
HAL Id: hal-03162526
https://inria.hal.science/hal-03162526

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Primal Wasserstein Imitation Learning
Robert Dadashi, Léonard Hussenot, Matthieu Geist, Olivier Pietquin

To cite this version:
Robert Dadashi, Léonard Hussenot, Matthieu Geist, Olivier Pietquin. Primal Wasserstein Imitation
Learning. ICLR 2021 - Ninth International Conference on Learning Representations, May 2021,
Vienna / Virtual, Austria. �hal-03162526�

https://inria.hal.science/hal-03162526
https://hal.archives-ouvertes.fr

Primal Wasserstein Imitation Learning

Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin

Google Research, Brain Team

Abstract

Imitation Learning (IL) methods seek to match the behavior of an agent with that of an expert.
In the present work, we propose a new IL method based on a conceptually simple algorithm: Primal
Wasserstein Imitation Learning (PWIL), which ties to the primal form of the Wasserstein distance
between the expert and the agent state-action distributions. We present a reward function which is
derived offline, as opposed to recent adversarial IL algorithms that learn a reward function through
interactions with the environment, and which requires little fine-tuning. We show that we can
recover expert behavior on a variety of continuous control tasks of the MuJoCo domain in a sample
efficient manner in terms of agent interactions and of expert interactions with the environment.
Finally, we show that the behavior of the agent we train matches the behavior of the expert with
the Wasserstein distance, rather than the commonly used proxy of performance.

1 Introduction
Reinforcement Learning (RL) has solved a number of difficult tasks whether in games [Tesauro, 1995,
Mnih et al., 2015, Silver et al., 2016] or robotics [Abbeel and Ng, 2004, Andrychowicz et al., 2020].
However, RL relies on the existence of a reward function, that can be either hard to specify or too
sparse to be used in practice. Imitation Learning (IL) is a paradigm that applies to these environments
with hard to specify rewards: we seek to solve a task by learning a policy from a fixed number of
demonstrations generated by an expert.

IL methods can typically be folded into two paradigms: Behavioral Cloning [Pomerleau, 1991,
Bagnell et al., 2007, Ross and Bagnell, 2010] and Inverse Reinforcement Learning [Russell, 1998, Ng
et al., 2000]. In Behavioral Cloning, we seek to recover the expert’s behavior by directly learning a
policy that matches the expert behavior in some sense. In Inverse Reinforcement Learning (IRL), we
assume that the demonstrations come from an agent that acts optimally with respect to an unknown
reward function that we seek to recover, to subsequently train an agent on it. Although IRL methods
introduce an intermediary problem to solve (i.e. recovering the environment’s reward) they offer the
benefit of being less sensitive to distributional shift [Pomerleau, 1991], generalizing to environments
with possibly changing dynamics [Piot et al., 2013], or recovering a near-optimal agent from suboptimal
demonstrations [Brown et al., 2019, Jacq et al., 2019].

However, IRL methods are usually based on an iterative process alternating between reward
estimation and RL, which might result in poor sample-efficiency. Earlier IRL methods [Ng et al.,
2000, Abbeel and Ng, 2004, Ziebart et al., 2008] require multiple calls to a Markov decision process
solver [Puterman, 2014], whereas recent adversarial IL approaches [Finn et al., 2016, Ho and Ermon,
2016, Fu et al., 2018] interleave the learning of the reward function with the learning process of the
agent. Adversarial IL methods are based on an adversarial training paradigm similar to Generative
Adversarial Networks (GANs) [Goodfellow et al., 2014], where the learned reward function can be
thought of as the confusion of a discriminator that learns to differentiate expert transitions from non
expert ones. These methods are well suited to the IL problem since they implicitely minimize an
f -divergence between the state-action distribution of an expert and the state-action distribution of the

* Correspondence to Robert Dadashi: dadashi@google.com.

1

ar
X

iv
:2

00
6.

04
67

8v
1

 [
cs

.L
G

]
 8

 J
un

 2
02

0

learning agent [Ghasemipour et al., 2019, Ke et al., 2019]. However the interaction between a generator
(the policy) and the discriminator (the reward function) makes it a minmax optimization problem,
and therefore comes with practical challenges that might include training instability, sensitivity to
hyperparameters and poor sample efficiency.

In this work we use the Wasserstein distance as a measure between the state-action distributions
of the expert and of the agent. Our approach is novel in the fact that we consider the problem of
minimizing the Wasserstein distance through its primal formulation. We introduce an upper bound
to the Wasserstein distance, which we verify empirically to be tight, and infer a conceptually simple
reward function from it. The inferred reward function is non-stationary similarly to adversarial IL,
but it is not re-evaluated as the agent interacts with the environment, therefore the reward function
we define is computed offline. Crucially, this leads to a problem which is not a minmax optimization
problem, and requires little fine tuning.

