
HAL Id: hal-03166007
https://inria.hal.science/hal-03166007

Submitted on 11 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

kmtricks: Efficient construction of Bloom filters for large
sequencing data collections

Téo Lemane, Paul Medvedev, Rayan Chikhi, Pierre Peterlongo

To cite this version:
Téo Lemane, Paul Medvedev, Rayan Chikhi, Pierre Peterlongo. kmtricks: Efficient construc-
tion of Bloom filters for large sequencing data collections. Bioinformatics Advances, 2022,
�10.1093/bioadv/vbac029�. �hal-03166007�

https://inria.hal.science/hal-03166007
https://hal.archives-ouvertes.fr


i
i

“output” — 2021/2/15 — 19:30 — page 1 — #1 i
i

i
i

i
i

kmtricks: Efficient construction of Bloom filters for
large sequencing data collections
Téo Lemane 1, Paul Medvedev 2,3,4, Rayan Chikhi 5 and Pierre Peterlongo 1,∗

1Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
2Department of Computer Science and Engineering, The Pennsylvania State University, USA
3Department of Biology, The Pennsylvania State University, USA
4Huck Institutes of the Life Sciences, The Pennsylvania State University, USA
5Department of Computational Biology, Institut Pasteur, Paris, France

∗To whom correspondence should be addressed.

Abstract

When indexing large collection of sequencing data, a common operation that has now been implemented
in several tools (Sequence Bloom Trees and variants, BIGSI, ..) is to construct a collection of Bloom filters,
one per sample. Each Bloom filter is used to represent a set of k-mers which approximates the desired
set of all the non-erroneous k-mers present in the sample. However, this approximation is imperfect,
especially in the case of metagenomics data. Erroneous but abundant k-mers are wrongly included, and
non-erroneous but low-abundant ones are wrongly discarded. We propose kmtricks, a novel approach
for generating Bloom filters from terabase-sized collections of sequencing data. Our main contributions
are 1/ an efficient method for jointly counting k-mers across multiple samples, including a streamlined
Bloom filter construction by directly counting hashes instead of k-mers; 2/ a novel technique that takes
advantage of joint counting to preserve low-abundant k-mers present in several samples, improving the
recovery of non-erroneous k-mers. In addition, our experimental results highlight that the usual yet crude
filtering of low-abundant k-mers is inappropriate for complex data such as metagenomes.
Availability: https://github.com/tlemane/kmtricks
Contact: pierre.peterlongo@inria.fr

1 Introduction
Consortia such as the 100,000 Genomes Project (Turnbull et al., 2018),

GEUVADIS (Lappalainen et al., 2013), MetaSub (Mason et al., 2016) and
Tara Ocean (Karsenti et al., 2011) have generated large collections of
genomic, transcriptomic, and metagenomic sequencing data, respectively.
Rather than deep coverage of a single sample, such datasets contain a
collection of sequencing experiments across many samples. For example,
the Tara Ocean project generated metagenomic sequencing data across
ecological niches all over the oceans, totalling at least 171 thousand billions
of nucleotides. Such valuables resources are unfortunately difficult to
comprehensively analyze, since their size makes bioinformatics analyses
difficult.

Traditional sequence analyses such as alignment to a reference
database or de novo assembly are both difficult and limited in the results
they yield. For instance, metagenome assembly of individual samples (e.g.
using MetaSPAdes (Nurk et al., 2017)) is often not able to reconstruct
low abundance genomes and tends to collapse variants between close
strains. Co-assembly of multiple samples pools together coverage from
multiple sites to alleviate this but results in further loss in strain specificity.
Alternatively, aligning raw sequencing data to genome databases is
hindered by the incompleteness of those databases.

A recently proposed alternative is to build an index of the raw
sequencing data and then later query sequences of interest, e.g. genes
or shorter sequence fragments around variants such as SNPs or indels.
Traditional indexing approaches, such as those used by BLAST (Altschul
et al., 1990) or DIAMOND (Buchfink et al., 2015), do not scale to those
large collections (Marchet et al., 2021). Instead, customized indexing
methods have been under development. A recent review surveyed 20
tools that were all published in the last couple years, aiming to index
large collections of sequencing data (Marchet et al., 2021), for example
BIGSI (Bradley et al., 2019), HowDe-SBT (Harris and Medvedev, 2019),
and Mantis (Pandey et al., 2018). These indexes are typically able to
answer whether an arbitrary fixed-length sequence (k-mer) belongs to
any of the samples, and, if so, which ones. Though much progress has
been made, indexing a collection such as Tara Ocean has remained out of
practical reach.

The vast majority of these large-scale k-mer indexing tools are based
on common building blocks, three of them being: 1) k-mer counting,
which summarizes sequencing data into a set of k-mers along with their
abundances, 2), k-mer matrix construction, which aggregates lists of
k-mer counts over a collection of samples (e.g. as in Marchet et al.
(2020); Muggli et al. (2019)) in the form of a k-mer/sample matrix with
abundances as values, and 3) Bloom filters construction, where the k-mer
presence/absence information for each sample is converted into a Bloom

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 2 — #2 i
i

i
i

i
i

2 kmtricks: Efficient construction of Bloom filters for large collections

filter to save space and allow fast queries. Note that these building blocks
are not specific to k-mer indexing tools, e.g. 1) and 3) are commonly used
in short-read de novo assembly, and 2) also appears in transcriptomics
analysis (Audoux et al., 2017).

Importantly, these three steps are often categorized as “pre-processing”
in k-mer indexing papers (e.g. (Pandey et al., 2018; Harris and Medvedev,
2019)) and discounted from the running time of these indexing tools.
Yet, for a dataset like Tara Oceans, these steps dwarf the running time
of the subsequent index construction by up to several orders of magnitude.
Although construction only needs to be done once per collection, its
prohibitive running time for large collections represents an important
roadblock to the usability of the tools.

