a linearized order. We thus move from

a declarative language to a functional language where programs can be processed in evaluation

order. In both cases, we detect the presence of cycles, and error out. General recursion is not found

in the law, and is likely to indicate an error in modeling. Bounded recursion, which we saw in

Section 2.2, can be manually unrolled to make it apparent.

4.2 From the Scope Language to a Default Calculus
For the next step of our translation, we remove the scope mechanism, replacing defs and calls with
regular _-abstractions and applications. The resulting language, a core lambda calculus equipped

only with default terms, is the default calculus (Figure 3). The typing rules of the default calculus
are standard (Figure 4); we note that the error terms from the default calculus are polymorphic.

Reduction rules. Wepresent small-step operational semantics, of the form 𝑒 −→ 𝑒 ′ . For efficiency,

we describe reduction under a context, using a standard notion of value (Figure 5), which includes

14 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

Type 𝜏 ::= bool | unit boolean and unit types

| 𝜏 → 𝜏 function type

Expression 𝑒 ::= 𝑥 | 𝑠 | true | false | () variable, top-level name, literals

| _ (𝑥 : 𝜏). 𝑒 | 𝑒 𝑒 _-calculus

| 𝑑 default term

Default 𝑑 ::= ⟨®𝑒 | 𝑒 :- 𝑒⟩ default term

| ⊛ conflict error term

| ∅ empty error term

Top-level declaration 𝜎 ::= let 𝑠 = 𝑒

Program 𝑃 ::= ®𝜎

Fig. 3. The default calculus, our second intermediate representation

ConflictError

Γ ⊢ ⊛ : 𝜏

EmptyError

Γ ⊢ ∅ : 𝜏

T-Default

Γ ⊢ 𝑒𝑖 : 𝜏 Γ ⊢ 𝑒just : bool Γ ⊢ 𝑒cons : 𝜏
Γ ⊢ ⟨𝑒1,. . .,𝑒𝑛 | 𝑒just :- 𝑒cons⟩ : 𝜏

Fig. 4. Typing rules for the default calculus

Values 𝑣 ::= _ (𝑥 : 𝜏). 𝑒 functions

| true | false booleans

| ⊛ | ∅ errors

Evaluation 𝐶_ ::= · 𝑒 | 𝑣 · function application evaluation

contexts | ⟨®𝑣 | · :- 𝑒⟩ default justification evaluation

| ⟨®𝑣 | true :- ·⟩ default consequence evaluation

𝐶 ::= 𝐶_ regular contexts

| ⟨®𝑣,·,®𝑒 | 𝑒 :- 𝑒⟩ default exceptions evaluation

Fig. 5. Evaluation contexts for the default calculus

D-Context

𝑒 −→ 𝑒 ′ 𝑒 ′ ∉ {⊛,∅}
𝐶 [𝑒] −→ 𝐶 [𝑒 ′]

D-Beta

(_ (𝑥 : 𝜏). 𝑒) 𝑣 −→ 𝑒 [𝑥 ↦→ 𝑣]

D-ContextConflictError

𝑒 −→ ⊛
𝐶 [𝑒] −→ ⊛

D-ContextEmptyError

𝑒 −→ ∅
𝐶_ [𝑒] −→ ∅

D-DefaultTrueNoExceptions

⟨∅,. . .,∅ | true :- 𝑣⟩ −→ 𝑣

D-DefaultFalseNoExceptions

⟨∅,. . .,∅ | false :- 𝑒⟩ −→ ∅

D-DefaultOneException

𝑣 ≠ ∅
⟨∅,. . .,∅,𝑣,∅,. . .,∅ | 𝑒1 :- 𝑒2⟩ −→ 𝑣

D-DefaultExceptionsConflict

𝑣𝑖 ≠ ∅ 𝑣 𝑗 ≠ ∅
⟨. . .,𝑣𝑖,. . .,𝑣 𝑗,. . . | 𝑒1 :- 𝑒2⟩ −→ ⊛

Fig. 6. Reduction rules for the default calculus

our two types of errors, ⊛ and ∅. We intentionally distinguish regular contexts 𝐶_ from general

contexts 𝐶 .

Figure 6 presents the reduction rules for the default calculus. Rule D-Context follows standard

call-by-value reduction rules for non-error terms; D-Beta needs no further comment. ⊛ is made

Catala: A Programming Language for the Law 15

C-Scope

local_vars(𝑆) = −−−→𝑥 : 𝜏 calls(𝑆) = ®𝑆
local_vars(𝑆𝑖) =

−−−−→
𝑆𝑖 [𝑥] 𝑆, [] ⊢ ®𝑎 ↩→ 𝑒

scope 𝑆 : ®𝑎 ↩→

let 𝑆 (−−−−−−−−−→𝑥 : () → 𝜏) =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
let (

−−−−→
𝑆𝑖 [𝑥]) = (−−−−−−→_ (). ∅) in 𝑒

C-Empty

local_vars(𝑆) = ®𝑥

𝑆,Δ ⊢ [] ↩→ (
−−−−−−−−−→
force(Δ, 𝑥))

C-Def

𝑆, ℓ · Δ ⊢ ®𝑎 ↩→ 𝑒rest

𝑆,Δ ⊢ def ℓ = 𝑒 :: ®𝑎 ↩→
let ℓ = ⟨ℓ () | true :- 𝑒⟩ in 𝑒rest

C-Call

𝑆 ≠ 𝑆𝑖 𝑆,
−−−−→
𝑆𝑖 [𝑥] · Δ ⊢ ®𝑎 ↩→ 𝑒rest

local_vars(𝑆𝑖) =
−−−−→
𝑆𝑖 [𝑥]

𝑆,Δ ⊢ call 𝑆𝑖 :: ®𝑎 ↩→
let (

−−−−→
𝑆𝑖 [𝑥]) = 𝑆𝑖 (

−−−−−−−−−−−−−−→
thunk(Δ, 𝑆𝑖 [𝑥])) in 𝑒rest

F-In

𝑥 ∈ Δ

force(Δ, 𝑥) = 𝑥

F-NotIn

𝑥 ∉ Δ

force(Δ, 𝑥) = 𝑥 ()

T-In

𝑥 ∈ Δ

thunk(Δ, 𝑥) = _ (). 𝑥

T-NotIn

𝑥 ∉ Δ

thunk(Δ, 𝑥) = 𝑥

Fig. 7. Compiling the scope language to a default calculus

fatal by D-ContextConflictError: the reduction aborts, under any context 𝐶 . The behavior of ∅ is

different: such an error propagates only up to its enclosing “regular” context 𝐶_ ; this means that

such an ∅-error can be caught, as long as it appears in the exception list of an enclosing default

expression. Therefore, we now turn our attention to the rules that govern the evaluation of default

expressions.