We make the following contributions. We introduce a reward function computed offline based on
an upper bound of the primal form of the Wasserstein distance that does not need to be re-computed
during the training procedure. We present a true distance to compare the behavior of the expert
and the behavior of the agent, rather than using the common proxy of performance with respect to
the true return of the task we consider (which is unknown in general). The method we present is
conceptually simple and we show that it is able to recover expert behavior in MuJoCo environments
with sample efficiency comparable to state-of-the-art methods both in terms of agent interactions with
the environments and in terms of expert interactions with the environments.

2 Background and Notations
Markov decision processes We describe environments as episodic Markov Decision Processes
(MDP) with finite time horizon [Sutton and Barto, 2018] (S,A,P, r, γ, ρ0, T), where S is the state
space, A is the action space, P is the transition kernel, r is the reward function, γ is the discount factor,
ρ0 is the initial state distribution and T is the time horizon. We will denote the dimensionality of S
and A as |S| and |A| respectively. A policy π is a mapping from states to distributions over actions; we
denote the space of all policies by Π. In RL, the goal is to learn a policy π that maximizes the expected
sum of discounted rewards it encounters, that is, the expected return. Depending on the context, we
might use the concept of a cost c rather than a reward r [Puterman, 2014], which essentially moves the
goal of the policy from maximizing to minimizing its return.

State action distributions Suppose a policy π visits the successive states and actions s1, a1, . . . , sT , aT
during an episode, we define the empirical state-action distribution ρ̂π as:

ρ̂π =
1

T

T∑
t=1

δst,at ,

where δst,at is a Dirac distribution centered on (st, at). Similarly, suppose we have a set of expert
demonstrations D = {se, ae} of size D, then the associated empirical expert state-action distribution
ρ̂e is defined as:

ρ̂e =
1

D

∑
(s,a)∈D

δs,a.

Wasserstein distance Suppose we have the metric space (M,d) where M is a set and d is a metric
onM . Suppose we have µ and ν two distributions onM with finite moments, the p-th order Wasserstein
distance [Villani, 2008] is defined as:

Wp
p (µ, ν) = inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)pdγ(x, y),

2

where Γ(µ, ν) is the set of all couplings between µ and ν.
In the rest of the paper we only consider distributions with finite support. A coupling between two

distributions of support cardinal T and D is a doubly stochastic matrix of size T ×D. We note Γ the
set of all doubly stochastic matrices of size T ×D, that is:

Γ =
{
γ ∈ RT×D+ | ∀j ∈ [1 : D],

T∑
i′=1

γ[i′, j] =
1

D
,∀i ∈ [1 : T],

D∑
j′=1

γ[i, j′] =
1

T

}
.

Optimizing a Wasserstein distance between distributions of state-action pairs requires the definition
of a metric in the space (S,A). Defining a metric in an MDP can be highly non trivial [Givan et al.,
2003, Ferns et al., 2004]; we extend on this subject in the appendix. From now on, we will assume the
existence of a metric d : (S,A)× (S,A) 7→ R+.

3 Method
In this section, we present the theoretical motivation of our approach, which is the minimization
of the Wasserstein distance between the state-action distributions of the agent and the expert. We
introduce a reward based on an upper bound of the Wasserstein distance inferred from a relaxation
of the optimal coupling condition, and present the resulting algorithm: Primal Wasserstein Imitation
Learning (PWIL).

3.1 Wasserstein distance minimization
Central to our approach is the minimization of the Wasserstein distance between the state-action
distribution of the policy we seek to train ρ̂π and the state-action distribution of the expert ρ̂e. In
other words, we aim at optimizing the following problem:

inf
π∈Π
W2

2 (ρ̂π, ρ̂e) = inf
π∈Π

inf
γ∈Γ

T∑
i=1

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γ[i, j]. (1)

We can interpret the Wasserstein distance using the earth’s movers analogy [Villani, 2008]. Consider
that the state-action pairs of the expert are D holes of mass 1

D and that the state-action pairs of the
policy are piles of dirt of mass 1

T . A coupling γ is a transport strategy between the piles of dirt and
the holes, where γ[i, j] stands for how much of the pile of dirt i should be moved towards the hole j.
The optimal coupling is the one that minimizes the distance that the earth mover travels to put all
piles of dirt to holes. Note that to compute the optimal coupling, we need knowledge of the locations
of all piles of dirt. In the context of RL, this means having access to the full trajectory generated by π.

From now on, we write γ∗π as the optimal coupling for the policy π, that is:

γ∗π = arg min
γ∈Γ

T∑
i=1

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γ[i, j].

We have:

inf
π∈Π
W2

2 (ρ̂π, ρ̂e) = inf
π∈Π

T∑
i=1

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γ∗π[i, j]︸ ︷︷ ︸
=c∗i,π

. (2)

In the Equation (2), we have introduced c∗i,π, which we interpret as a cost to minimize using RL. As
c∗i,π depends on the optimal coupling γ∗π, we can only define c∗i,π at the very end of an episode. This
can be problematic if an agent learns in an online manner or in large time-horizon tasks. That is why
we introduce an upper bound to the Wasserstein distance that yields a cost we can compute online,
based on a suboptimal coupling strategy.