In addition to the inefficiency of construction methods, sequencing
errors are also dealt with sub-optimally. Even though contemporary
sequencing error rates are low (0.1-1%), a vast amount of k-mers present
in raw data contain sequencing errors and should be discarded during
indexing. There are many read error-correction tools (Song and Florea,
2015), however, they are not a viable option for metagenomics (and
RNA-seq) due to the presence of low-abundance genomes and the limited
availability of reference genomes. Current approaches therefore filter out
k-mers solely by checking if their abundance is below a pre-set threshold.
This has the unsatisfactory drawbacks of being either too conservative
(discarding all low-abundant genome data if the threshold is set too high),
or too permissive (too many erroneous k-mers are kept if the threshold
is set too low). In this paper, we will propose an improved method for
filtering out erroneous k-mers.

Here we propose an improved algorithm for this construction step that
improves both its efficiency and the ability to correct errors. Current tools
take a modular approach. They first use an off-the-shelf k-mer counting
tool separately for each sample, and then construct a Bloom filter from the
k-mers in that sample. We observe in this paper that this modular approach
has several drawbacks. First, it prevents fine-grain optimizations that can
be obtained by integrating these steps. Second, it prevents efficient data
lookups such as being able to identify all the samples to which a given
k-mer belongs. As we will show, such lookups can help improve error-
correction for these samples. In summary, by limiting themselves to a
modular approach, current tools leave both significant speed-up and joint
filtering opportunities on the table. Given the maturity and abundance of
Bloom filter-based indexing tools, as well as a plateau in performance
improvement of k-mer counting tools (Kokot et al., 2017), we believe
that designing better construction algorithms through integration is an
important research task.

Our method for constructing k-mer matrices and Bloom filters is based
on a partitioned k-mer counting procedure carefully optimized for joint
multi-sample counting. The main novelty is the combination of three
relatively straightforward contributions that together address the issues
of long running times and sub-optimal k-mers filtering. 1) We introduce a
procedure for rescuing low-abundance k-mers at the heart of the joint
multi-sample k-mer counting procedure. This enables more sensitive
results yet discarding truly erroneous k-mers, saving the prohibitive
indexing of all (vastly erroneous) k-mers. We show that joint k-mer
counting is more powerful than performing one-sample k-mer counting
over a metagenomics collection. 2) We introduce the concept of hash
counting that enables direct construction of Bloom filters indices without
resorting to k-mers, saving significant time and space. 3) We incorporate
for the first time existing efficient matrix transposition techniques in
such a workflow, to efficiently output Bloom filter rows directly from
partitioned intermediate data, saving intermediate disk space during joint
multi-sample counting.

Using our workflow, we perform for the first time a massive-scale
joint k-mer counting and Bloom filter construction of a 6.5 terabase

metagenomics collection, in under 50 hours and 50 GB of memory, which
is 3.5 times faster than the next best alternative.

2 Related works
KMC (Kokot et al., 2017) and DSK (Rizk et al., 2013) are two disk-based
k-mer counting tools. Counting k-mers is an operation that identifies the
set of k-mers present within one (or multiple) datasets and records the
abundance of each k-mer. Intuitively, k-mers having a low abundance
(i.e. seen few times) are more likely to be the result of one or multiple
sequencing errors within reads, while k-mers above a certain abundance
threshold are more likely to be correct.

In its original publication, DSK directly storedk-mers in a hash table by
carefully controlling for memory and disk usage using partitioning. Recent
versions of KMC and DSK are based on variants of an algorithm introduced
by MSPKmerCounter (Li et al., 2015) subsequently made popular byKMC.
In a nutshell, sequencing reads are split into partitions stored on disk, then
each partition is loaded in memory and k-mers are counted within them.
Partitions are constructed in such a way that all occurrences of a k-mer
appear within a single partition, and also, overlappingk-mers are attempted
to be stored as longer sequences to avoid redundancy. These properties are
achieved using the concepts of minimizers and super-k-mers that we will
review in the Methods section, and the concept of (k + x)-mers that we
will not use here.

kmc_tools is a binary tool included in KMC for manipulation of its
results files, which can perform e.g. set operations on list of k-mers, such
as intersection, union, or more complex ones. However, to the best of our
knowledge kmc_tools does not support collections of k-mer lists (i.e.
k-mer matrices) and is therefore not applicable to the work presented here.

Jellyfish (Marçais and Kingsford, 2011) is an in-memory k-mer counting
tool that relies on an optimized hash table. One of its key advantages,
besides efficiency, is that as a byproduct it constructs a k-mer dictionary:
i.e. a data structure that can efficiently associate values to k-mers and
supports efficient queries. Jellyfish was notably used to perform k-
mer counting in HowDe-SBT. However, its key-value store feature was
not used. Several other k-mer counting tools exist, however a recent
benchmark (Manekar and Sathe, 2018) determined that KMC 3 is one
of the most efficient ones on a single node.

Simka (Benoit et al., 2016) is a multi-sample k-mer counting and k-mer
matrices construction tool that was used for metagenomics. It is based on
a variation of the original DSK algorithm, modified to run on a distributed
cluster.

HowDe-SBT (Harris and Medvedev, 2019) is a k-mer indexing method
for large sequencing data collections, that extends the original concept
of Sequence Bloom Trees (SBT) (Solomon and Kingsford, 2016). In a
nutshell, HowDe-SBT (and in general, any SBT-based method) indexes
each sample using a Bloom filter and organizes filters inside a binary
tree for performing queries efficiently. HowDe-SBT is the most efficient
variant of SBTs to date, showing fast construction and query times, yet
requires an expensive pre-processing step. Precisely, the pre-processing
step consists in generating from a set of samples, one Bloom filter
per sample. Each Bloom filter indexes the k-mers considered as not
erroneous contained in its corresponding set. This requires to perform
a time-consuming k-mer counting process for each data set.