If no exception is valid, i.e. if the left-hand side contains only ∅s; and if after further eval-

uation, the justification is true for the consequence 𝑣 , then the whole default reduces to 𝑣

(D-DefaultTrueNoExceptions). If no exception is valid, and if the justification is false, then we

do not need to evaluate the consequence, and the default is empty, i.e. the expression reduces to

∅. If exactly one exception is a non-empty value 𝑣 , then the default reduces to 𝑣 . In that case, we

evaluate neither the justification or the consequence (D-DefaultOneException). Finally, if two or

more exceptions are non-empty, we cannot determine the priority order between them, and abort

program execution (D-DefaultExceptionsConflict).

Compiling the scope language. We succinctly describe the compilation of the scope language

to the default calculus in Figure 7. Our goal is to get rid of scopes in favor of regular lambda-

abstractions, all the while preserving the evaluation semantics; incorrect order of evaluation might

lead to propagating premature errors (i.e. throwing exceptions too early).

We assume for simplicity of presentation that we are equipped with tuples, where (𝑥1, . . . , 𝑥𝑛)
is concisely written (®𝑥). We also assume that we are equipped with let-bindings, of the form

let (𝑥1, . . . , 𝑥𝑛) = 𝑒 , for which we adopt the same concise notation. Given a scope 𝑆 made up of

atoms ®𝑎, local_vars(𝑆) returns all variables 𝑥 for which def 𝑥 ∈ ®𝑎. Note that this does not include
rules that override sub-scope variables, which are of the form def 𝑆𝑛 [𝑥]. We now turn to our

judgement, of the form 𝑆,Δ ⊢ 𝑎 ↩→ 𝑒 , to be read as “in the translation of scope 𝑆 , knowing that

variables in Δ have been forced, scope rule 𝑟 translates to default calculus expression 𝑒”.

A scope 𝑆 with local variables ®𝑥 compiles to a function that takes an 𝑛-tuple (®𝑥) containing
potential overrides for all of its context variables (C-Scope). In the translation, each 𝑥 therefore

becomes a thunk, so as to preserve reduction semantics: should the caller decide to leave a local

variable 𝑥𝑖 to be ∅, having a thunk prevents D-ContextEmptyError from triggering and returning

16 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

Type 𝜏 ::= bool | unit boolean and unit types

| 𝜏 → 𝜏 function type

| list 𝜏 list type

| option 𝜏 option type

Expression 𝑒 ::= 𝑥 | 𝑠 | true | false | () variable, top-level name, literals

| _ (𝑥 : 𝜏). 𝑒 | 𝑒 𝑒 _-calculus

| None | Some 𝑒 option constructors

| match 𝑒 with option destructuring

| None → 𝑒 | Some 𝑥 → 𝑒

| [®𝑒] | fold_left 𝑒 𝑒 𝑒 list introduction and fold

| raise Y | try 𝑒 with Y → 𝑒 exceptions

Exception Y ::= ∅ empty exception

| ⊛ conflict exception

Top-level declaration 𝜎 ::= let 𝑠 = 𝑒

Program 𝑃 ::= ®𝜎

Fig. 8. The enriched lambda calculus, our final translation target

prematurely. Rule C-Scope performs additional duties. For each one of the sub-scopes 𝑆𝑖 used by 𝑆 ,

we set all of the arguments to 𝑆𝑖 , denoted
−−−→
𝑆𝑖 [𝑥], to be a thunked ∅ to start with.

Advancing through the scope 𝑆 , we may encounter definitions or calls. For definitions (C-Def), we

simply insert a shadowing let-binding, and record that ℓ has been forced by extending Δ. Whether

ℓ is of the form 𝑥 or 𝑆𝑛 [𝑥], we know that the previous binding was thunked, since our previous

desugaring guarantees that any variable ℓ now has a single definition. The rewritten default

expression gives the caller-provided argument higher precedence; barring any useful information

provided by the caller, we fall back on the existing definition 𝑒 . This key step explains how our

law-centric syntax, which allows caller scopes to override variables local to a callee scope, translates

to the default calculus.

For calls (C-Call), we ensure all of the arguments are thunked before calling the sub-scope; the

return tuple contains forced values, which we record by extending Δ with all

−−−→
𝑆𝑖 [𝑥]. The premise

𝑆 ≠ 𝑆𝑖 captures the fact that recursion is not allowed.

Finally, after all rules have been translated and we are left with nothing but the empty list []
(C-Empty), we simply force all scope-local variables ®𝑥 and return them as a tuple.

4.3 From the Default Calculus to a Lambda Calculus
While sufficient to power theCatala surface language, the relatively simple semantics of our default

calculus are non-standard. We now wish to compile to more standard constructs found in existing

programming languages. We remark that the reduction semantics for default terms resembles

that of exceptions: empty-default errors propagate (“are thrown”) only up to the enclosing default

term (“the try-catch”). Confirming this intuition and providing a safe path from Catala to existing

programming languages, we now present a compilation scheme from the default calculus to a

lambda calculus enriched with a few standard additions: lists, options and exceptions.

Figure 8 shows the syntax of the target lambda calculus. In order to focus on the gist of the

translation, we introduce list and option as special, built-in datatypes, rather than a full facility

for user-defined inductive types. For those reasons, we offer the minimum set of operations we need:

constructors and destructors for option, and a left fold for lists. We omit typing and reduction

rules, which are standard. The only source term that does not belong to the target lambda calculus

is the default term ⟨®𝑒 | 𝑒just :- 𝑒cons⟩. Hence, translating this term is the crux of our translation.

Catala: A Programming Language for the Law 17

C-Default

𝑒1 ⇒ 𝑒 ′
1

· · · 𝑒𝑛 ⇒ 𝑒 ′𝑛 𝑒just ⇒ 𝑒 ′
just

𝑒cons ⇒ 𝑒 ′
cons

⟨𝑒1,. . .,𝑒𝑛 | 𝑒just :- 𝑒cons⟩ ⇒
let 𝑟exceptions = process_exceptions [_ _→ 𝑒 ′

1
;. . .;_ _→ 𝑒 ′𝑛] in

match 𝑟exceptions with Some 𝑒 ′ → 𝑒 ′ | None→ if 𝑒 ′
just

then 𝑒 ′
cons

else raise ∅

C-EmptyError

∅⇒ raise ∅

C-ConflictError

⊛ ⇒ raise ⊛
C-Var

𝑥 ⇒ 𝑥

C-Literal

𝑒 ∈ {(), true, false}
𝑒 ⇒ 𝑒

C-Abs

𝑒 ⇒ 𝑒 ′

_ (𝑥 : 𝜏). 𝑒 ⇒ _ (𝑥 : 𝜏). 𝑒 ′

C-App

𝑒1 ⇒ 𝑒 ′
1

𝑒2 ⇒ 𝑒 ′
2

𝑒1 𝑒2 ⇒ 𝑒 ′
1
𝑒 ′
2

Fig. 9. Translation rules from default calculus to lambda calculus

process_exceptions : list (unit→ 𝜏)→ option 𝜏

process_exceptions ≜ fold_left (_ (𝑎 : option 𝜏) (𝑒 ′ : unit→ 𝜏).