3

3.2 Greedy coupling
In this section we introduce the greedy coupling γgπ ∈ Γ, defined recursively for 1 ≤ i ≤ T as:

γgπ[i, :] = arg min
γ[i,:]∈Γi

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γ[i, j] (3)

with Γi =
{
γ[i, :] ∈ RD+

∣∣∣ D∑
j′=1

γ[i, j′] =
1

T
,∀j′ ∈ [1 : D],

i∑
i′=1

γ[i′, j′] ≤ 1

D

}
Similarly to Equation (1), Equation (3) can be interpreted using the earth mover’s analogy. Contrary
to Equation (1) where we assume knowledge of the positions of the T piles of dirts, we now consider
that they appear sequentially, and that the earth’s mover need to transport the new pile of dirt to holes
right when it appears. To do so, we derive the distances to all holes and move the new pile of dirt to
the closest remaining available holes, hence the greedy nature of it. In Equation (3), the constraint∑D
j′=1 γ[i, j′] = 1

T means that all the dirt that appears at the i-th timestep needs to be moved, and the
constraint ∀j′ ∈ [1 : D],

∑i
i′=1 γ[i′, j′] ≤ 1

D means that we cannot fill the holes more than their capacity
1
D . We show the difference between the greedy coupling and the optimal coupling in Figure 1, and
provide the pseudo-code to derive it in Algorithm 1.

Figure 1: Illustration of the difference between the a) greedy coupling and the b) optimal coupling. We
present an MDP where we drop the dependency on the action. The state space is R and the metric
associated is the Euclidean distance. We note the states visited by the policy: sπ1 , sπ2 , sπ3 and the states
visited by the expert: se1, se2, se3. When the policy encounters the state sπ2 , and because we do not know
sπ3 yet, the greedy coupling strategy consists in coupling it with se2 although the optimal coupling
strategy would be to couple it with se3. Note that the total cost with the greedy coupling is 7 whereas
the total cost with the optimal coupling is 5. This highlights that the optimal coupling needs knowledge
about the whole policy’s trajectory to be derived.

3.3 An upper bound to the Wasserstein distance
We can now define an upper bound of the Wasserstein distance using the greedy coupling (since by
definition it is subotpimal):

inf
π∈Π
W2

2 (ρ̂π, ρ̂e) = inf
π∈Π

T∑
i=1

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γ∗π[i, j]

≤ inf
π∈Π

T∑
i=1

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γgπ[i, j] (4)

In Section 4, we empirically validate this upper bound. We can infer a cost from Equation (1) at each
timestep i:

cgi,π =

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γgπ[i, j]. (5)

Note that the greedy coupling γgπ[t, .] defined in Equation (3) is dependent on all the previous state-
actions visited by the policy π, which makes the cost cgi,π non-stationary, similarly to adversarial IL

4

methods. Although this cost function is non-stationary, it does not have to be re-estimated as the agent
interacts with the environment, and hence is said to be derived offline. We can infer a reward from the
cost,

ri,π = f(cgi,π),

where f is a monotonously decreasing function. Crucially, we have defined a reward function that
we seek to maximize, without introducing an inner minimization problem (which is the case with
adversarial IL approaches).

We can now derive an algorithm building on this reward function (Algorithm 1). The algorithm
presented is written using pseudo-code for a generic agent A which implements a policy πA, it observes
tuples (s, a, r, s′) and possibly updates its components. This formulation is general enough to show that
our method is independent of the RL algorithm used. The algorithm computes the greedy coupling
with a complexity O((|S| + |A|)D). Note that in the case where T = D, computing the greedy
coupling is simply a lookup of the expert state-action pair that minimizes the distance with the agent
state-action pair, followed by a pop-out of this minimizing expert state-action pair from the set of
expert demonstrations.

Algorithm 1 PWIL: Primal Wasserstein Imitation Learning

Input: Expert demonstrations D = {sej , aej}j∈[1:D], Agent A, number of episodes N
for k = 1 to N do
Copy expert demonstrations with weight: D′ := {sej , aej , wej}j∈[1:D], with wej = 1

D
Reset environment, initial state s
for i = 1 to T do
Take action a := πA(s), observe next state s′
Initialize weight wπ := 1

T
Initialise cost c := 0
while wπ > 0 do
Compute se, ae, we := arg min(se,ae,we)∈D′ d((s, a), (se, ae))
if wπ ≥ we then
c := c+ wed((s, a), (se, ae))2

wπ := wπ − we
D′.pop(se, ae, we)

else
c := c+ wπd((s, a), (se, ae))2

we := we − wπ
wπ := 0

r := f(c)
A observes (s, a, r, s′)
A updates itself
Update state s := s′

4 Experiments
In this section, we present the implementation of PWIL and perform an empirical evaluation that
answers the following questions: 1) Can PWIL recover expert behavior? 2) How sample efficient is
PWIL? 3) Does PWIL actually minimize the Wasserstein distance between the distributions of the
agent and the expert? We also show the dependence of PWIL on multiple of its components through
an ablation study. The complete description of the architecture of the agent and the hyperparameters
search is provided in appendix; we will open-source the code in the near future.