BIGSI (Bradley et al., 2019) and COBS (Bingmann et al., 2019) are k-mer
indexing methods which also use Bloom filters, however organized in a
different layout than in the SBT family. These tools represent all Bloom
filters of indexed samples in a flat manner, in a way that limits cache

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 3 — #3 i
i

i
i

i
i

kmtricks: Efficient construction of Bloom filters for large collections 3

Fig. 1. kmtricks pipeline overview on two samples, D1 and D2 , using two partitions, P1 and P2 , with k = 5 and minimizer size of 3. Bold read sequences are minimizers (AAA and
CCC). Superscript integers represent hash values.
(1) Counting: Minimizer repartition is determined by sub-sampling D1 and D2 and super-k-mers are then dumped on disk according to this partitioning. Each partition is then counted
with the possibility to see each element as a k-mer or as its hash value. In both modes, counted partitions may be optionally dumped to disk. In hash mode specifically, for each partition a
bit-vector can be output directly (? symbol).
(2) Merging: Counted k-mers or hashes from equivalent partitions are aggregated. Different kind of matrices can be obtained: a count matrix (in ASCII or binary format), a presence/absence
matrix (each row represents a k-mer or a hash value associated with a presence/absence bit-vector), and, only in hash mode, a vector of Bloom filters (i.e. a matrix of presence/absence
bit-vectors, where row indices represent hashes). All these matrices can be filtered using a k-mer rescue procedure described in 4.3. In hash mode, in order to obtain samples in rows and
then build Bloom filters, each partition-specific sub-matrix can be transposed.
(3) Bloom filter outputs: a Bloom filter is built for each sample through concatenation of transposed sub-matrices (in those, each row corresponds to a sample). Bloom filters can be also
obtained from first counting step if aggregation is not required. In this case, this corresponds to a concatenation of bit-vectors from (1) in hash mode without k-mer rescue.

misses during query. This flat structure however does not enable to reduce
redundancy between samples.

3 Results

3.1 kmtricks: A modular pipeline and library for
construction k-mer matrices and Bloom filters on large
datasets

In this section we give an overview of our software kmtricks (for
“kmer matrix tricks”). A more in-depth presentation and algorithmic
details are provided Section 4. Essentially, kmtricks is a set of software
components that together perform joint multi-sample k-mer counting
and color matrix construction. This allows to efficiently construct the
data structures (e.g. Bloom filters) needed for indexing terabase-scale
collections of samples.

The components of kmtricks, along with an example execution, are
presented in Fig. 1. We highlight the following features which differentiates
kmtricks from related works:

• Joint k-mer counting allows to rescue large amounts of k-mers that
would otherwise be discarded when processing samples independently.

• Direct counting of k-mer hash values instead of counting k-mers saves
significant time for subsequent Bloom filter construction.

• kmtricks has been designed to be a stand-alone pipeline (Fig. 1),
yet it is composed of modular tools (described in Section 4) which are
of independent interest: partitioning a set of k-mers (according to their

minimizer), jointly count k-mers, construct k-mer matrices, transpose
them, and construct Bloom filters.

• kmtricks also provides a C++ library for interfacing with any stage
of the pipeline, enabling for instance downstream sequence analyses
based on streaming a k-mer matrix in row-major order.

We evaluated the performance of kmtricks in terms of running
time, peak memory usage and maximal disk space on 100 and 674
RNA-seq samples (see Supplementary Material, Table S1). On these
collections, HowDe-SBT/kmtricks is 1-1.5x faster to construct than
HowDe-SBT/KMC, 3-4x faster than HowDe-SBT/Jellyfish, 7x faster
than COBS, 2x faster than Mantis. Thus kmtricks yields superior
or comparable performance to other methods for indexing sequencing
data, even though it performs the more complex operation of joint k-
mer counting. We will show in Section 3.3 that the performance gap
between other methods and kmtricks further widens on larger inputs,
i.e. terabyte-sized collections.

3.2 Dataset and computing setup

The Tara Ocean experiments (Section 3.3) were performed on large and
complex sea water metagenomic data composed of 241 samples (distinct
locations) by the Tara Ocean project (Karsenti et al., 2011). This dataset is
composed of approximately 6.5 thousand billion nucleotides, consisting
of around 266 billion distinct k-mers (k = 20), among which 174 billions
k-mers occur twice or more as estimated by ntCard (Mohamadi et al.,
2017). Executions were performed on a TGCC node with 4x16-cores Intel
Xeon E7-8860 2.20 GHz with 3 TB of memory, on a SDD with 4.5 GB/s
and 800 MB/s sequential read write, using 60 threads. Description of the

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 4 — #4 i
i

i
i

i
i

4 kmtricks: Efficient construction of Bloom filters for large collections

data, tool versions and command lines are provided in a companion Github
website (see reference (Lemane and Peterlongo, 2021)).

3.3 Scaling to a large sea water metagenome collection

Time (min) Memory (GB) Disk (TB)
kmtricks 2631 50.3 6.29

Jellyfish a + makebf >10000b 80.6 ≈ 1.1

KMC a + makebf >8500b 213 ≈ 1.1
Table 1. Comparison of construction times between kmtricks and other
k-mer counting tools on the 6.5 terabases Tara Ocean collection. The
makebf step corresponds to Bloom filter creation from counted k-mers by
howdesbt makebf. The Memory column indicates peak RAM usage. KMC
andJellyfish counted each sample independently and removedk-mers with
abundance one; whereas kmtricks performed join k-mer counting and low-
abundance rescuing (see Section 4.3) which kept some of the unit abundance
k-mers. Mantis and COBSwere not executed due to their significantly longer
construction times observed on smaller data.
aStopped after 50h computation. bExtrapolated estimation.

kmtricks enabled to construct Bloom filters for a very large
metagenomics collection with very limited amount of RAM and reasonable
computation time, outperforming all other methods (Table 1). Disk usage
was higher than other tools but of similar magnitude than the input data.
kmtricks is ≥3.5 times faster than other pipelines, while achieving
superior results as it performs joint k-mer counting and is able to rescue
low-abundance shared k-mers.

