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FULLY-CONNECTED NEURAL NETWORKS BRAIN TISSUE MICROSTRUCTURE
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Université Côte D’Azur, Inria, France

ABSTRACT

In this work, we evaluate the performance of three different
diffusion MRI (dMRI) signal representations in the estima-
tion of brain microstructural indices in combination with fully
connected neural networks (FC-NN). The considered signal
representations are the raw samples on the sphere, the spher-
ical harmonics coefficients, and a novel set of recently pre-
sented rotation invariant features (RIF). To train FC-NN and
validate our results, we create a synthetic dMRI dataset that
mimics the signal properties of brain tissues and provides us
a real ground truth for our experiments. We test 8 different
network configurations changing both the depth of the net-
works and the number of perceptrons. Results show that our
new RIF are able to estimate the brain microstructural indices
more precisely than the diffusion signal samples or its spheri-
cal harmonics coefficients in all the tested network configura-
tions. Finally, we apply the best-performing FC-NN in-vivo
on a healthy human brain.

Index Terms— Spherical Harmonics, Rotation Invariant
Features, Neural Networks

1. INTRODUCTION

One of the main diffusion Magnetic Resonance Imaging
(dMRI) research topic is the estimation of brain tissue mi-
crostructure in-vivo. This is normally done by fitting the
dMRI signal with bio-physical models that mimic the brain
microstructure with understandable parameters that char-
acterize the different tissues. These models simulate the
water diffusion in the different cellular compartments (intra-
axonal, extra-axonal, etc.) and are therefore called multi-
compartment models [1, 2, 3]. However, finding the model
parameters require a non-linear fitting of the dMRI signal
with the models which is non-trivial. Several techniques have
been proposed to improve the accuracy of the fitting [2, 3].
The dMRI signal can be viewed as a spherical function and
most of these techniques rely on converting the diffusion
signal into a rotation invariant representation. Recently, we
proposed a new framework for estimating a complete set of
algebraically independent rotation invariant features (RIF)
from the dMRI signal Spherical Harmonics (SH) series ex-

pansion [4]. Their use was shown to improve the result of the
multi-compartment models fitting.

Neural networks have been introduced to the dMRI com-
munity in recent years, mainly for disease classification tasks
[5]. A first example of the use of fully-connected neural net-
works (FC-NN) to the estimation of microstructural indices
is represented by the work of Golkov and colleagues in 2016
[6]. In Golkov et. al. (2016) the network was blind to the
spherical nature of the dMRI signal, and raw dMRI samples
were vectorized and used as the input of FC-NN to estimate
three microstructural indices. The network was trained us-
ing the result of the in-vivo fitting of the neurite orientation
dispersion and density imaging model [1].

In this work, we propose to investigate how three dMRI
signal representations perform in the estimation of mi-
crostructural indices when used as an input for FC-NN. The
three signal representation are the vectorized signal samples
as in [6], the signal SH coefficients, and our new RIF. In
the next Section we will briefly introduce the new RIF, the
synthetic dataset used for the training and the validation of
the FC-NN, and the architecture of the FC-NN themselves.

2. MATERIAL AND METHODS

2.1. Rotation invariant features

In this work, we consider the dMRI signal at a given b-value
as a real-valued antipodal symmetric spherical function f(u)
parameterized by the 3D unit vector u. Its SH series expan-
sion can be expressed as

f(u) =
L∑

l=0,even

l∑
m=−l

clmY
m
l (u) (1)

where Y ml are the real SH [7] of degree l and orderm, clm are
the SH coefficients, and L is the truncation degree of the SH
series. In our previous work [4], we defined a new set of RIF
based on the SH expansion of the dMRI signal whose take the
form
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where G represents the generalized Gaunt coefficients, as the
integral of d SH [7] and l = [l1, l2 · · · , ld]. For any set of l Eq.
(2) will be rotation invariant for the signal described by the
SH coefficients clm. In [4] we used the algorithm proposed
by Caruyer and Verma (2015) [8] to select the Il that form
a set of algebraically independent invariants to maximize the
amount of information extracted from the signal while reduc-
ing the number of invariants. In this work, we consider the
SH expansion of the dMRI signal of degree L = 4 which
corresponds to 12 algebraically independent invariants [4].

2.2. Synthetic and in-vivo dataset

We generate the dMRI signal using the Human Connectome
Project (HCP) diffusion MRI sampling scheme [9]. It is com-
posed of 18 samples b-value 0 s/mm2, and three shells with 90
samples per shell at b-values 1000, 2000, and 3000 s/mm2, re-
spectively. We simulate our data using a multi-compartment
model [1, 2, 3] for modeling a synthetic white matter fiber
composed of an intra-axonal part modeled as a stick and an
extra-axonal part modeled as an axially symmetric Gaussian.
More in detail, we model the diffusion signal E funtion of the
b-value and the diffusion gradient direction u as

E(b,u)=νiae−b(λ‖(uT v)2)+(1−νia)e−b((λ‖−λ⊥)(uT v)2+λ⊥)