5

4.1 Implementation
We test our method on five environments from the OpenAI Gym MuJoCo suite [Todorov et al.,
2012, Brockman et al., 2016]: Walker2d-v2, Ant-v2, HalfCheetah-v2, Humanoid-v2, Hopper-v2. For
each environment, multiple demonstrations are gathered using a DDPG agent with a distributional
critic [Lillicrap et al., 2016, Barth-Maron et al., 2018] trained on the actual reward of these environments.
Similarly to Ho and Ermon [2016], we subsample demonstrations by a factor of 20: we select one out of
every 20 transitions with a random offset at the beginning of the episode. The subsampling of expert
demonstrations makes the imitation task harder, so that a pure behavioral cloning approach does not
perform to the level of the expert.

Central to our method is the existence of a metric between state-action pairs. We use the standardized
Euclidean distance which is the L2 distance, weighted along each dimension by the inverse standard
deviation of the expert demonstrations. From the cost ci computed using Equation (5), we define a
reward using the following:

ri = α exp(− βT√
|S|+ |A|

ci). (6)

For all environments, we use α = 5 and β = 5. We pick f : x 7→ exp(−x) as the monotonously
decreasing function to get a reward from a cost because it is smooth, and has a bounded range [0, 1],
which makes it well suited for a categorical distributional critic [Bellemare et al., 2017].

We test our method against a state-of-the-art imitation learning algorithm: Discriminator Actor
Critic (DAC) [Kostrikov et al., 2019]. DAC is based on GAIL, and introduces an off-policy algorithm
(TD3 [Fujimoto et al., 2018]) rather than an on-policy algorithm (TRPO [Schulman et al., 2015]). We
use the open-source code provided by the authors. For our method, we use a DDPG agent [Lillicrap
et al., 2016] with a distributional critic [Bellemare et al., 2017, Barth-Maron et al., 2018] (see details in
the appendix). We initialize the replay buffer by filling it with expert state-action pairs with maximum
reward (i.e. α).

We train PWIL and DAC in the limit of 1M environment interactions (2.5M for Humanoid) on
5 seeds. We run experiments with multiple numbers of demonstrations: 1, 4, 11 (consistently with
previous work [Ho and Ermon, 2016, Kostrikov et al., 2019]). Every 10k environment steps, we
perform 10 episodes rollouts per seed of the policy without exploration noise and report performance
with respect to the environment’s original reward in Figure 2. Learning curves on the inferred
reward can be found in the appendix. We also provides visualisations of the final agents in https:
//sites.google.com/view/wasserstein-imitation.

4.2 Results
In Figure 2, PWIL shows consistent improvement on final performance for Hopper, Walker2d and
Humanoid over DAC and similar performance for HalfCheetah. For Ant, PWIL outperforms DAC for
11 demonstrations and reaches similar performance for 1 and 4 demonstrations. Overall PWIL recovers
expert behavior better than DAC over the considered environments at the 1M steps mark.

In terms of sample efficiency, DAC outperforms PWIL on HalfCheetah and Ant and has similar
performance for Hopper and Walker2d. This seems rather contradictory with the claim that GAIL-like
methods have poor sample efficiency. However, while DAC has state-of-the-art sample efficiency on all
tasks but Humanoid, it requires careful tuning of the discriminator, including e.g., a scheduled learning
rate for the actor. We did not run a hyperparameter search to tune DAC on Humanoid, which might
explain its poor performance on the task (results for Humanoid were not reported in [Kostrikov et al.,
2019]). Nevertheless, this exemplifies the brittleness we mentioned for GAIL-like approaches.

Remarkably, PWIL is able to consistently learn policies on Humanoid with an average score over
6000 even with a single demonstration, which means that the agent we train can actually walk (some
approaches in IL considers that Humanoid is solved when it can stand which corresponds to a score
of 5000). Interestingly, on all environments but Humanoid, both PWIL and DAC are able to learn a
policy with near-optimal expert performance with a single demonstration.

6

https://sites.google.com/view/wasserstein-imitation
https://sites.google.com/view/wasserstein-imitation

Figure 2: Mean and standard deviation return of the evaluation policy over 10 rollouts and 5 seeds,
reported every 10k environment steps. The return here is in term of the environment’s original reward.
Top row: 1 demonstration, bottom row: 11 demonstrations.

Figure 3: Mean of the Wasserstein distance between the state-action distribution of the evaluation
policy and the state-action distribution of the expert over 10 rollouts and 5 seeds, reported every 10k
environment steps. For PWIL, we include the upper bound on the Wasserstein distance based on the
greedy coupling defined in Equation (4). Top row: 1 demonstration, bottom row: 11 demonstrations.