We additionally ran HowDe-SBT on the Bloom Filters generated by
kmtricks, thereby creating the first complete index of all metagenomics
bacterial sequences obtained in the Tara Ocean project. With Bloom filters
given as input, HowDe-SBT ran in 2100 minutes, with a peak RAM of 163
GB. The size of the final index is 612 GB. Of note, kmtricks executed
in rescue mode but also discarding any k-mer seen only once takes twice
less disk space (around 3 TB).

3.4 Collection-aware k-mer filtering recovers large amounts
of weak signal present in complex metagenomes

k-mer filtering consists in removing from a sample any k-mer whose
number of occurrences is below a certain threshold (called solidity
threshold), classically set to 2 or 3. However, with data such as
metagenomics or RNA-seq that have uneven coverage and include low
abundance species or expressed genes, abundance does not enable to
distinguish erroneous k-mers from real ones, as highlighted in Fig.2(a).
Hence we propose to rescue low-abundant k-mers, through a rare but
shared k-mer rescue procedure. This procedure consists in keeping any
k-mer whose abundance is below the solidity threshold whenever this k-
mer is sufficiently abundant in one or several other samples. Section 4.3
provides formalization and in-depth description of the procedure.

We evaluated the effect of the k-mer rescue procedure on the Tara
Ocean experiment. Intermediate results and dedicated scripts are provided
in the companion github web site (Lemane and Peterlongo, 2021). For
each sample i, we computed the solidity threshold ti as the smallest value
≥ 1 such that the number of k-mers occurring ti times is smaller than
10% of the total number of k-mers. (using ntCard (Mohamadi et al.,
2017)). In a sample i, any k-mer with abundance higher or equal to ti
is conserved. Applying the rescue procedure, we then rescued any k-mer
whose coverage was in a range [1, ti] whenever it had a coverage > tj in
at least one other sample j. Hence a k-mer is considered as erroneous in
a sample i if its abundance in i is lower than ti and there exists no other
sample j in which the k-mer is seen at abundance higher or equal to tj .

We validated this strategy as follows. For each sample we computed

1. errth: the theoretical expected number of erroneous k-mers,
2. errone: the number of k-mers occurring only once, and
3. errunrescued: the number of k-mers that are still considered as

erroneous after our rescue procedure.

We then look at the ratio errunrescued/errth and compare it to the ratio
errone/errth. The closer a ratio is to one, the better.

The Tara Oceans dataset was mainly generated by HiSeq 2000
technology (222 samples out of 241), 8 samples were generated by
HiSeq2500, 4 samples by GAIIx. For each of these technologies, we
computed the theoretical error rate errth. Given raw sequencing data from
Acinetobacter baylyi generated by these three sequencing technologies1

we counted the number of erroneous k-mers (k = 20), i.e. those
absent from the reference genome. Error rates are respectively 0.0641%,
0.4838%, and 0.1715% for HiSeq2000, HiSeq2500 and GAIIx.

Results shown in Fig.2(b) highlight the importance and efficacy of
our k-mer rescue procedure. Indeed, the quantity of k-mers filtered out is
close to the theoretical expected value when using the rescue procedure
(average ratio of 1.01). An order of magnitude too many k-mers appear
to be wrongly filtered out when removing k-mers occurring only once
(average ratio of 9.12).

Thus, when indexing low-error-rate data containing low-abundant
genomes as in the Tara ocean bacterial metagenomes, k-mer rescuing
appears to be essential as it: 1. side-steps the issue of removing low-
abundant k-mers which ends up discarding an order of magnitude too
many k-mers; 2. recovers a number of k-mers close to the expected one
using co-occurrence across samples.

4 Methods

4.1 Definitions

A minimizer of length m within a sequence s is the smallest m-mer
within s, where typically “smallest” is understood in the lexicographical
sense. A super-k-mer is a sequence in which all constituent k-mers have
the same minimizer.

A Bloom filter (Bloom, 1970) is an approximate membership query
(AMQ) data structure that allows two operations: inserting and querying
elements u ∈ U . It is a bit array B[0..n] with l hash functions hi : U →
{0, ..., n} ∀i ∈ [1..l]. Insertion can be defined as follows B[hi(x)] ←
1,∀i ∈ [1..l] and lookup as

∧l
i=1 B[hi(x)]. Lookups can return false

positives but no false negatives. In the following, we will consider one-hash
Bloom filters (l = 1).

We use the terms color-aggregative and k-mer-aggregative as defined
in (Marchet et al., 2021). A color-aggregative data structure represents
within a single index all k-mers of the collection, and each k-mer is
associated to its pattern of presence/absence across the whole collection.
Conversely, a k-mer-aggregative data structure constructs separate k-mer
indices, one per sample.

We refer to hash counting as the process of counting hash values of a
set of elements instead of counting the elements themselves. This is the
counterpart of k-mer counting except that here k-mers are represented by
their hash values, and several k-mers may collide to the same hash value.

The strand of each sequenced read being unknown, in kmtricks, as
in all k-mer counting and indexing tools, each k-mer is represented by its
canonical representation: the smallest string (in the lexicographic order)
between itself and its reverse complement.

1 Jean-Marc Aury, Genoscope, personal communication.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 5 — #5 i
i

i
i

i
i

kmtricks: Efficient construction of Bloom filters for large collections 5

(a) (b)

Fig. 2. (a) Kmer histogram of one of the Tara ocean samples (chosen arbitrarily), showing a flat distribution of abundances indicative of the presence of low-abundance microbes, also
highlighting the lack of separation between erroneous and correct k-mers. (b) Number of k-mers filtered divided by the number of expected number of erroneous k-mers (ideal is close to
1). Green histogram shows results obtained with the proposed rescue procedure. Red histogram shows results obtained by the classical removal of k-mers occurring only once.