let 𝑒 ′ : 𝜏 = try Some (𝑒 ′()) with ∅→ None in

match (𝑎, 𝑒 ′) with

| (None, 𝑒 ′)→ 𝑒 ′

| (Some 𝑎, None)→ Some 𝑎

| (Some 𝑎, Some 𝑒 ′) → raise ⊛) None

Fig. 10. process_exceptions translation helper

Our translation is of the form 𝑒 ⇒ 𝑒 ′ , where 𝑒 is a term of the default calculus and 𝑒 ′ is a
term of the target lambda calculus. Figure 9 presents our translation scheme. The semantics of

default terms are intertwined with those of ∅ and ⊛. The translation of ∅ and ⊛ is simple: both

compile to exceptions in the target language. We now focus on C-Default, which deals with

default terms. As a warm-up, we start with a special case: ⟨ | 𝑒just :- 𝑒cons⟩. We translate this

term to if 𝑒just then 𝑒cons else raise ∅, which obeys the evaluation semantics of both

D-DefaultTrueNoExceptions and D-DefaultFalseNoExceptions. This simple example serves as a

blueprint for the more general case, which has to take into account the list of exceptions ®𝑒 , and
specifically count how many of them are ∅.

In the general case, C-Default relies on a helper, process_exceptions; each exception is trans-

lated, thunked, then passed to the helper; if the helper returns Some , exactly one exception did not

evaluate to ∅; we return it. If the helper returns None, no exception applied, and we fall back to the

simple case we previously described.

We now review process_exceptions defined in Figure 10. It folds over the list of exceptions, with

the accumulator initially set to None, meaning no applicable exception was found. Each exception is

forced in order, thus implementing the reduction semantics of the default calculus. The accumulator

transitions from None to Some if a non-empty exception is found, thus implementing a simple

automaton that counts the number of non-empty exceptions. If two non-∅ exceptions are found,

the automaton detects an invalid transition and aborts with a non-catchable ⊛.

18 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

4.4 Discussion of Design Choices
The current shape of Catala represents the culmination of a long design process for the language.

We now discuss a few of the insights we gained as we iterated through previous versions of Catala.
For the surface language, a guiding design principle was to always guarantee that the Catala

source code matches the structure of the law. We have managed to establish this property not

only for Section 121 (Section 3), but also for all of the other examples we currently have in the

Catala repository. To achieve this, a key insight was the realization that every piece of statutory

law we looked at (in the US and French legal systems) follows a general case / exceptions drafting

style. This style, which we saw earlier (Section 3), means that the law encodes a static priority
structure. Intuitively, computing a given value boils down to evaluating an n-ary tree of definitions,
where nodes and edges are statically known. The children of a given node are mutually-exclusive

exceptions to their parent definition; either one exception applies, and the computation stops. Or if

no exception applies, the parent definition is evaluated instead. This recursive evaluation proceeds

all the way up to the root of the tree, which represents the initial default definition.

The surface language was crafted to support encoding that tree of exceptions within the syntax

of the language via the label mechanism. This informed our various choices for the syntactic sugar;

notably, we make it easy to define 𝑛 mutually-exclusive definitions in one go thanks to syntactic

sugars (i) and (iiia) in Table 1.

A consequence of designingCatala around a static tree of exceptions for each defined value is that
the internal default calculus representation was drastically simplified. In the original presentation

of prioritized default logic, values have the form ⟨𝑒1, . . . , 𝑒𝑛 |𝑒𝑐 : 𝑒𝑑 | ⩽⟩ where ⩽ is a pre-order that

compares the 𝑒𝑖 at run-time to determine the order of priorities. We initially adopted this very

general presentation for Catala, but found out that this made the semantics nearly impossible

to explain; made the rules overly complicated and the proof of soundness very challenging; and

more importantly, was not necessary to capture the essence of Western statutory law. Dropping a

run-time pre-order ⩽ was the key insight that made the internal default calculus representation

tractable, both in the paper formalization and in the formal proof.

The scope language was introduced to eliminate the curious scoping rules and parent-overrides

of definitions, which are unusual in a lambda-calculus. We initially envisioned a general override

mechanism that would allow a parent scope to override a sub-scope definition at any depth; that is,

not just re-define sub-scope variables, but also sub-sub-scope variables and so on. We were initially

tempted to go for this most general solution; however, we have yet to find a single example of

statutory law that needs this feature; and allowing sub-sub-scope override would have greatly

complicated the translation step. We eventually decided to not implement this feature, to keep the

compiler, the paper rules and the formalization simple enough.

All of those insights stemmed from a close collaboration with lawyers, and the authors of this

paper are very much indebted to Sarah Lawsky and Liane Huttner for their invaluable legal insights.

Barring any legal expertise, we would have lacked the experimental evaluation that was able to

justify our simplification choices and revisions of the language.

4.5 Certifying the Translation
The translation from scope language to default calculus focuses on turning scopes into the lambda-

abstractions that they truly are underneath the concrete syntax. This is a mundane transformation,

concerned mostly with syntax. The final step from default calculus to lambda calculus with ex-

ceptions is much more delicate, as it involves compiling custom evaluation semantics. To rule out

any errors in the most sensitive compilation step of Catala, we formally prove our translation

Catala: A Programming Language for the Law 19

de de′

le le′

−→

⇒

−→∗

⇒

A

de de′

le le′

target

−→

⇒ ⇒
−→

∗

−→ ∗

B

Fig. 11. Translation correctness theorems. A shows a regular simulation; B shows our variant of the theorem.

correct, using F
★
[1, 31, 46], a proof assistant based on dependent types, featuring support for

semi-automated reasoning via the SMT-solver Z3 [9].

Correctness statement. We wish to state two theorems about our translation scheme. First, typing

is preserved: if de⇒ le and ∅ ⊢ de : dtau, then ∅ ⊢ le : ltau in the target lambda calculus where

ltau is the (identity) translation of dtau. Second, we want to establish a simulation result, i.e. the

compiled program le faithfully simulates a reduction step from the source language, using 𝑛 steps

in the target language.

The usual simulation result is shown in Figure 11, A. If de is a term of the default calculus and if

de −→ de′, and de⇒ le, then there exists a term le′ of the lambda calculus such that le −→ ∗le′

and de′ ⇒ le′. This specific theorem does not apply in our case, because of the thunking we

introduce in our translation. As a counter-example, consider the reduction of 𝑒1 within default

term ⟨𝑣0,𝑒1 | 𝑒just :- 𝑒cons⟩. If 𝑒1 steps to 𝑒 ′1 in the default calculus, then the whole term steps to

⟨𝑣0,𝑒 ′1 | 𝑒just :- 𝑒cons⟩. However, we translate exceptions to thunks; and our target lambda calculus

does not support strong reduction, meaning _ _→ 𝑒_,1 does not step into _ _→ 𝑒 ′
_,1
. Diagram A is

therefore not applicable in our case.