Wasserstein distance. In Figure 3, we show the Wasserstein distance to expert demonstrations
throughout the learning procedure for PWIL and DAC. For both methods, we notice that the distance
decreases while learning. PWIL leads to a smaller Wasserstein distance than DAC an all environments
but HalfCheetah where it is similar.

PWIL defines a reward from an upper bound to the Wasserstein distance between the state-action
distributions of the expert and the agent. We show in Figure 3 the Wasserstein distance as well as this
upper bound throughout the learning procedure. Notice that our upper bound is "empirically tight",
which validates the choice of the greedy coupling as an approximation to the optimal coupling.

We emphasize that this distance is useful in real settings of IL, regardless of the method used, i.e.

7

settings where we cannot have access to the actual reward of the task. Note that the convergence
in terms of expected return (Figure 2) correlates with the convergence in terms of the Wasserstein
distance (Figure 3), which opens interesting directions for e.g. early stopping of IL training procedures.

4.3 Ablation Study
In this section, we present the evaluation performance of PWIL over 5 seeds in the presence of ablations
and report results in Table 1. We keep the hyperparameters of the original PWIL agent fixed. We
provide the learning curves in the appendix.

Hopper-v2 Walker2d-v2 Ant-v2 Humanoid-v2 HalfCheetah-v2
Expert 3548.0± 28.8 6131.7± 801.1 4177.0± 71.4 8966.3± 82.1 8879.1± 75.4
PWIL 3578.7± 14.3 5959.5± 142.5 4016.6± 69.3 6318.5± 2247.7 8975.4± 294.1
PWIL-state 3542.6± 55.7 3038.1± 1760.8 3277.2± 662.4 6640.8± 1960.2 9057.1± 727.8
PWIL-L2 3464.7± 46.2 4688.0± 2407.2 3212.2± 887.7 254.8± 95.3 2580.6± 2477.9
PWIL-nofill 3535.6± 70.7 5251.7± 677.7 3624.1± 151.9 5597.8± 2357.9 8828.8± 137.2
PWIL-support 3548.8± 40.6 3349.4± 1999.4 2626.0± 1175.9 7137.8± 1599.5 2285.2± 1260.1

Table 1: Ablation study of PWIL. Evaluation performance of variants of PWIL trained for 1M steps
(2.5M for Humanoid) on 11 demonstrations. The numbers are the averages and standard deviations of
the returns for 50 rollouts (10 rollouts per seed).

PWIL-state In this version of PWIL, we do not assume that we have access to the actions taken by
the expert. Therefore, we try to match the state distribution of the agent with the state distribution
of the expert (instead of the state-action distribution). The setup is referred to as Learning from
Observation (LfO) [Torabi et al., 2018, Edwards et al., 2019]. The reward is defined similarly to
PWIL, using a state distance rather than a state-action distance. Note that in this version, we
cannot pre-fill the replay buffer with expert state-action pairs since we do not have access to actions.
Remarkably, PWIL-state recovers non-trivial behaviors on all environments. We leave the extensive
study of PWIL-state for future work.

PWIL-L2 In this version of PWIL, we use the Euclidean distance between state-action pairs, rather
than the standardized Euclidean distance. In other words, we do not weight the state-action distance by
the inverse standard deviation of the expert demonstrations along each dimension. There is a significant
drop in performance for all environments but Hopper-v2. This shows that the performance of PWIL is
sensitive to the quality of the MDP metric.

PWIL-nofill In this version, we do not prefill the replay buffer with expert transitions. This leads
to a drop in performance which is significant for Walker and Ant. This should not come as a surprise
since a number of IL methods leverage the idea of expert transitions in the replay buffer [Reddy et al.,
2020, Hester et al., 2018].

PWIL-support In this version of PWIL, we define the reward as a function of the following cost:

∀i ∈ [1 : T], ci,π = inf
γ1,...,γD∈R∑D
j=1 γj≤

1
T

D∑
j=1

d((sπi , a
π
i), (sej , a

e
j))

2γj .

We can interpret this cost in the context of Section 3 as the problem of moving piles of dirt of mass 1
T

into holes of infinite capacity. It is thus reminiscent of methods that consider IL as a support estimation
problem [Wang et al., 2019, Brantley et al., 2020]. This leads to a significant drop in performance for
Ant, Walker and HalfCheetah. Perhaps suprisingly, this boosts performance on Humanoid.