4.2 A modular pipeline for large-scale Bloom Filters
construction: kmtricks

kmtricks supports the construction of either a k-mer matrix or
Bloom filters. In both cases, the input is a collection of sequencing data
files in FASTQ format. The output is either a matrix having k-mers as
rows, samples as columns and k-mer counts as values, or a collection of
Bloom filters, one per sample. In the following, we will focus on Bloom
filter construction as this pipeline includes all the ingredients necessary
for k-mer matrix construction. We will describe two operational modes:
hash counting for Bloom filters, k-mer counting for k-mer matrices.

In other tools, the construction process of Bloom filters can typically
be broken into two steps: 1) efficiently counting k-mers then 2) inserting
distinct k-mers into filters, on a per-sample basis. kmtricks streamlines
this process by realizing that in the case of Bloom filters only the hashes
need to be counted, notk-mers; furthermore, in order to cope with terabytes
of input data and still be able to efficiently count hashes, a careful partition-
aware hashing scheme is designed.

4.2.1 Partitioning
kmtricks performs parallel k-mer counting following the classical

paradigm of partitioning k-mers based on their minimizers and then
constructing super-k-mers, as in KMC 2 (Kokot et al., 2017). However,
the process is newly modularized so that intermediate tasks correspond to
separate programs. Conceptually, the set of all possible minimizers is first
partitioned in the following balanced way: all partitions should contain
a roughly equal total number of k-mers. This is performed by the km_-
minim_repart module, using the GATB library (Drezen et al., 2014)
that implements a previously-known algorithm from DSK (Rizk et al.,
2013).

In hash counting mode, in order to take advantage of the partitioning
scheme in the context of Bloom filters construction, we use partitioned
Bloom filters (pBFs). These are Bloom filters that are partitioned into
P sub-filters with exclusive (and consecutive) hash spaces hp : Up →
{p × s, ..., p × s + s − 1} with p ∈ [0..P − 1] and s =

⌈
bits
P

⌉
(rounded up to 8) with “bits” corresponding to the user-requested Bloom
filter size. Having pBFs allows to populate only a small part of a Bloom
filter when processing a k-mer partition, which saves memory and enables
coarse-grained parallelization at both the construction and query stages. A
classical Bloom filter (except for a slightly more complex query operation,
see Section 4.2.5) can be obtained by a simple concatenation of the pBFs
thanks to the consecutive hash spaces.

4.2.2 Counting
The second step, performed in km_reads_to_superk, consists in

computing for each sample its super-k-mers and writing them to their
corresponding partitions on disk (Fig 3.a). From those super-k-mers,
k-mers (or their hash values, depending on whether hash counting is
performed) are de-duplicated and the abundance of each distinct k-mer
(or hash value) is determined within each partition (km_superk_to_-
kmer_counts module).

In hash counting mode, kmtricks optimizes the output in the
following way. If k-mer rescue (see 3.4) is not performed, bit-vectors
are output immediately instead of a list of counted hashes (Fig 3.1.b). One
bit vector is output per partition and per sample. In other words, these
bit-vectors correspond to pBFs built from the hashes. Otherwise if k-mer
rescue is performed (still in hash counting mode), bit-vectors cannot be
immediately output as counts of the same hash value must be examined
over all samples. In this case, hashes and their counts are dumped to disk
for each partition from each sample (Fig. 3.2.b).

4.2.3 Merging
Finally if k-mer rescue is performed or a holistic view of k-mers

(i.e. joint counting) is sought, k-mers (resp. partitions of hash values)
need to undergo a merging step in order to obtain a k-mer matrix (resp.
a collection of Bloom filters). Aggregation of k-mers or hashes over
multiple samples is achieved using the classical k-way merge algorithm
on equivalent partitions between samples. This algorithm assumes sorted
inputs, which is inexpensive in our case since sorting is already performed
by the counting algorithm. Merging is performed in the km_merge_-
within_partition module.

In both k-mer counting mode and hash counting mode, each row
count vector (corresponding to a single k-mer or hash value) is processed
according to the k-mer rescue procedure, details are given in Section 4.3.

In k-mer mode, there is no additional operation after merging, except
output formatting (see Section 4.2.4). Therefore the rest of this section is
dedicated to the hash counting mode, i.e. the Bloom filters construction
pipeline.

In hash counting mode, row count vectors are transformed into a binary
representation during the merge step. In a partition, all possible hashes are
considered. This means that for each missing hash value (corresponding
to a k-mer not seen in the partition), an empty bit-vector is appended to the
matrix. Hashes are not stored (only the bit-vectors are), as they implicitly
correspond to row indices. At the end of this step, we have P sub-matrices
of

⌈
bits
P

⌉
presence/absence bit-vectors each.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 6 — #6 i
i

i
i

i
i

6 kmtricks: Efficient construction of Bloom filters for large collections

At this point, the resulting matrices (k-mers matrices or Bloom filters)
are color-aggregative, i.e. each row represents the presence or the absence
(or counts) of the corresponding hash value across samples. If kmtricks
is set to construct Bloom filters, one seeks to convert the data into k-mer-
aggregative, where each filter represents hashes for a single collection.
Switching from a color-aggregative representation to a k-mer-aggregative
representation can be achieved through a bit-matrix transposition. The
input matrix needs to be exhaustive in the following sense: missing
hashes are represented by empty presence/absence bit-vectors, i.e. in each
partition the number of presence/absence bit-vectors corresponds to s, the
number of bits in a partition, as described in Section 4.1. It also needs to
be sorted so that each bit-vector row corresponds to consecutive hashes in
{p× s, ..., p× s+ s− 1}.

When performing a transposition, we transform a matrix with hashes
in rows associated with presence/absence bit-vectors into a matrix with
samples in rows associated with a one-hash pBF. Due to Bloom filter
partitioning, P transposed matrices are in fact obtained, each with a
number of rows corresponding to the number of samples. The horizontal
concatenation of each corresponding row from these matrices allows one
to build one Bloom filter per sample.