The theorem that actually holds in our case is shown as diagram B (Figure 11). The two translated

terms le and le′ eventually reduce to a common form target. Taking the transitive closure of

form B, we obtain that if de reduces to a value dv, then its translation le reduces to a value lv that

is the translation of dv, a familiar result.

Overview of the proof. We have mechanically formalized the semantics of both the default

calculus and target lambda calculus, as well as the translation scheme itself, inside the F
★
proof

assistant. Figure 12 shows the exact theorem we prove, using concrete F
★
syntax; the theorem as

stated establishes both type preservation and variant B, via the take_l_steps predicate and the

existentially quantified n1 and n2. We remark that if the starting term de is a value to start with, we
have le = translate_exp de. Inspecting translate_exp (elided), we establish that source values

translate to identical target values.

Proof effort and engineering. Including the proof of type safety for the source and target language,
our F

★
mechanization amounts to approximately 3,500 lines of code and required 1 person-month.

We rely on partial automation via Z3, and the total verification time for the entire development is of

the order of a few minutes. The choice of F
★
was not motivated by any of its advanced features, such

as its effect system: the mechanization fits inside the pure fragment of F
★
. Our main motivation

was the usage of the SMT solver which can typically perform a fair amount of symbolic reasoning

and definition unrolling, thus decreasing the amount of manual effort involved.

To focus the proof effort on the constructs that trulymatter (i.e. default expressions), the semantics

of lists, folds and options are baked into the target calculus. That is, our target calculus does not

support user-defined algebraic data types. We believe this is not a limitation, and instead allows

the proof to focus on the key parts of the translation. We use De Bruijn indices for our binder

20 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

module D = DefaultCalculus; module L = LambdaCalculus
val translation_correctness (de: D.exp) (dtau: D.ty) : Lemma

(requires (D.typing D.empty de dtau)) (ensures (
let le = translate_exp de in let ltau = translate_ty dtau in
L.typing L.empty le ltau ∧ begin

if D.is_value de then L.is_value le else begin
D.progress de dtau; D.preservation de dtau;
let de' = Some?.v (D.step de) in
translation_preserves_empty_typ de dtau; translation_preserves_empty_typ de' dtau;
let le' : typed_l_exp ltau = translate_exp de' in
exists (n1 n2:N) (target: typed_l_exp ltau).
(take_l_steps ltau le n1 == Some target ∧
take_l_steps ltau le' n2 == Some target) end end))

Fig. 12. Translation certification theorem, in F★

representation, since the unrolling of process_exceptions results in variable shadowing. Given

those simplifications, we were surprised to find that our proof still required 3,500 lines of F
★
. A lot

of the complexity budget was spent on the deep embedding of the process_exceptions helper. It

is during the mechanization effort that we found out that theorem A does not hold, and that we

need to establish B instead. Our mechanized proof thus significantly increases our confidence in

the Catala compilation toolchain; the proof is evidence that even for a small calculus and a simple

translation, a lot of subtleties still remain.

While F
★
extracts to OCaml, we chose not to use the extracted F

★
code within the Catala

compiler. First, the proof does not take into account all language features. Second, the actual

translation occupies about 100 lines of code in both the production Catala compiler and the proof;

we are content with comparing both side-by-side. Third, the Catala compiler features advanced

engineering for locations, error messages, and propagating those to the proof would be difficult.

5 THE CATALA COMPILER
Based on this formalization, we implement Catala in a standalone compiler and interpreter. The

architecture of the compiler is based on a series of intermediate representations, in the tradition

of CompCert [29] or Nanopass [21]. Figure 13 provides a high-level overview of the architecture,

with links to relevant sections alongside each intermediate representation.

The compiler is written in OCaml and features approximately 13,000 lines of code. This imple-

mentation, available as open-source software on GitHub and in the artifact accompanying this

paper [10], makes good use of the rich and state-of-the art library ecosystem for compiler writing,

including ocamlgraph [8] for the e.g. the two topological sorts we saw (Section 4.1), bindlib [28]

for efficient and safe manipulation of variables and terms, and the menhir parser generator [39].

Thanks to these libraries, we estimate that the development effort was 5 person-months.

5.1 Usability
We devoted a great of attention towards the usability of the compiler. Indeed, while we don’t

expect lawyers to use Catala unaccompanied, we would not want to restrict its usage to _-savvy

functional programmers. To improve the programmer experience, we use the special parser error

reporting scheme of menhir [38], to provide customized and context-aware syntax error messages

that depend on the set of tokens acceptable by the grammar at the site of the erroneous token (see

Figure 14). The shape of the error messages is heavily inspired by the Rust compiler design [47].

https://github.com/CatalaLang/catala

Catala: A Programming Language for the Law 21

Source code Surface language

Desugared language Scope language

Default calculus _-calculus

OCaml Interpeter

JavaScript

Section 3

Section 4.1 Section 4.1

Section 4.2 Section 4.3

via js_of_ocaml [48]

Fig. 13. High-level architecture of the Catala compiler (red box)

[ERROR] Syntax error at token "years"
[ERROR] Message: expected a unit for this literal, or a valid operator
[ERROR] to complete the expression
[ERROR] Autosuggestion: did you mean "year", or maybe "or", or maybe "and",
[ERROR] or maybe "day", or maybe ".", or maybe ">", [...]
[ERROR] Error token:
[ERROR] --> section_121.catala_en
[ERROR] |
[ERROR] 180 | if date_of_sale_or_exchange <=@ period.begin +@ 5 years then
[ERROR] | ^^^^^
[ERROR] Last good token:
[ERROR] --> section_121.catala_en
[ERROR] |
[ERROR] 180 | if date_of_sale_or_exchange <=@ period.begin +@ 5 years then
[ERROR] | ^

Fig. 14. Example of Catala syntax error message

Error messages flow through the compiler code via a unique exception containing the structured

data of the error message:

exception StructuredError of (string * (string option * Pos.t) list)

This structure enables on-the-fly rewriting of error messages as they propagate up the call stack,

which is useful for e.g. adding a new piece of context linking to a code position of a surrounding AST

node. In this spirit, error messages for scope variable cycle detection display the precise location

for where the variables in the cycle are used; error messages for default logic conflict errors ⊛ show

the location of the multiple definitions that apply at the same time for a unique variable definition.

Finally, we have instrumented the Catala interpreter with helpful debugging features. Indeed,

when pair programming with a lawyer and a programmer over the formalization of a piece of law,

it is helpful to see what the execution of the program would look like on carefully crafted test cases.

While test cases can be directly written in Catala using a top-level scope that simply defines the

arguments of the sub-scope to test, the compilation chain inserts special log hooks at critical code

points. When executing a test case, the interpreter then displays a meaningful log featuring code

positions coupled with the position inside the legal statute for each default logic definition taken.

We believe that this latter feature can easily be extended to provide a comprehensive and legal-

oriented explanation of the result of a Catala program over a particular input. Such an explanation

would help increase trust of the system by its users, e.g. citizens subject to a complex taxation

regime; thereby constituting a concrete instance of a much sought-after “explainable AI” [12, 15].

