
HAL Id: hal-03165732
https://inria.hal.science/hal-03165732v2

Preprint submitted on 2 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Improve type generic programming (slides)
Jens Gustedt

To cite this version:

Jens Gustedt. Improve type generic programming (slides). 2022. �hal-03165732v2�

https://inria.hal.science/hal-03165732v2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Improve type generic programming
ISO/IEC JTC 1/SC 22/WG14 N2890

WG21 P2304

Jens Gustedt

INRIA – Camus

ICube – ICPS
Université de Strasbourg

https://gustedt.gitlabpages.inria.fr/modern-c/

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 1 / 26

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2890.pdf
https://wg21.link/P2304
https://gustedt.gitlabpages.inria.fr/modern-c/


Introduction

Table of Contents

1 Introduction

2 A leveled specification

3 Existing type-generic features in C

4 Missing features

5 Design choices

6 Common extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 2 / 26



Introduction

Example

"Five" point tangent evaluation for approximation of a derivative:

(-func(x+2*h) + 8*func(x+h) - 8*func(x-h) + func(x-2*h))/(12*h)

With a macro?

// WARNING: multiple argument evaluation
#define TANGENT5(FUNC, X, H) \

(- FUNC((X)+2*(H)) + 8*FUNC((X)+ (H)) \
- 8*FUNC((X)- (H)) + FUNC((X)-2*(H)))/(12*(H))

How to create an interface that is simple and safe to use?
With a lambda:

auto const λ5 = [](double x, double h, double (*func)(double)) {
return (-func(x+2*h)+8*func(x+h)-8*func(x-h)+func(x-2*h))/(12*h);

};
// Can be used in function call or for a function pointer
double (*fp)(double, double, double (*)(double)) = λ5;

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 3 / 26



Introduction

Example

or so:

// freeze ε to δ and have the function parameter dependent
auto const λ5ε = [δ = ε](double x, typeof(x) func(typeof(x))) {
double h = δ * x;
return (-func(x+2*h)+8*func(x+h)-8*func(x-h)+func(x-2*h))/(12*h);

};

or so:

// also freeze a function, and have the parameter dependent
auto const λ5ε_func = [δ = ε, func = f](typeof(func(0)) x) {
auto h = ε * x;
return (-func(x+2*h)+8*func(x+h)-8*func(x-h)+func(x-2*h))/(12*h);

};

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 4 / 26



Introduction

Policy

extend the standard
valid code remains valid
new feature integrates syntaxtically and semantically

fix as much requirements as possible through constraints
specific syntax
explicit constraints

avoid new undefined behavior
only, if property is not (or hardly) detectable at translation time
or we leave design space to implementations

don’t mess with ABI
no changes
no extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 5 / 26



A leveled specification

Table of Contents

1 Introduction

2 A leveled specification

3 Existing type-generic features in C

4 Missing features

5 Design choices

6 Common extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 6 / 26



A leveled specification

A leveled specification: type inference

Type inference from identifiers, value expressions and type expressions

See JeanHeyd’s paper N2899 on typeof

typeof: keep qualifiers and _Atomic

remove_quals: remove qualifiers

N2891 Type inference for variable definitions and function return
auto feature

type is inferred from initializer or return

conversion: lvalue, array-to-pointer, function-to-pointer

lose qualifiers and _Atomic

as-if auto were replaced by a typeof expression

no new types in an auto declaration!

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 7 / 26

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2899.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2891.pdf


A leveled specification

A leveled specification: lambdas

N2892 Basic lambdas for C
primary use: function call expressions

no default captures, all captures are explicit

local identifiers are captured by &id notation

values are captured by id=expr

modest syntax ambiguity

conversion: no captures� funtion pointer

N2893 Options for lambdas

& for default identifier captures migration path for gcc

= for default shadow captures clang

id for explicit shadow captures

more syntax ambiguity

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 8 / 26

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2675.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2893.pdf


A leveled specification

A leveled specification: usage patters for lambdas

N2894 Type-generic lambdas

auto parameters, types are inferred from
function call
function pointer conversion

N2862 Function Pointer Types for Pairing Code and Data

Lead by Martin Uecker

main feature is indepedent of lambdas:
provide API for existing ABI
additional context pointer to function calls

option to integrate lambdas

N2895 A simple defer feature for C

use lambdas as syntax to describe defer

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 9 / 26

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2894.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2862.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2895.pdf


Existing type-generic features in C

Table of Contents

1 Introduction

2 A leveled specification

3 Existing type-generic features in C

4 Missing features

5 Design choices

6 Common extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 10 / 26



Existing type-generic features in C

Existing type-generic features in C

operators

promotions and conversions

macros

variadic functions

function pointers

void pointers

type-generic C library functions

_Generic primary expressions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 11 / 26