8

5 Related Work
Adversarial IL Similarly to our method, adversarial IL methods aim at matching the state-action
distribution of the agent with the distribution of the expert, using different measures of similarity.
For instance, GAIL [Ho and Ermon, 2016] considers the Shannon-Jensen divergence while AIRL [Fu
et al., 2018] considers the Kullback-Leibler divergence. In the context of GANs, Arjovsky et al.
[2017] show that replacing the f -divergence by the Wasserstein distance through the Kantorovich-
Rubinstein duality [Villani, 2008] leads to better training stability, which a number of methods in IL
have leveraged [Li et al., 2017, Lacotte et al., 2019, Kostrikov et al., 2019, Xiao et al., 2019, Liu et al.,
2020]. However, the Kantorovich-Rubinstein duality only holds for the W1 distance [Peyré et al., 2019],
its implementation comes with a number of practical approximations (e.g., weight clipping to ensure
Lipchitz continuity). Although these methods are based on the Wasserstein distance through its dual
formulation, they drastically differ from ours as they rely on a minmax optimization problem. Recent
approaches such as DAC [Kostrikov et al., 2019] demonstrate that adversarial IL approaches, while
based on GAIL, can be sample efficient. However, they implicitly rely on a carefully tuned discriminator
(e.g. network architecture, regularization strategy, scheduled learning rates, number of updates per
environment interactions) that needs to interact well with a carefully tuned RL agent. This leads to
potential brittleness, which is shown on Humanoid in Section 4. In contrast, the reward function we
present relies on only two hyperparameters.

Expert support estimation Another line of research in IL consists in estimating the state-action
support of the expert and define a reward that encourages the agent to stay on the support of the
expert [Piot et al., 2014, Schroecker and Isbell, 2017, Wang et al., 2019, Brantley et al., 2020, Reddy
et al., 2020]. Note that the agent might stay on the support of the expert without recovering its
state-action distribution. Soft Q Imitation Learning [Reddy et al., 2020] assigns a reward of 1 to all
expert transitions and 0 to all transitions the expert encounters; the method learns to recover expert
behavior by balancing out the expert transitions with the agent transitions in the replay buffer of a
value-based agent. Random Expert Distillation [Wang et al., 2019] estimates the support by using a
neural network trained on expert transitions whose target is a fixed random neural network, similarly
to [Burda et al., 2019]. Disagreement Regularized Imitation Learning [Brantley et al., 2020] estimates
the expert support through the variance of an ensemble of BC agents, and use a reward based on the
distance to the expert support and the KL divergence with the BC policies. Our method is similar in
some sense to these methods since it is based on the distance to the support of the expert, with a support
that shrinks through "pop-outs" to enforce the agent to visit the whole support. We showed in the
ablation study that "pop-outs" are sine qua non for recovering expert behaviour (see PWIL-support).

6 Conclusion
In this work, we present Imitation Learning as a distribution matching problem and introduce a reward
function which is based on an upper bound of the Wasserstein distance between the state-action
distributions of the agent and the expert. The reward function we introduce is offline, in the sense
that it does not need to be updated with interactions with the environment. It requires little tuning (2
hyperparameters) and it can recover near expert performance with as little as 1 demonstration on all
considered environments, even the challenging Humanoid.

A number of IL methods are developed on synthetic tasks, where the evaluation of the IL method
can be done with the actual return of the task. We emphasize that in our work, we present a true
measure of similarity between the expert and the agent, that we can thus use in real IL settings, that is
in settings where the reward of the task cannot be specified.

We think that our work opens multiple directions of research: the state-only version of PWIL learns
non-trivial behavior in all tasks we considered, and could thus be extended to changing environment
dynamics settings. Another interesting direction is the setting where a metric MDP cannot be specified
as naturally as in the tasks we considered, for example in visual based observations.

9

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine Learning, 2004.

Mohammed Amin Abdullah, Aldo Pacchiano, and Moez Draief. Reinforcement learning with wasser-
stein distance regularisation, with applications to multipolicy learning. European Workshop on
Reinforcement Learning, 2018.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous
in-hand manipulation. The International Journal of Robotics Research, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

JA Bagnell, Joel Chestnutt, David M Bradley, and Nathan D Ratliff. Boosting structured prediction
for imitation learning. In Advances in Neural Information Processing Systems, 2007.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy
gradients. International Conference on Learning Representations, 2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Kianté Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond suboptimal
demonstrations via inverse reinforcement learning from observations. In International Conference on
Machine Learning, 2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov decision
processes. AAAI Conference on Artificial Intelligence, 2020.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). International Conference on Learning Representations,
2016.

Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent policies
from observation. In International Conference on Machine Learning, 2019.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes. In
Conference on Uncertainty in Artificial Intelligence, 2004.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International Conference on Machine Learning, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforcement
learning. International Conference on Learning Representations, 2018.

10

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, 2018.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference on
Machine Learning, 2019.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. Conference on Robot Learning, 2019.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 2003.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information
Processing Systems, 2014.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In AAAI
Conference on Artificial Intelligence, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, 2016.

Alexis Jacq, Matthieu Geist, Ana Paiva, and Olivier Pietquin. Learning from a learner. In International
Conference on Machine Learning, 2019.

Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Siddhartha Srinivasa.
Imitation learning as f -divergence minimization. arXiv preprint arXiv:1905.12888, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation
learning. International Conference on Learning Representations, 2019.

Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, and Marco Pavone. Risk-sensitive
generative adversarial imitation learning. In International Conference on Artificial Intelligence and
Statistics, 2019.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. In Advances in Neural Information Processing Systems, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. International
Conference on Learning Representations, 2016.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
International Conference on Learning Representations, 2020.

Francisco S Melo and Manuel Lopes. Learning from demonstration using mdp induced metrics. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, 2000.

11

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Foundations and Trends in
Machine Learning, 2019.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Learning from demonstrations: Is it worth estimating
a reward function? In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, 2013.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted and reward-regularized classification for
apprenticeship learning. In International conference on autonomous agents and multi-agent systems,
2014.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 1991.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: imitation learning via regularized behavioral
cloning. International Conference on Learning Representations, 2020.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International Conference
on Artificial Intelligence and Statistics, 2010.

Stuart Russell. Learning agents for uncertain environments. In Conference on Computational learning
theory, 1998.

Yannick Schroecker and Charles L Isbell. State aware imitation learning. In Advances in Neural
Information Processing Systems, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. Nature, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 1995.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In International
Joint Conference on Artificial Intelligence, 2018.

Cédric Villani. Optimal transport: old and new. 2008.

Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, and Yiannis Demiris. Random expert distillation:
Imitation learning via expert policy support estimation. In International Conference on Machine
Learning, 2019.

Huang Xiao, Michael Herman, Joerg Wagner, Sebastian Ziesche, Jalal Etesami, and Thai Hong Linh.
Wasserstein adversarial imitation learning. arXiv preprint arXiv:1906.08113, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, 2008.

12

A Agent Architecture
The agent we use is DDPG [Lillicrap et al., 2016] with a twin distributional critic [Fujimoto et al., 2018].
The actor architecture is a 4-layer neural network: the first layer has size 256 with tanh activation
and layer normalization [Ba et al., 2016], the second layer and third layer have size 256 with elu
activation [Clevert et al., 2016], the last layer is of size the dimension of the action space, with a tanh
activation scaled to the action range of the environment. To enable sufficient exploration with use a
Gaussian noise layer on top of the last layer with standard deviation σ = 0.2, that we clip to the action
range of the environment. We evaluate the agent without exploration noise.

For the critic network we use a 4-layer neural network: the first layer has size 512 with tanh
activation and layer normalization, the second layer is of size 512 with elu activation, the third layer
is of size 256 with elu activation, the last layer is of dimension 101 with a softmax activation. The
101 neurons stand for the weights of the distribution supported within equal distance in the range
[−150, 150], as a categorical distribution [Bellemare et al., 2017].

We use the Adam optimizer [Kingma and Ba, 2015] with ε = 10−4 for both the critic and the actor.
We use a batch size of 256. We clip both gradients from the critic and the actor to limit their L2 norm
to 40.

We use a replay buffer of size 106, a discount factor γ = 0.99 and n step returns with n = 5. We
prefill the replay buffer with 50k state-action pairs from the set of demonstrations (which means that
we put multiple times the same expert transitions in the buffer).

We perform updates on the actor and the critic every k = 4 interactions with the environment. We
did run a hyperparameter search on the following parameters:

Parameters Values
ε 10−5, 10−4, 10−3

σ 0.1, 0.2, 0.3
k 2, 4, 8, 16

Table 2: DDPG hyperparameters search.

For the reward function, we did run a hyperparameter search on α and β with the following values:

Parameters Values
α 1, 5, 10
β 1, 5, 10

Table 3: Reward function hyperparameters search.

B Metrics in MDP
As PWIL is based on the Wasserstein distance, it relies on the existence of a metric in the MDP.
The problem of designing a metric in an MDP remains a challenge. Bisimulation metrics [Ferns
et al., 2004, Givan et al., 2003] define the concept of bisimilarity in MDPs via the following recurrent
definition: two states are bisimilar if they yield the same expected reward and transition to bisimulation
equivalence classes with equal probability. Recent work from Gelada et al. [2019] and Castro [2020]
extend bisimulation metrics to the function approximation setting. Previous work has also assumed the
existence of a MDP metric for imitation learning through kernel classification [Melo and Lopes, 2010]
and for policy regularization using the Wasserstein distance [Abdullah et al., 2018]. We think that
the problem of designing a metric and recovering the expert behavior through PWIL is an interesting
direction for future work.

13

C PWIL Learning Curves

Figure 4: Mean and standard deviation of the return of the DDPG agent while learning (over the 5
seeds). The return here is in term of the reward defined with Equation (6). Top row: 1 demonstration,
middle row: 4 demonstrations, bottom row 11 demonstrations.

14

Figure 5: Mean and standard deviation of the original environment returns of the evaluation policy
over 10 rollouts and 5 seeds, reported every 10k environment steps. Top row: 1 demonstation, middle
row: 4 demonstrations, bottom row: 11 demonstrations.