22 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

5.2 Performance
We ran the French family benefits Catala program described in Section 6.3; it is as complex as

Section 121 of the US Internal Revenue Code but featuring approximately 1500 lines of Catala
code (literate programming included). Given the description of a French household, we benchmark

the time required to compute the amount of monthly family benefits owed.

The Catala interpreter for this program runs in approximately 150ms. We conclude that the

performance of the interpreter remains acceptable even for a production environment. When the

Catala code is compiled to OCaml, execution time drops to 0.5ms. Therefore, we conclude that

performance problems are, at this stage of the project, nonexistent.

5.3 Extensible Compiler Backend
A crucial consideration in designing a DSL is the interoperability story within existing environments.

While some DSLs operate in isolation, we envision Catala programs being exposed as reusable

libraries that can be called from any development platform, following the needs of our adopters.

In the context of legal systems, this is a very strong requirement: such environments oftentimes

include legacy, mainframe-based systems operating in large private organizations or government

agencies [30]. Furthermore, since the algorithms that Catala is designed to model are at the very

heart of e.g. tax collection systems, proposing a classic interoperability scheme based on APIs or

inter-language FFIs might create an undesirable barrier to adoption; a system designed in the 1960s

probably has no notion of API or FFI whatsoever!

Instead, we choose for Catala an unusually simple and straightforward interoperability scheme:

direct source code generation to virtually any programming language. This solution is generally

impractical, requiring considerable workarounds to reconcile semantic mismatches between target

and source, along with a significant run-time support library. In the case of Catala, however, our
intentional simplicity makes this “transpiling” scheme possible.

Indeed, the final intermediate representation of the Catala compiler is a pure and generic

lambda calculus operating over simply-typed values. By re-using standard functional compilation

techniques such as closure conversion [33], we claim that it is possible to compile Catala to any

programming language that has functions, arrays, structures, unions, and support for exceptions.

We also believe that a more complex version of the compilation scheme presented in Section 4.3

would remove the need for exceptions (in favor of option types), but leave this as future work.

The run-time required for generated programs only has to include an infinite precision arithmetic

library (or can default to fixed-sized arithmetic and floats) and a calendar library to compute the

days difference between two dates, taking leap years into account. We demonstrate this with the

OCaml backend of the Catala compiler, which amounts to 350 lines of compiler code and 150

lines of run-time code (excluding the zarith [34] and calendar [45] libraries). Merely compiling

to OCaml already unlocks multiple target environments, such as the Web, via the js_of_ocaml

compiler [48]. We thus effortlessly bring Catala to the Web.

6 PUTTING CATALA TOWORK
The solid formal and technical foundations of Catalawould be quite useless if the language was not
fit for its target audience: lawyers and legal expert systems programmers. We claim that the design

process of Catala as well as our comprehensive code co-production process proposal maximizes the

potential for adoption by professionals. To support this claim, we report early user study results and

demonstrate an end-to-end use case with the computation of an important French social benefit.

Catala: A Programming Language for the Law 23

6.1 Interacting with Lawyers
Catala’s design has been supervized and influenced by lawyers since its inception. Indeed, the

project started out of Sarah Lawsky’s insight on the logical structure of legal statutes [23–26]. As

well as providing the formal base building block of Catala, lawyers also reviewed the syntax of

Catala, choosing the keywords and providing insights counter-intuitive to programmers, such as

the rule/definition distinction of Section 3.2.

We also conducted a careful analysis of the production process of legal expert systems. We found

that in France, administrative agencies always use a V-shaped development cycle for their legal

expert systems. In practice, lawyers of the legal department take the input set of legal statutes

and write a detailed natural language specification, that is supposed to make explicit the different

legal interpretations required to turn the legal statute into an algorithm. Then, legal expert systems

programmers from the IT department take the natural specification and turn it into code, often

never referring back to the original statute text.

Exclusive interviews conducted by the authors with legal expert systems programmers and

lawyers inside a high-profile French administration reveal that this theoretical division of labor

is artificial. Indeed, the natural language specification often proves insufficient or ambiguous to

programmers, which leads to programmers having to spend hours on the phone with the lawyers

to clarify and get the algorithm right. Furthermore, the validation of the implementation depends

on lawyer-written test cases, whose number and quality suffer from budget restrictions.

This insight suggests that amore agile development process associating lawyers and programmers

from the beginning would be more efficient. We claim the Catala is the right tool for the job, since

it allows lawyers and programmers to perform pair programming on a shared medium that locally

combines the legal text as well as the executable code.

We do not expect lawyers to write Catala code by themselves. A number of frameworks such as

Drools [40] are built on this promise. For our part, we believe that software engineering expertise

is needed to produce maintainable, performant, high-quality code. Hence, we envision for lawyers

to act as observers and reviewers of the code production process, safeguarding the correctness with

respect to the legal specification.

We don’t expect adoption difficulties from the programmers’ side, since Catala is morally a pure

functional language with a few oddities that makes it well-suited to legal specifications. To assess

our claim of readability by lawyers, we conducted a small user study with 𝑁 = 18 law graduate

students enrolled in the Masters program “Droit de la création et numérique” (Intellectual Property

and Digital Law) at Université Panthéon-Sorbonne. The students are anonymous recruits, enrolled

in a course taught by a lawyer friend of the project. The study was conducted during a 2-hour-long

video conference, during which the students were able to submit feedback in real time thanks to an

online form. None of the students had any prior programming experience; this question was asked

orally at the beginning of the session.

The methodology of the study is the following: the participants were given a 30 min. presentation

of Catala’s context and goals, but were not exposed to any program or syntax. Then, participants

were briefed during 15 min. about Section 121 and its first paragraph (Section 2.1) and received a

copy of the corresponding Catala code (Section 3.1 and Section 3.2). Finally, the participants were

told the protocol of the study:

• 10 min. for reading the Catala code of Section 121, then fill the questionnaire listed in

Table 2;

• 15 min. of collective Q&A with the Catala authors (over group video conference) about the

Catala code of Section 121, then fill a second time the same questionnaire listed in Table 2.

24 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

Exact text of the question

(1) Do you understand the project? Is there anything that is unclear about it?

(2) Can you read the code without getting a headache?

(3) Can you understand the code?

(4) Can you link the code to the meaning of the law it codifies?

(5) Can you certify that the code does exactly what the law says and nothing more? If not, are

there any mistakes in the code?

Table 2. Questions of the user study

(1) (2) (3) (4) (5)

0

5

10

15

18

8 8

12
10

0

6

10

5

00

5

1 2

8

Question # (first round)

N
u
m
b
e
r
o
f
a
n
s
w
e
r
s

Positive answers Mixed answers Negative answers

Fig. 15. Results of the first round of questions in the user study

(1) (2) (3) (4) (5)

0

5

10

14
12 12

14

7

0
2

3

1
00

1
0 0

5

Question # (second round)

N
u
m
b
e
r
o
f
a
n
s
w
e
r
s Positive answers Mixed answers Negative answers

Fig. 16. Results of the second round of questions in the user study

The participants and experimenters carried out the study according to the aforementioned

protocol. After all students had filled the questionnaire for the second time, a short debriefing was

conducted.