4.2.4 Outputs
kmtricks can output different sort of k-mer matrices. In k-mer

mode: count or presence/absence k-mer matrices. In hash mode: hashes
presence/absence vectors (kmer-aggregative) or pBFs vectors (color-
aggregative), both seen as bit matrices. Of note, pBFs vectors can be
converted into sample-specific Bloom filters that are compatible with
the SDSL library (Gog et al., 2014) and HowDe-SBT (km_output_-
convert module).

All these outputs are readable and writable using kmtricks C++
library. In the case of k-mer counts matrix, a text output format is also
supported.

4.2.5 Query
Due to how kmtricks creates Bloom filters that are partitioned

according to minimizers, the minimizer of each k-mer from a query
sequence must be computed in order select the correct hash function. A
compatible version of HowDe-SBT is available through the kmtricks
release. kmtricks does not yet provide a stand-alone tool to directly
query a Bloom filter, however this operation is supported within the
kmtricks C++ library.

4.3 A novel technique to rescue rare k-mers

To rescue low-abundant but likely correct k-mers, as performed in
Section 3.4, we design a rather simple technique based on examining the
abundance of each k-mer across sequencing samples. This technique is
only practically applicable in conjunction with joint k-mer counting. It
cannot be directly implemented in a one-sample-at-a-time construction
procedure, unless such procedure discards no k-mer which would result
in prohibitively large intermediate storage. When a low-abundant k-mer is
observed in a sample (with abundance lower than a user-defined threshold),
its abundance in other samples is used to decide whether to keep its
abundance for that sample or not. Several thresholding procedures can
be specified in kmtricks:

• A hard threshold applied during the counting step, called count-

abundance-min. This threshold filters out any k-mer whose
abundance is below its value, regardless of the presence of the k-
mer in other samples. Kept k-mers are said to be solid. Note that this
threshold can be set on a per-sample basis.

• A soft threshold, this time applied during the merging step, called
merge-abundance-min. Any k-mer whose abundance is higher
than its value is kept, otherwise it is provisionally discarded yet is
considered candidate for being rescued. We call such a k-mer rescue-
able. This threshold can be set on a per-sample basis.

• The merge-abundance-min threshold is modulated by a
parameter that we call save-if. A rescue-able k-mer in a sample is
kept (rescued) if it is solid in at least save-if other sample(s).

• The last parameter, recurrence-min, allows to discard k-mers
that occur in less than recurrence-min distinct samples. Such k-
mers are simply removed from the final matrix (i.e. result in a null
bit-vector in hash mode).

Figure 4 presents several examples showing the application of those
thresholds.

D0 D1 D2 D3 D4
m-a-min 3 2 2 3 2

a© H1 2 0 4 5 3 → 1 0 1 1 1
b© H2 4 1 6 2 1 → 1 0 1 0 0
c© H3 2 8 1 2 1 → -/0 -/0 -/0 -/0 -/0

Fig. 4. Example of the rescue procedure for three k-mers/hashes and five samples
using sample-specific merge-abundance-min and the following set of parameters:
count-abundance-min=1, save-if=3, recurrence-min=2. a© H1 has a
abundance lower than 3 in D0 but it is solid in at least save-if samples (D2, D3, D4). b©
H2 is non-solid on D1, D3 and D4 and is solid only in 2 samples, H2 is therefore discarded
in D1, D3 and D4. c© H3 is solid only in one sample, recurrence-min cannot be
satisfied, the whole row is therefore discarded (dash signs in the Figure, or corresponds to
the null bit-vector in hash mode).

5 Discussion
We propose a novel method for efficiently counting k-mers across

multiple samples and for generating Bloom filters. In addition to being the
fastest method for generating Bloom filters over terabyte-scale collections,
our approach kmtricks proposes a novel mechanism to filter erroneous
k-mers using their co-occurrence across samples, i.e. going beyond
filtering on a per-sample basis. This approach leads to significantly
improved recovery of k-mers in metagenomes.

In our tests on relatively small collections (100-674 RNA-seq datasets,
with on average hundreds of millions of distinct k-mers per sample) the
performance of kmtricks is roughly equivalent to the state of the art KMC
k-mer counter combined with the Bloom filters construction procedure
of HowDe-SBT. However kmtricks stands out on larger collections
having higher number of k-mers per sample, such as Tara Ocean (> 6

TB of sequences, with several billions of distinct k-mers per sample). For
those, Bloom filter construction becomes a bottleneck and highlights the
superior efficiency of the streamlined kmtricks pipeline.

At a high level, kmtricks is able to output matrices either in column-
major order or in row-major order, where rows can either be k-mers or hash
values. This flexibility allows kmtricks to provide inputs for both types
of indexing data structures: k-mer-aggregative and color-aggregative (as
defined in Marchet et al. (2021) and recalled in the Methods section). Row-
major order makes the presence/absence of a k-mer directly accessible
across all samples, and is contiguous in memory. In column-major order,
each Bloom filter is independent and provides information about the
existence of all k-mers in one sample.

Contemporary of kmtricks, the MetaGraph software (Karasikov
et al., 2020) is a k-mer indexing structure that represents k-mers exactly
(i.e. not using a Bloom filter) and does not support creatingk-mer matrices.
MetaGraph was applied to very large collections (hundreds of terabases)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 7 — #7 i
i

i
i

i
i

kmtricks: Efficient construction of Bloom filters for large collections 7

Fig. 3. Bloom filters construction pipeline with two samples D1 and D2 using two partitions: black (1) and gray (2). Sk and Hc denote respectively super-k-mers and hash counted (1)
Bloom filters pipeline without k-mer rescue: a© Divide sample into partitioned super-k-mers. b© Split super-k-mers into k-mers before hashing them and counting hashes in partitions. For
each partition, output presence/absence bit-vectors, i.e. partitioned Bloom filters. c© Concatenate equivalent partitions between samples to obtain one Bloom filter per sample. (2) Bloom
filters pipeline with rare k-mer rescue: a© same as (1). b© same as (1), but output hashes and their counts. c© Merge and binarize (according to the rescue procedure, see 4.3) equivalent
partitions to build one sub-matrix per partition with pBFs in columns. d© Transpose sub-matrices to obtain pBFs in rows. e© same as (1)- c©.

using cloud resources and KMC 3, which makes its contribution orthogonal
to kmtricks, the latter being geared towards making computation more
efficient on a single server. Ideally, kmtricks could be integrated within
a MetaGraph-like approach to combine single-server efficiency within a
cloud architecture.

