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ABSTRACT

Patients with diabetes who are self-monitoring have to decide right
before each meal how much insulin they should take. A standard bo-
lus advisor exists, but has never actually been proven to be optimal
in any sense. We challenged this rule applying Reinforcement Learn-
ing techniques on data simulated with T1DM, an FDA-approved
simulator developped by [3] modeling the gluco-insulin interac-
tion. Results show that the optimal bolus rule is fairly different
from the standard bolus advisor, and if followed can actually avoid
hypoglycemia episodes.
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1 INTRODUCTION

Diabetes & bolus advisor. Diabetes is a major disease which re-
quires, amongst many things, patients to keep their blood glucose
(BG) levels in check. To get an idea of commonly accepted levels: if
the BG is lower than 70 mg/dL, the patient is in hypoglycemia, if
higher than 180 mg/dL, the patient is in hyperglycemia and other-
wise in normoglycemia, the ideal is to be around 112.5 mg/dL. When
BG is too low, the patient must take carbohydrates to compensate.
When it is too high, the patient must take external insulin in order
to compensate low pancreatic activity. Insulin intake can be done
via an insulin pump which injects continuously varying amounts
throughout the day. Most patients however are still injecting punc-
tually, most of the time prior to their meals in order to prepare for
the future carbohydrate intake and avoid hyperglycemia.

A standard rule to follow for pre-meal self-injections of insulin
is the following piecewise linear formula : for a given measure of
blood glucose BG and an intake of carbohydrates CHO, one should
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take the following bolus! quantity :

bolus(CHO, BG) = =2 + max{BG ~ BGrarger, 0} 1)
CIR CF

in order to reach the BG target level BG¢qrge;. In this rule, commonly
known as bolus advisor, coefficients CIR and CF correspond to the
carbohydrate-to-insulin ratio and the correction factor respectively,
both being specific to each individual and can be evaluated by
medical tests and usually are fluctuant during the day. The first
ratio in the rule compensates for carbohydrates intake and the
second ratio compensates for excessively high BG levels.

Related works. A lot of the research around blood glucose man-
agement for diabetes focuses on the artificial pancreas, so the case
where the patient is equipped with an insulin pump. The interested
reader can find an extensive review here [1]. For self-monitoring,
[6] worked on the best delivery of insulin drugs to facilitate BG
management. Based on a complex diabetes simulator, the authors
of [2] and [7] worked on learning adaptively coefficients (CIR, CF)
which is crucial for deployment.

Objective. Although the bolus advisor makes sense, there has
not been any study of its performance in its use for patients who
are self-monitoring. In this study, we rely on simulated data for
type-I diabetes patients and a model-free approach to actually learn
the optimal bolus function, tailoring it to meal plans. Using the
vocabulary of Reinforcement Learning, we show how to learn non
parametric policies, the function giving insulin dosis based on BG
readings and auxiliary information, that outperforms the standard
advisor for a given meal pattern.

2 METHODOLOGY

The problem will be framed as a Markov Decision Process, as pre-
sented in the first subsection. The resolution technique, a model-free
Reinforcement Learning approach, will be presented next. Finally,
we will talk about the use of the simulator available to generate the
necessary data for our experiments.

2.1 Markov Decision Process

To model the insulin intake process we consider a Markov Decision
Process M = (8, A, R, T) where (S, A) denote the state and action
spaces, R is the reward function and T is the transition function.
Time steps are set on meals, which follow a strict regular plan.
The state variable S; contains the meal identifyier ID_meal;, a
categorical variable, and the BG reading BG; registered before the

!Bolus insulin corresponds to rapid insulin injections whereas basal insulin corre-
sponds to long-term insulin.
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Reward function associated to blood glucose readings
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Figure 1: Reward function for BG levels inspired by [4],
where the authors proposed to build a function centered at
BG level 112.5 mg/dL and symmetric through reference lev-
els, shown with vertical lines.

meal. The action variable A; contains the insulin dose INS; taken
before the meal. Based on the meal plan, we also know the amount of
carbohydrates associated with the meal CHO;, which should simply
be a function of ID_meal;. The reward R; received is a function of
BG;, as represented in figure 1 which is indicative of the wellness
of the BG profile: the closer it is to 112.5 mg/dL the better.