The full answers of the participants to all the questions of both rounds are available in the

artifact corresponding to this paper [10]. The answers given by the participants in free text were

interpreted as positive, negative or mixed by the authors. Figure 15 and Figure 16 show the results

for the first and second fillings of the questionnaire by the participants.

These early results, while lacking the rigor of a scientific user study, indicate a relatively good

reception of the literate programming paradigm by lawyers. The significant increase in positive

answers between the first and second round of questions indicates that while puzzled at first,

lawyers can quickly grasp the intent and gist of Catala once given a minimal amount of Q&A

time (15 minutes in our study). One participant to the study was enthusiastic about the project, and

contacted the authors later to join the project and tackle the modeling of French inheritance law in

Catala.
After investigation, we believe that the large number of negative answers for question (5) in the

second round could be explained by a lack of familiarity with the US Internal Revenue Code from

the French lawyers. Indeed, the wording of the question (“certify”) implies that the lawyer would

Catala: A Programming Language for the Law 25

be confident enough to defend their opinion in court. We believe, from deeper interactions with

lawyers closer to the project, that familiarity with the formalized law combined with basic Catala
training could bring the lawyers’ confidence to this level.

We deliberately introduced a bug in the code shown to the lawyers in this user study. The bug

involved a ⩽ operator replaced by ⩾. Of the 7 who answered “Yes” to (5) in the second round, 2

were able to spot it, which we interpret to be a very encouraging indication that lawyers can make

sense of the Catala code with just a two-hour crash course.

6.2 A Look Back to Section 121
We have used Section 121 of the US Internal Revenue Code as a support for introducing Catala
in Section 3. But more interestingly, this piece of law is also our complexity benchmark for legal

statutes, as it was deemed (by a lawyer collaborator) to be one of the most difficult sections of the

tax code. This reputation comes from its dense wording featuring various layers of exceptions to

every parameter of the gross income deduction.

We have so far formalized it up to paragraph (b)(4), which is approximately 15% of the whole

section and around 350 lines of code (including the text of the law), but contain its core and most

used exceptions. We include the result of this effort in the artifact [10]. The current formalization

was done in four 2-hour sessions of pair programming between the authors and lawyers specialized

in the US Internal Revenue Code. Progress is relatively slow because we consider in the process

every possible situation or input that could happen, as in a real formalization process. However,

this early estimate indicates that formalizing the whole US Internal Revenue Code is a completely

reachable target for a small interdisciplinary team given a few years’ time.

While finishing the formalization of Section 121 is left as future work, we are confident that the

rest of the section can be successfully expressed in Catala: the maze of exceptions is localized to (a)

and (b), and the rest of the limitations are just a long tail of special cases; with our general design

that supports arbitrary trees of exceptions in default logic, this should pose no problem.

6.3 Case Study: French Family Benefits
Section 6.1 argues that Catala is received positively by lawyers. This is only half of the journey: we

need to make sure Catala is also successfully adopted by the large private or public organization

where legacy systems are ripe for a principled rewrite. To support our claims concerning the

toolchain and interoperability scheme in a real-world setting, we formalized the entire French

family benefits computation in Catala and exposed the compiled program as an OCaml library

and JavaScript Web simulator. The full code of this example can be found in the supplementary

material of this article, although it is written in French.

A crucial part of the French welfare state, family benefits are distributed to households on the

basis of the number of their dependent children. Created in the early 1930’s, this benefit was

designed to boost French natality by offsetting the additional costs incurred by child custody to

families. Family benefits are a good example of a turbulent historical construction, as the conditions

to access the benefits have been regularly amended over the quasi-century of existence of the

program. For instance, while family benefits were distributed to any family without an income cap,

a 2015 reform lowered the amount of the benefit for wealthy households [4, 6].

The computation can be summarized with the following steps. First, determine how many

dependent children are relevant for the family benefits (depending on their age and personal income).

Second, compute the base amount, which depends on the household income, the location (there

are special rules for overseas territories) and a coefficient updated each year by the government to

track inflation. Third, modulate this amount in the case of alternating custody or social services

custody. Fourth, apply special rules for when a child is exactly at the age limit for eligibility, or

26 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

Fig. 17. Screenshot of the Web family benefits simulator powered by Catala

when the household income is right above a threshold. All of these rules are specified by 27 articles

of the French Social Security Code, as well as various executive orders.

The Catala formalization of this computation amounts to approximately 1,500 lines of code,

including the text of the law. The code is split between 6 different scopes featuring 63 context

variables and 83 definitions and rules. We believe these numbers to fairly representative of the

authoring effort required for a medium-size legal document. Distributed as an OCaml library, our

code for the computation of the French family benefits is also used to power an online simulator

(see Figure 17).

After writing the code as well as some test cases, we compared the results of our program with

the official state-sponsored simulator mes-droits-sociaux.gouv.fr, and found no issue. However,

the case where a child is in the custody of social services was absent from the official simulator,

meaning we could not compare results for this case. Fortunately, the source code of the simulator is

available as part of the OpenFisca software project [44]. The OpenFisca source file corresponding

to the family benefits, amounts to 365 lines of Python. After close inspection of the OpenFisca code,

a discrepancy was located with the Catala implementation. Indeed, according to article L755-12

of the Social Security Code, the income cap for the family benefits does not apply in overseas

territories with single-child families. This subtlety was not taken into account by OpenFisca, and

was fixed after its disclosure by the authors.

Formalizing a piece of law is thus no different from formalizing a piece of software with a

proof assistant. In both cases, bugs are found in existing software, and with the aid of a formal

mechanization, can be reported and fixed.

7 CONCLUSION & RELATEDWORK
Catala follows a long tradition of scholarly works that aim to extract the logical essence of legal

statutes, starting as early as 1924 [11]. To provide some context, we compare our work with two

seminal articles in the field.

In his visionary 1956 article, Allen [2] notes that symbolic logic can be used to remove ambiguity

in the law, and proposes its use for a wide range of applications: legal drafting, interpretation,

simplification and comparison. Using custom notations that map transparently to first-order logic,

Allen does not provide an operational tool to translate law into formalism but rather points out

the challenges such as law ambiguity and rightfully sets the limits of his approach, stating for

instance that in generality, “filling of gaps in legislation by courts cannot and should not be entirely

mes-droits-sociaux.gouv.fr
https://github.com/openfisca/openfisca-france/issues/1426
https://github.com/openfisca/openfisca-france/issues/1426
https://github.com/openfisca/openfisca-france/issues/1426

Catala: A Programming Language for the Law 27

eliminated”. Interestingly, he also manually computes a truth table to prove that two sections of

the US Internal Revenue Code are equivalent.