Acknowledgements
This work used HPC resources from the Très Grand Centre

de Calcul of CEA (http://www-hpc.cea.fr/fr/complexe/
tgcc.htm) and the GenOuest bioinformatics core facility (https:
//www.genouest.org). The authors are grateful to Bob Harris
for discussion on HowDeSBT, and Eric Pelletier & Jean-Marc Aury
who provided links to Tara and Acinetobacter datasets, and precious
information about these data.

Funding
The work was funded by IPL Inria Neuromarkers, ANR Inception

(ANR-16-CONV-0005), ANR Prairie (ANR-19-P3IA-0001), ANR
SeqDigger (ANR-19-CE45-0008).

References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic

local alignment search tool. Journal of molecular biology, 215(3), 403–410.
Audoux, J., Philippe, N., Chikhi, R., Salson, M., Gallopin, M., Gabriel, M., Le Coz,

J., Drouineau, E., Commes, T., and Gautheret, D. (2017). De-kupl: exhaustive
capture of biological variation in rna-seq data through k-mer decomposition.
Genome biology, 18(1), 243.

Benoit, G., Peterlongo, P., Mariadassou, M., Drezen, E., Schbath, S., Lavenier, D.,
and Lemaitre, C. (2016). Multiple comparative metagenomics using multiset k-mer
counting. PeerJ Computer Science, 2016(11), e94.

Bingmann, T., Bradley, P., Gauger, F., and Iqbal, Z. (2019). COBS: a Compact Bit-
Sliced Signature Index. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11811
LNCS, 285–303.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7), 422–426.

Bradley, P., den Bakker, H. C., Rocha, E. P., McVean, G., and Iqbal, Z. (2019).
Ultrafast search of all deposited bacterial and viral genomic data. Nature
Biotechnology, 37(2), 152–159.

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment
using diamond. Nature methods, 12(1), 59–60.

Drezen, E., Rizk, G., Chikhi, R., Deltel, C., Lemaitre, C., Peterlongo, P.,
and Lavenier, D. (2014). GATB: Genome Assembly & Analysis Tool Box.
Bioinformatics (Oxford, England), 30(20), 2959–2961.

Gog, S., Beller, T., Moffat, A., and Petri, M. (2014). From theory to practice:
Plug and play with succinct data structures. In 13th International Symposium on
Experimental Algorithms, (SEA 2014), pages 326–337.

Harris, R. S. and Medvedev, P. (2019). Improved representation of sequence Bloom
trees. Bioinformatics.

Karasikov, M., Mustafa, H., Danciu, D., Zimmermann, M., Barber, C., Rätsch, G.,
and Kahles, A. (2020). MetaGraph: Indexing and Analysing Nucleotide Archives
at Petabase-scale. bioRxiv, page 2020.10.01.322164.

Karsenti, E., Acinas, S. G., Bork, P., Bowler, C., De Vargas, C., Raes, J., Sullivan,
M., Arendt, D., Benzoni, F., Claverie, J.-M., et al. (2011). A holistic approach to
marine eco-systems biology. PLoS biol, 9(10), e1001177.

Kokot, M., Dlugosz, M., and Deorowicz, S. (2017). KMC 3: counting and
manipulating k-mer statistics. Bioinformatics (Oxford, England), 33(17), 2759–
2761.

Lappalainen, T., Sammeth, M., Friedländer, M. R., Ac‘t Hoen, P., Monlong, J.,
Rivas, M. A., Gonzalez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., et al.
(2013). Transcriptome and genome sequencing uncovers functional variation in
humans. Nature, 501(7468), 506–511.

Lemane, T. and Peterlongo, P. (2021). https://github.com/
pierrepeterlongo/kmtricks_benchmarks.

Li, Y. et al. (2015). Mspkmercounter: a fast and memory efficient approach for k-mer
counting. arXiv preprint arXiv:1505.06550.

Manekar, S. C. and Sathe, S. R. (2018). A benchmark study of k-mer counting
methods for high-throughput sequencing. GigaScience, 7(12), giy125.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 8 — #8 i
i

i
i

i
i

8 kmtricks: Efficient construction of Bloom filters for large collections

Marchet, C., Iqbal, Z., Gautheret, D., Salson, M., and Chikhi, R. (2020). Reindeer:
efficient indexing of k-mer presence and abundance in sequencing datasets.
bioRxiv.

Marchet, C., Boucher, C., Puglisi, S. J., Medvedev, P., Salson, M., and Chikhi,
R. (2021). Data structures based on k-mers for querying large collections of
sequencing data sets. Genome Research, 31(1), 1–12.