Let us call policy any function = which maps S to A i.e. any
function which to a couple (ID_meal, BG) assigns an insulin recom-
mendation INS. Writing IT the set of policies, we ought to find 7%,
the policy maximizing cumulative rewards:

7 = arg max Enr [ 210 v Re] (2

where discount factor y € (0, 1) is chosen by the user and indicates
how much long-term rewards matter. Note that the standard bolus
advisor from equation 1 belongs to II.

2.2 Q-Learning with function approximation

For any policy 7 € II and any couple (s, a) € S X A, consider the
state-action value functions

Qn(s.a) = Epn [ 2750 Y RelSo = 5,Ag = a] . (3)

Because our state and action spaces are continuous, a common

approach to solve the optimization problem is to parameterize

the state-action value functions and find the optimal parameters

instead. In our case, we will consider the following linear function
approximation of Q(s, a) for s = (ID_meal, BG), a = INS:

Qa(s.0) =28 T8 _ a5 62 (Bo)pDS (1NS)  (4)

with vector parameter @. The set of functions ¢B6 and #INS are taken
as radial basis functions, centered uniformly on their respective
grids. The scaling was made in order to have a certain percentage p
of overlap amongst neighbour functions. The number of functions
B handles the granularity of the grid.

Linear approximation scheme is widely used in the RL literature,
some details can be found in chapter 9 of [8].
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Note that in our context we face the deadly triad issue [8] since
we jointly apply bootstrap, function approximation and off-policy
learning. In order to alleviate this issue, we use a frozen set @(/70zen)
to stabilize target value and apply replay memory to break temporal
dependencies between transitions. This strategy has shown good
results for instance in [5] where Deep Neural Networks were used
as function approximators for Atari game controllers.

2.3 Gluco-Insulin interactions Simulator

T1DM simulator (2008 version, accessed throughout Python imple-
mentation [9]) is described in detail in [3]. It models the glucose
and insulin dynamics taking into account
o for glucose : endogenous production, rate of appearance,
utilization and renal extraction
o for insulin : rate of appearance from the subcutaneous tissue
and insulin degradation.
The simulator takes into account physiology, a given meal scenario
and any insulin basal/bolus policy. It also provides good base values
for Carbohydrate-to-Insulin Ratio, Correction Factor and Basal Rate
for a given physiology.
Although it is built for continuous glucose monitoring, we can
use it to generate data in the self-monitoring setting. Using the
simulator, the data generated is a set alike

(BGr, CHOy, INS),-, 5)

with a time step of 3 minutes and where the carbohydrates in-
take depends on the user-specified meal plan and the insulin level
corresponds to the bolus insulin which is specified by the user.
In our case, the insulin component was sampled uniformly on a
proper range of values. The data is then summarized to pre-meal
observations as

(ID_mealy, BG, CHO, INS, Ry)remeal_times- (6)

3 NUMERICAL EXPERIMENTS

Experiment outline. We proceeded as follows :

e Step 0 : choose meal scenario of interest and virtual patient

e Step 1 : approximate optimal coefficients for the baseline
bolus advisor via grid search (policy )

e Step 2 : simulate a large amount of data following this meal
scenario and exploring randomly the insulin intakes

e Step 3 : approximate optimal bolus from simulated data with
RL approach (policy 75+)

e Step 4 : simulate validation data following policies 79 and
7+, compare policy functions and daily glycemic profiles
obtained.

Meal scenario. We chose the following meal scenario:

ID_meal | Meal  Time of day CHO(g)

1 | breakfast 6 am 50
2 lunch 12 am 60
3 snack 3 pm 15
4 | dinner 8 pm 80
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Figure 2: Bolus advisor 7 (left) and 74+ found by Q-Learning
with function approximation (right) for each virtual patient
(sorted by increasing number). One can observe essentially
two things from those graphs : first, it looks as if patient
#001 and #002 are closer to each other than to patient #003 in
terms of physiology otherwise we would not find the result
we did. However the hope to get out a new generic rule seems
difficult in this situation. Second, and this is what shows the
algorithm took into account sequentiality of the meals and
injections : the meal with most carbs does not necessarily re-
quire most insulin, which is a fundamental difference from
the baseline advisor.
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Figure 3: Average BG profiles for the three virtual patients
(sorted increasingly by number) for each policy applied, 7
in red and 7y in light blue. For all adults, the algorithm ba-
sically learned to reduce insulin intake at last meal in or-
der to reduce nightly hypoglycemia at the cost of often mi-
nor hyperglycemia. The changes are minor in the case of
Adult #002, but in Adult #003 and #001 it centers the BGlevels
around target 112.5 mg/dL.
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Simulation details. The procedure above was applied to adults
#001, #002 and #003 from simulator T1IDM. We simulated for each
of them around 8 years of data which amounts to 11680 obser-
vations (meals) each. We based our grid search for 7y from the
following bounds : CIR € [3;30], CF € [0.4;2.8] and BGtarger €
[100 mg/dL; 150 mg/dL]. For the Q-Learning algorithm, we set B =
8, giving an 8 by 8 grid of the (BG, INS) plane and we set p = 0.2
which gave, from our qualitative evaluation, satisfying result.