The vision laid out by Allen is refined in 1986 by Sergot et al. [43]. This article narrows the range
of its formalism to statutory law (as opposed to case law), and focuses on the British Nationality

Act, a statute used to determine whether a person can qualify for the British nationality based

on various criteria. Co-authored by Robert Kowalski, this works features the use of Prolog [7]

as the target programming language, showing the usefulness of declarative logic programming

for the formalization task. However, the work acknowledges a major limitation concerning the

expression of negation in the legal text, and points out that “the type of default reasoning that the

act prescribes for dealing with abandoned infants is nonmonotonic”, confirming the later insights

of Lawsky [25]. A major difference with Catala is the absence of literate programming; instead,

Sergot et al. derived a synthetic and/or diagram as the specification for their Prolog program.

However, the line of work around logic programming never took hold in the industry and

the large organizations managing legal expert systems. The reasons, various and diagnosed by

Leigh [27], mix the inherent difficulty of translating law to code, with the social gap between the

legal and computer world. As a reaction, several and so far unsuccessful attempts were made to

automate the translation using natural language processing techniques [18, 37]. Others claim that

the solution is to lower the barriers to the programming world using low-code/no-code tools, so

that lawyers can effectively code their own legal expert systems [36].

The main recent research direction around the formalization of law is spearheaded by optimistic

proponents of computational law [14], promising a future based on Web-based, automated legal

reasoning by autonomous agents negotiating smart contracts on a blockchain-powered network [17,

19, 42, 50].

By contrast, we focus on the challenges related to maintaining existing legal expert systems

in large public or private organizations, providing essential services to millions of citizens and

customers. Catala aims to provide an industrial-grade tool that enables close collaboration of

legal and IT professionals towards the construction of correct, comprehensive and performant

implementations of algorithmic statutory law.

Thewide range of applications imagined by Layman in 1956 has yet to be accomplished in practice.

With its clear and simple semantics, we hope for Catala formalizations of statutes to provide

ideal starting point for future formal analyses of the law, enabling legal drafting, interpretation,

simplification and comparison using the full arsenal of modern formal methods.

ACKNOWLEDGMENTS
We want to thank first the lawyers at the heart of the Catala project: Sarah Lawsky and Liane

Huttner. Theirs insights and continued collaborationwere invaluable for the success of this endeavor.

We also thank Pierre-Évariste Dagand for its useful advice of encoding the default logic partial order

into a syntactic tree; this trick helped simplify a lot the formalization, without loss of generality

with respect to legislative texts.

This work is partially supported by the European Research Council under the CIRCUS (683032)

Consolidator Grant Agreement.

REFERENCES
[1] Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi,

and Nikhil Swamy. 2017. Dijkstra monads for free. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. 515–529.

[2] Layman E Allen. 1956. Symbolic logic: A razor-edged tool for drafting and interpreting legal documents. Yale LJ 66
(1956), 833.

28 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko

[3] Anne Broache. 2008. IRS trudges on with aging computers. https://www.cnet.com/news/irs-trudges-on-with-aging-

computers/

[4] Marie-Andrée Blanc. 2016. La modulation des allocations familiales : une erreur historique. Travail, genre et sociétés
35, 1 (2016), 157–161. https://doi.org/10.3917/tgs.035.0157

[5] Gerhard Brewka and Thomas Eiter. 2000. Prioritizing default logic. In Intellectics and computational logic. Springer,
27–45.

[6] Marie-Françoise Clergeau. 2016. Plaidoyer pour la modulation. Travail, genre et sociétés 35, 1 (2016), 173–177.

https://doi.org/10.3917/tgs.035.0173

[7] Alain Colmerauer and Philippe Roussel. 1996. The Birth of Prolog. Association for Computing Machinery, New York,

NY, USA, 331–367.

[8] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. 2007. Designing a Generic Graph Library Using ML

Functors. Trends in functional programming 8 (2007), 124–140.

[9] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

337–340.

[10] Merigoux Denis, Chataing Nicolas, and Protzenko Jonathan. 2021. Catala: A Programming Language for the Law.
https://doi.org/10.5281/zenodo.4775161

[11] John Dewey. 1924. Logical method and law. Cornell LQ 10 (1924), 17.

[12] Derek Doran, Sarah Schulz, and Tarek R Besold. 2017. What does explainable AI really mean? A new conceptualization

of perspectives. arXiv preprint arXiv:1710.00794 (2017).
[13] Frank R. Konkel. 2018. The IRS system processing your taxes is almost 60 years old. https://www.nextgov.com/it-

modernization/2018/03/irs-system-processing-your-taxes-almost-60-years-old/146770/

[14] Michael Genesereth. 2015. Computational Law. The Cop in the Backseat (2015).
[15] Randy Goebel, Ajay Chander, Katharina Holzinger, Freddy Lecue, Zeynep Akata, Simone Stumpf, Peter Kieseberg, and

Andreas Holzinger. 2018. Explainable ai: the new 42?. In International cross-domain conference for machine learning
and knowledge extraction. Springer, 295–303.

[16] Government Accountability Office (GAO). 2021. COVID-19: Urgent Actions Needed to Better Ensure an Effective

Federal Response – Report to Congressional Committees. https://www.gao.gov/reports/GAO-21-191/#appendix24

Appendix 24, first table.

[17] Xiao He, Bohan Qin, Yan Zhu, Xing Chen, and Yi Liu. 2018. Spesc: A specification language for smart contracts. In

2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, 132–137.
[18] Nils Holzenberger, Andrew Blair-Stanek, and Benjamin Van Durme. 2020. A Dataset for Statutory Reasoning in Tax

Law Entailment and Question Answering. arXiv preprint arXiv:2005.05257 (2020).

[19] TomHvitved. 2011. Contract formalisation and modular implementation of domain-specific languages. Ph.D. Dissertation.
Citeseer.

[20] Internal Revenue Service. [n.d.]. Exclusion of gain from sale of principal residence. https://www.law.cornell.edu/

uscode/text/26/121

[21] AndrewWKeep and R Kent Dybvig. 2013. A nanopass framework for commercial compiler development. In Proceedings
of the 18th ACM SIGPLAN international conference on Functional programming. 343–350.

[22] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (01 1984), 97–111.
[23] Sarah Lawsky. 2018. Formal Methods and the Law. https://popl18.sigplan.org/details/POPL-2018-papers/3/Formal-

Methods-and-the-Law

[24] Sarah B. Lawsky. 2017. Formalizing the Code. Tax Law Review 70, 377 (2017).

[25] Sarah B. Lawsky. 2018. A Logic for Statutes. Florida Tax Review (2018).

[26] Sarah B Lawsky. 2020. Form as Formalization. Ohio State Technology Law Journal (2020).
[27] Philip Leith. 2016. The rise and fall of the legal expert system. International Review of Law, Computers & Technology

30, 3 (2016), 94–106.

[28] Rodolphe Lepigre and Christophe Raffalli. 2018. Abstract representation of binders in ocaml using the bindlib library.

arXiv preprint arXiv:1807.01872 (2018).
[29] Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or: Programming a Compiler with a Proof Assistant.