Mason, C., Afshinnekoo, E., Ahsannudin, S., Ghedin, E., Read, T., Fraser, C.,
Dudley, J., Hernandez, M., Bowler, C., Stolovitzky, G., Chernonetz, A., Gray,
A., Darling, A., Burke, C., Łabaj, P. P., Graf, A., Noushmehr, H., Moraes, s.,
Dias-Neto, E., Ugalde, J., Guo, Y., Zhou, Y., Xie, Z., Zheng, D., Zhou, H., Shi, L.,
Zhu, S., Tang, A., Ivanković, T., Siam, R., Rascovan, N., Richard, H., Lafontaine,
I., Baron, C., Nedunuri, N., Prithiviraj, B., Hyat, S., Mehr, S., Banihashemi, K.,
Segata, N., Suzuki, H., Alpuche Aranda, C. M., Martinez, J., Christopher Dada, A.,
Osuolale, O., Oguntoyinbo, F., Dybwad, M., Oliveira, M., Fernandes, A., Oliveira,
M., Fernandes, A., Chatziefthimiou, A. D., Chaker, S., Alexeev, D., Chuvelev, D.,
Kurilshikov, A., Schuster, S., Siwo, G. H., Jang, S., Seo, S. C., Hwang, S. H.,
Ossowski, S., Bezdan, D., Udekwu, K., Udekwu, K., Lungjdahl, P. O., Nikolayeva,
O., Sezerman, U., Kelly, F., Metrustry, S., Elhaik, E., Gonnet, G., Schriml, L.,
Mongodin, E., Huttenhower, C., Gilbert, J., Hernandez, M., Vayndorf, E., Blaser,
M., Schadt, E., Eisen, J., Beitel, C., Hirschberg, D., Schriml, L., Mongodin, E., and
Consortium, T. M. I. (2016). The Metagenomics and Metadesign of the Subways
and Urban Biomes (MetaSUB) International Consortium inaugural meeting report.
Microbiome, 4(1), 24.

Mohamadi, H., Khan, H., and Birol, I. (2017). ntcard: a streaming algorithm for
cardinality estimation in genomics data. Bioinformatics, 33(9), 1324–1330.

Muggli, M. D., Alipanahi, B., and Boucher, C. (2019). Building large updatable
colored de bruijn graphs via merging. Bioinformatics, 35(14), i51–i60.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). MetaSPAdes:
A new versatile metagenomic assembler. Genome Research, 27(5), 824–834.

Pandey, P., Almodaresi, F., Bender, M. A., Ferdman, M., Johnson, R., and Patro,
R. (2018). Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index.
Cell Systems, 7(2), 201–207.e4.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very low
memory usage. Bioinformatics, 29(5), 652–653.

Solomon, B. and Kingsford, C. (2016). Fast search of thousands of short-read
sequencing experiments. Nature Biotechnology, 34(3), 300–302.

Song, L. and Florea, L. (2015). Rcorrector: efficient and accurate error correction
for illumina rna-seq reads. GigaScience, 4(1), s13742–015.

Turnbull, C., Scott, R. H., Thomas, E., Jones, L., Murugaesu, N., Pretty, F. B., Halai,
D., Baple, E., Craig, C., Hamblin, A., et al. (2018). The 100 000 genomes project:
bringing whole genome sequencing to the nhs. Bmj, 361.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/2/15 — 19:30 — page 9 — #9 i
i

i
i

i
i

kmtricks: Efficient construction of Bloom filters for large collections 9

Supplementary
Human RNA-seq benchmarks

The human RNA-seq benchmarks were done on two subsets with 100
and 674 samples from a common set of 2,585 human RNA-seq sequencing
used as inputs in several k-mer indexing benchmarks, and first proposed
in Solomon and Kingsford (2016). Computations were performed on the
GenOuest platform on a node with 4x8-cores Xeon E5-2660 2,20 GHz with
200 GB of memory. Benchmarks were performed on SSD disk with 900
MB/s and 290 MB/s sequential read/write. All benchmarks are done using
20 cores. Details about data and scripts are available from the kmtricks
github companion website (see reference Lemane and Peterlongo (2021)).
A Conda environment is also provided to reproduce these benchmarks.

On these datasets, kmtricks outperformed the indexing steps of
Mantis, HowDe-SBT and COBS in terms of computing time (by 2-8x)
and memory usage (by 1-8x), and uses comparable disk space. We also
substituted Jellyfish with KMC in HowDe-SBT, yielding comparable
time/memory performance to kmtricks on this collection. However,
KMC does not support joint k-mer counting, and its integration in a Bloom
filter construction pipeline turns out to be significantly less scalable than
kmtricks as shown Section 3.3, dealing with larger and more complex
data.

A : 100 RNA-seq (44 GB fasta.gz)
Time (min) Memory (GB) Disk (GB)

makebf*,1 - HowDe-SBT 147 + 21 13.2 | 2.6 55.1
makebf+,1 - HowDe-SBT 33 + 21 2.9 | 2.6 28.4
McCortex2 - COBS 256 + 67 27 | 1.5 327
Squeakr1 - Mantis 64 + 24 3.6 | 27.8 25.8

kmtricks 1 - HowDe-SBT 34 + 21 4.1 | 2.6 30.3

kmtricks 1,R - HowDe-SBT 36 + 21 3.3 | 2.6 54
kmtricks 2,R - HowDe-SBT 32 + 21 3.1 | 2.6 53.9

B : 674 RNA-seq (961 GB fasta.gz)
Time (min) Memory (GB) Disk (GB)

makebf*,1 3543 13.2 206
makebf+,1 1958 18.7 165
kmtricks 1 1206 21.6 233

kmtricks 1, R 1246 17.4 327
Table S1. Benchmarks on two datasets. The makebf step corresponds to
Bloom filter creation by howdesbt makebf, k-mers being counted either
with Jellyfish (∗ symbol) or KMC (+ symbol). For Time and Memory,
when two value are provided, the first corresponds to the pre-processing time
(Bloom filters creation) and the second to the index construction. Memory and
Disk correspond to the peak. A: Disk usage corresponds to the total required
space to build the index, including temporary files, Bloom filters and the final
index. For the couple McCortex-COBS, the disk usage corresponds mainly
to the ctx files from McCortex. B: Disk usage corresponds to the count step,
including temporary files and Bloom filters build by howdesbt makebf or
kmtricks.
1k=20, 2k=31, RRescue mode

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.429304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.429304
http://creativecommons.org/licenses/by/4.0/