Existing type-generic features in C

Operators

most binary operators, have the same type for both operands

bit-wise operators are defined for
wide integer types

additionally for multiplicative operators
real floating point types
complex types

additionally for additive operators
object pointers

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 12 / 26



Existing type-generic features in C

promotions and conversions

narrow
wide

real floating

complex

bool

unsigned char

signed char

unsigned short

signed short

?

float

unsigned

signed

?

unsigned long

signed long

?

unsigned long long

signed long long

?

double long double

complex float complex double complex long double

implicit conversion
promotion and default argument conversion
default arithmetic conversion
Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 13 / 26



Existing type-generic features in C

Macros

Macros for type-generic expressions (see intro above)
no local variables
dangerous because of multiple evaluation of arguments

Macros placeable as statements
weird conventions, usually

/* Macro */ /* Type-generic lambda */
#define myfeature(X) \ #define myfeature \
do { \ [] (auto x) { \

typeGuess x = (X); \ /* do something with x */ \
/* do something with x */ \ }

} while(false)

/* Macro usage, conversion? */ /* Lambda usage, type safe */
myfeature(42); myfeature(42);

Macros for declarations and definitions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 14 / 26



Existing type-generic features in C

Type oblivion

the user has all the burden
Variadic functions

weird default conversions
weird library support (va_list a reference type?)
intrinsicly unsafe
rarely used for new code

void* pointers
unhuman effort has to be made to keep all the types correct
not even used by variadic functions

function pointers
used with void* parameters for type-genericity (bsearch, qsort)

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 15 / 26



Existing type-generic features in C

Automatic type deduction

type-generic C library functions
<tgmath.h>
<stdatomic.h>

_Generic primary expressions
difficult to extend
mostly restricted to function-like macros
not widely used

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 16 / 26



Missing features

Table of Contents

1 Introduction

2 A leveled specification

3 Existing type-generic features in C

4 Missing features

5 Design choices

6 Common extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 17 / 26



Missing features

Missing features

temporary variables
temporary objects with a name

controlled encapsulation
don’t steal information from the surrounding scopes
don’t pollute the surrounding scopes

controlled constant propagation
control exactly what information is considered constant

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 18 / 26



Missing features

Missing features

automatic instantiation of function pointers
missing for <tgmath.h>

automatic instantiation of specializations
works well with controlled constant propagation

direct type inferrence
avoid guessing or forcing a type
avoid implicit conversions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 19 / 26



Design choices

Table of Contents

1 Introduction

2 A leveled specification

3 Existing type-generic features in C

4 Missing features

5 Design choices

6 Common extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 20 / 26



Design choices

Identifiers of surrounding scopes

use of identifiers distinguishes

visibility by scope

access
no linkage (same function, relative addressing)
internal linkage (same TU, global addressing)
external linkage (same program, linktime resolution)

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 21 / 26



Design choices

Identifiers of surrounding scopes

What does an identifier mean in a local function?
local function, short lifetime, multiple instances

when is the definition evalutated?

when is an outer identifier evalutated?
evaluation of function definition or lambda expression
function call

how much evaluation?
remains lvalue
lvalue conversion
promotion

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 22 / 26



Design choices

Lambdas: design space and terminology

The design space for captures and closures

access to automatic variables

evaluate expression when seeing lambda, value capture
rvalue (no address)
unmutable value (const qualified, addressable)
mutable value (C++ keyword mutable)

evaluate variable when seeing lambda, shadow capture
same possible differentiation as above

evaluate when calling lambda
identifier capture

Terminology

function literal <=> anonymous function, no captures

closure <=> any capture

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 23 / 26



Common extensions

Table of Contents

1 Introduction

2 A leveled specification

3 Existing type-generic features in C

4 Missing features

5 Design choices

6 Common extensions

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 24 / 26



Common extensions

Type inferrence

in C implementations and in other related programming languages

auto type inference (__auto_type__)

the typeof feature

the decltype feature

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 25 / 26



Common extensions

Lambdas: existing extensions

Objective C’s blocks clang
shadow capture per default
managed memory for identifier captures

Statement expressions gcc, clang, intel, ibm xl, open64
weird specification of the effective value
all captures are identifier captures

Nested functions gcc
all captures are identifier captures
separation of definition and call

C++ lambdas since C++11
capture model chosen by user

[un]mutable value or shadow captures
identifier and alias captures
defaults & and =

Jens Gustedt (INRIA) Improve type generic programming January 30, 2022 26 / 26


	Introduction
	A leveled specification
	Existing type-generic features in C
	Missing features
	Design choices
	Common extensions