SIGPLAN Not. 41, 1 (Jan. 2006), 42–54.
[30] Kif Leswing. 2020. New Jersey needs volunteers who know COBOL, a 60-year-old programming language. https:

//www.cnbc.com/2020/04/06/new-jersey-seeks-cobol-programmers-to-fix-unemployment-system.html

[31] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Cătălin HriŢcu, Monal

Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem

Rastogi, and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms. In Programming
Languages and Systems, Luís Caires (Ed.). Springer International Publishing, Cham, 30–59.

https://www.cnet.com/news/irs-trudges-on-with-aging-computers/
https://www.cnet.com/news/irs-trudges-on-with-aging-computers/
https://doi.org/10.3917/tgs.035.0157
https://doi.org/10.3917/tgs.035.0173
https://doi.org/10.5281/zenodo.4775161
https://www.nextgov.com/it-modernization/2018/03/irs-system-processing-your-taxes-almost-60-years-old/146770/
https://www.nextgov.com/it-modernization/2018/03/irs-system-processing-your-taxes-almost-60-years-old/146770/
https://www.gao.gov/reports/GAO-21-191/#appendix24
https://www.law.cornell.edu/uscode/text/26/121
https://www.law.cornell.edu/uscode/text/26/121
https://popl18.sigplan.org/details/POPL-2018-papers/3/Formal-Methods-and-the-Law
https://popl18.sigplan.org/details/POPL-2018-papers/3/Formal-Methods-and-the-Law
https://www.cnbc.com/2020/04/06/new-jersey-seeks-cobol-programmers-to-fix-unemployment-system.html
https://www.cnbc.com/2020/04/06/new-jersey-seeks-cobol-programmers-to-fix-unemployment-system.html

Catala: A Programming Language for the Law 29

[32] Denis Merigoux, Raphaël Monat, and Jonathan Protzenko. 2021. A Modern Compiler for the French Tax Code. Compiler
Construction (2021).

[33] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed closure conversion. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on principles of programming languages. 271–283.

[34] Antoine Miné, Xavier Leroy, Pascal Cuoq, and Christophe Troestler. 2011. The Zarith OCaml library. https://github.

com/ocaml/Zarith

[35] Jacques Monin. 2018. Louvois, le logiciel qui a mis l’armée à terre. https://www.franceinter.fr/emissions/secrets-d-

info/secrets-d-info-27-janvier-2018

[36] Jason Morris. 2020. Spreadsheets for Legal Reasoning: The Continued Promise of Declarative Logic Programming in

Law. Available at SSRN 3577239 (2020).
[37] Marcos A Pertierra, Sarah Lawsky, Erik Hemberg, and Una-May O’Reilly. 2017. Towards Formalizing Statute Law as

Default Logic through Automatic Semantic Parsing.. In ASAIL@ ICAIL.
[38] François Pottier. 2016. Reachability and error diagnosis in LR (1) parsers. In Proceedings of the 25th International

Conference on Compiler Construction. 88–98.
[39] François Pottier and Yann Régis-Gianat. [n.d.]. The Menhir Parser Generator. http://cambium.inria.fr/~fpottier/menhir/

[40] Mark Proctor. 2012. Drools: A Rule Engine for Complex Event Processing. In Proceedings of the 4th International
Conference on Applications of Graph Transformations with Industrial Relevance (Budapest, Hungary) (AGTIVE’11).
Springer-Verlag, Berlin, Heidelberg, 2–2. https://doi.org/10.1007/978-3-642-34176-2_2

[41] R. Reiter. 1980. A logic for default reasoning. Artificial Intelligence 13, 1 (1980), 81 – 132. Special Issue on Non-Monotonic

Logic.

[42] Vincenzo Scoca, Rafael Brundo Uriarte, and Rocco De Nicola. 2017. Smart contract negotiation in cloud computing. In

2017 IEEE 10th International Conference on Cloud Computing (CLOUD). IEEE, 592–599.
[43] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory. 1986. The British Nationality Act As

a Logic Program. Commun. ACM 29, 5 (May 1986), 370–386.

[44] Sébastien Shulz. 2019. Un logiciel libre pour lutter contre l’opacité du système sociofiscal. Revue francaise de science
politique 69, 5 (2019), 845–868.

[45] Julien Signoles. 2011. The Calendar OCaml library. https://github.com/ocaml-community/calendar

[46] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan

Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-

Béguelin. 2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

[47] Jonathan Turner. 2016. Shape of errors to come. https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html.

[48] Jérôme Vouillon and Vincent Balat. 2014. From bytecode to JavaScript: the Js_of_ocaml compiler. Software: Practice
and Experience 44, 8 (2014), 951–972.

[49] Wikipedia contributors. 2021. Code of Ur-Nammu — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/

index.php?title=Code_of_Ur-Nammu&oldid=998720276 [Online; accessed 22-Feb-2021].

[50] Jakub Zakrzewski. 2018. Towards verification of Ethereum smart contracts: a formalization of core of Solidity. In

Working Conference on Verified Software: Theories, Tools, and Experiments. Springer, 229–247.

https://github.com/ocaml/Zarith
https://github.com/ocaml/Zarith
https://www.franceinter.fr/emissions/secrets-d-info/secrets-d-info-27-janvier-2018
https://www.franceinter.fr/emissions/secrets-d-info/secrets-d-info-27-janvier-2018
http://cambium.inria.fr/~fpottier/menhir/
https://doi.org/10.1007/978-3-642-34176-2_2
https://github.com/ocaml-community/calendar
https://www.fstar-lang.org/papers/mumon/
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
https://en.wikipedia.org/w/index.php?title=Code_of_Ur-Nammu&oldid=998720276
https://en.wikipedia.org/w/index.php?title=Code_of_Ur-Nammu&oldid=998720276

	Abstract
	1 Introduction
	2 Background on Legal Texts & their Formalization
	2.1 Overview of Section 121
	2.2 Out-of-order Definitions
	2.3 Backpatching; Exceptions
	2.4 Re-interpreting
	2.5 Out-of-order Backpatching
	2.6 A Final Example
	2.7 Formal Insights on Legal Logic

	3 A Catala Tutorial
	3.1 Metadata: Turning Implicits Into Explicits
	3.2 Scopes and Contexts: Declarative Rules and Definitions
	3.3 Split Scopes: Embracing the Structure of the Law
	3.4 Complex Usage of the Default Calculus; Exceptions
	3.5 Recapping

	4 Formalizing Catala
	4.1 From Catala to the Scope Language
	4.2 From the Scope Language to a Default Calculus
	4.3 From the Default Calculus to a Lambda Calculus
	4.4 Discussion of Design Choices
	4.5 Certifying the Translation

	5 The Catala Compiler
	5.1 Usability
	5.2 Performance
	5.3 Extensible Compiler Backend

	6 Putting Catala to Work
	6.1 Interacting with Lawyers
	6.2 A Look Back to Section 121
	6.3 Case Study: French Family Benefits

	7 Conclusion & Related Work
	Acknowledgments
	References