15

Figure 6: Mean of the Wasserstein distance between the state-action distribution of the evaluation
policy and the state-action distribution of the expert over 10 rollouts and 5 seeds, reported every 10k
environment steps. For PWIL, we include the upper bound on the Wasserstein distance based on the
greedy coupling defined in Equation (4). Top row: 1 demonstration, middle row: 4 demonstrations,
bottom row: 11 demonstrations.

16

D PWIL Ablation Study

Hopper-v2 Walker2d-v2 Ant-v2 Humanoid-v2 HalfCheetah-v2
Expert 3548.0± 28.8 6131.7± 801.1 4177.0± 71.4 8966.3± 82.1 8879.1± 75.4
PWIL 3544.9± 56.4 5517.8± 213.3 3184.5± 455.1 6636.6± 1781.2 9089.5± 276.6
PWIL-state 3538.9± 33.4 3546.0± 1726.0 1780.6± 1042.1 5147.8± 2802.5 4984.0± 3764.7
PWIL-L2 3442.1± 49.2 4228.6± 1838.4 212.6± 1007.7 244.1± 108.5 −587.3± 249.6
PWIL-nofill 3469.2± 55.7 1886.1± 1804.9 3315.5± 203.6 5379.3± 2428.3 8678.8± 1355.8
PWIL-support 3557.7± 15.6 1232.5± 96.6 2268.6± 1056.1 6382.6± 1610.6 3401.5± 1370.7

Table 4: Ablation study of PWIL. Evaluation performance of variants of PWIL trained for 1M steps
(2.5M for Humanoid) on 1 demonstrations. The numbers are the average and standard deviations of
the return with the environment’s original reward for 50 rollouts (10 rollouts per seed).

Hopper-v2 Walker2d-v2 Ant-v2 Humanoid-v2 HalfCheetah-v2
Expert 3548.0± 28.8 6131.7± 801.1 4177.0± 71.4 8966.3± 82.1 8879.1± 75.4
PWIL 3486.3± 81.3 5490.0± 787.7 3856.5± 124.6 5924.2± 2844.7 9140.8± 287.6
PWIL-state 3552.1± 49.5 2583.6± 1929.7 2865.1± 372.5 4950.9± 2656.5 7007.5± 3619.0
PWIL-L2 3474.8± 16.4 5476.2± 1587.5 2457.6± 872.8 282.3± 101.8 −386.2± 564.8
PWIL-nofill 3469.2± 55.7 1886.1± 1804.9 3315.5± 203.6 5379.3± 2428.3 8678.8± 1355.8
PWIL-support 3548.8± 24.4 1370.1± 270.9 3053.6± 517.6 6354.3± 1669.2 2117.6± 642.2

Table 5: Ablation study of PWIL. Evaluation performance of variants of PWIL trained for 1M steps
(2.5M for Humanoid) on 4 demonstrations. The numbers are the average and standard deviations of
the return with the environment’s original reward for 50 rollouts (10 rollouts per seed).

Hopper-v2 Walker2d-v2 Ant-v2 Humanoid-v2 HalfCheetah-v2
Expert 3548.0± 28.8 6131.7± 801.1 4177.0± 71.4 8966.3± 82.1 8879.1± 75.4
PWIL 3578.7± 14.3 5959.5± 142.5 4016.6± 69.3 6318.5± 2247.7 8975.4± 294.1
PWIL-state 3542.6± 55.7 3038.1± 1760.8 3277.2± 662.4 6640.8± 1960.2 9057.1± 727.8
PWIL-L2 3464.7± 46.2 4688.0± 2407.2 3212.2± 887.7 254.8± 95.3 2580.6± 2477.9
PWIL-nofill 3535.6± 70.7 5251.7± 677.7 3624.1± 151.9 5597.8± 2357.9 8828.8± 137.2
PWIL-support 3548.8± 40.6 3349.4± 1999.4 2626.0± 1175.9 7137.8± 1599.5 2285.2± 1260.1

Table 6: Ablation study of PWIL. Evaluation performance of variants of PWIL trained for 1M steps
(2.5M for Humanoid) on 11 demonstrations. The numbers are the average and standard deviations of
the return with the environment’s original reward for 50 rollouts (10 rollouts per seed).

17

Figure 7: Mean of the evaluation performance of different variants of PWIL over 10 rollouts and 5
seeds, reported every 10k environment steps. The return here is in term of the environment’s original
reward. Top row: 1 demonstation, middle row: 4 demonstrations, bottom row: 11 demonstrations.

18

	1 Introduction
	2 Background and Notations
	3 Method
	3.1 Wasserstein distance minimization
	3.2 Greedy coupling
	3.3 An upper bound to the Wasserstein distance

	4 Experiments
	4.1 Implementation
	4.2 Results
	4.3 Ablation Study

	5 Related Work
	6 Conclusion
	A Agent Architecture
	B Metrics in MDP
	C PWIL Learning Curves
	D PWIL Ablation Study