Based on the initial data generated, the policies were tested for
the same virtual patients (separately, each adult has his/her policy)
during 45 days, which is sufficient since the BG enters a stationary
state because meal scenario was set deterministic.

Result disposition. In table 1, we included the distribution of
glycemic levels on the test data, essentially showing that for adults
#001 and #003, policy 7z lessens the BG variations outside nor-
moglycemic range compared to 7p. In figure 2 we present jointly
the two policies for each patient, in the left column the standard
bolus advisor 79 and in the right column the RL-optimized policy
7. In figure 3 we compare the BG average daily profiles obtained
between for the two policies (7g+ is in blue).

BG Adult #001  Adult #002  Adult #003
distribution my mzr w9 Ty om0 Ty
[40,70) .07 .00 .00 .00 .08 .00
[70,112.5) .35 37 .53 58 .18 .20
[112,180) .39 A7 .47 42 .35 .35
[180,350) .19 .16 .00 .00 .35 .39
[350, 600] .00 .00 .00 .00 .04 .06

Table 1: BG distribution for both policies and each patient.

Policies found, figure 2. First, policies m5+ are quite different in
form compared to 7y and their form varies with patients. Second,
for a given BG level, the recommended bolus does not necessarily
increase with CHO amount ; we tend to give more insulin at lunch
rather than at dinner, which impacts greatly the BG profile. Typi-
cally the patient will be less at risk from nocturnal hypoglycemia
which is a well-known issue in the endocrinology community. The
policy we proposed properly took into consideration the meal sce-
nario in its computations in order to look at future time steps
and prevent complications. One may also note that the bolus ad-
visors calibrated sometimes recommend decreasing amounts of
insulin with increasing BG level: a great example of that is the
lunch recommendations for adults #001 and #002 : when BG goes
over 300 mg/dL the recommended insulin level drops. This is actu-
ally due to the scarcity of the data collected within this area so it
should be considered as a numerical artefact.

Daily BG profile comparison, figure 3. Let us focus on Adult #001,
whose data is represented in the upper graph. The baseline re-
tained induces low BG during the night (ranging in 70 mg/dL to
100 mg/dL) whilst it stays quite higher than 112.5 mg/dL from
6am to 3pm. The policy we found (in blue) eliminates night hypo-
glycemia, traded-off for a two hours period in mild hyperglycemia
(<250 mg/dL) during dinner and a more smoothed-out afternoon.
For Adult #002, the two policies seem quite equivalent. For Adult
#003, we trade-off the night hypoglycemic section by hyperglycemia
on the three main meal times.
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4 DISCUSSION

Contributions. In this work we challenge a commonly used bo-
lus advisor by relying on virtual patients data, using TIDM sim-
ulator [3] and a model-free approach from Reinforcement Learn-
ing. The policies found bring BG levels closer to reference level of
112.5 mg/dL and in two out of the three adults managed to avoid
nocturnal hypoglycemia. These first results attest that a proper
bolus advisor does need to be tailored to a patient’s physiology
(as expressed in the standard bolus advisor through personalized
coefficients (CIR, CF)), but they should also be tailored to meal
and activity plans, which is what we propose here. The code de-
veloped for those experiments is available at https://github.com/
FredericLoge/T1DM_glearning.

Future work. We are considering three developments of this work.
First, we would like to extend the Reinforcement Learning approach
using neural networks as function approximators to take into ac-
count historical data properly. Second, instead of optimizing only
bolus insulin intake, we could jointly optimize meal and potential
activity plans so as to not stress the body with high BG variations.
Last but not least, we would like to investigate how quickly we
could learn the optimal policies we found here, which did require
years of simulated data with randomized insulin intakes, which is
obviously unfeasible in real-life.
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