(3)
where the parameters of the model are the signal fraction of
the intra-axonal compartment νia, the parallel diffusivity λ‖
which we considered the same for both the intra and extra
compartments, and the extra-axonal perpendicular diffusiv-
ity λ⊥. Eq. (3) represents the signal of a single synthetic
fiber aligned in the direction v. In order to simulate crossings,
each synthetic voxel is composed of three randomly oriented
fibers, all three having the same microstructural parameters.
We also blurred each of the fiber using the Watson distribu-
tion [1] with random dispersion to mimic the natural undula-
tion and dispersion of the brain fibers. For the microstructural
parameters, we select νia in the range [0, 1], λ‖ in the range
[0.5, 3]×10−3 mm2/s, and λ⊥ in the range [0, λ‖] to preserve
the zeppelin shape of the extra-axonal compartment. We sim-
ulate 300000 synthetic voxels adding noise with a signal-to-
noise ratio of 30. In order to test our methods in-vivo, we ad-
ditionally consider a subject of the HCP dataset. Each HCP
subject is composed of a volume 145×174×145 voxels with
a 1.25× 1.25× 1.25 mm3 resolution. We normalized the dif-
fusion signal in the [0, 1] range dividing the diffusion signal
by the mean value of the b-value 0 s/mm2 samples.

2.3. Neural Networks design

In order to evaluate the microstructural parameters estimation
potential of our RIF, we created 8 different neural networks.
Each of these networks takes as input the 12 RIF estimated
on each shell of the dMRI signal, for a total of 36 input chan-
nels considering the three b-values of the HCP scheme. The

number of hidden layers nh and the number of perceptrons
per layer np was varied for each network. More specifically,
we select nh equal to [2, 4] and np equal to [16, 32, 64, 128]
for a total of 8 networks. We refer to these FC-NN that take
as input the 12 invariants, as RIF-NET. We also considered
similar networks for the dMRI signal and the SH coefficients.
The dMRI signal networks (SIG-NET) take as input the nor-
malized diffusion signal in each shell, in our case 90 samples
times three b-values, for a total of 270 input channels. The SH
coefficients networks (COEF-NET) take the 15 coefficients of
SH of degree 4 as input for a total of 45 channels. All the
aforementioned networks have three channels as output for
the three considered microstructural parameters, namely the
intra-axonal signal fraction, the parallel diffusivity, and the
perpendicular diffusivity. Since the number of input channels
differs, the three sets of networks have a different number of
weights even if nh and np are the same, with SIG-NET hav-
ing more tunable network weights than COEF-NET and RIF-
NET. However, for the sake of simplicity, we will consider
these networks equivalent in potential and comparable given
the fact that they have the same number of hidden layers and
perceptrons.

The code of this work, including also the synthetic data
generation, has been written in Python and it is available on
request. All the networks are implemented in Pytorch1 and
trained using the Adam optimizer with Mean Square Error
loss with a learning rate of 5 × 10−5 and a weight decay of
1× 10−6. We split the training set in batches of 100 elements
and train the networks for 100 epochs. All these parameters
were fine-tuned based on the global results of the three sets of
networks and only the resulting best parameters are shown in
this work. Of the 300000 synthetic voxels, 100000 were used
for training the networks which will be used to calculate the
microstructural feature for the full synthetic dataset and the
in-vivo HCP subject.

3. RESULTS

To test the performance of our networks we calculate the
mean absolute error between the ground truth microstructural
parameters used for generating the signal and the value given
in output by each network. In order to keep all the measures
in the same scale, we divided λ‖ and λ⊥ by 3× 10−3 mm2/s
to keep their values between zero and one. Figure 1 illus-
trates the error of the estimation of the three microstructural
parameters as a function of the number of perceptrons np for
the networks with nh = 2 (top row) and with nh = 4 (bottom
row). For all the tested network configurations, RIF-NET
(blue triangles) outperformed both SIG-NET (red circles)
and COEF-NET (blue crosses). SIG-NET shows a lower
error than COEF-NET for small networks (nh = 2) but a
higher error for bigger networks (nh = 4). As expected, each

1https://pytorch.org/

https://pytorch.org/
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Fig. 1. Mean absolute error for the three microstructural fea-
tures obtained for the two hidden layer networks (nh = 2,
top row) and the four hidden layer networks (nh = 4, bottom
row) for RIF-NET, SIG-NET, and COEF-NET.

increase in the number of learnable network weights leads
to a decrease in the errors. This phenomenon is consistent
for the three families of FC-NN, both when we increase the
number of hidden layers and when we increase the number of
perceptrons per layer. All the neural networks seem to reach
a plateau in the three parameters errors while increasing the
number of network weights. In fact, the difference between
the performance of RIF-NET, SIG-NET, and COEF-NET
tends to reduce with the increase of the network size. Overall
the best performing network is the RIF-NET with nh = 4
and np = 128.

Figure 2 illustrates the result of the estimation of the
microstructural parameters for the best performing networks
for one HCP subject. Although the network processes each
voxel independently the microstructural parameters images
look smooth while keeping the characteristic microstructural
pattern of the main brain tissues. In fact, we obtained a high
value for νia for the white matter (WM) compared to the
gray matter (GM) or the cerebrospinal fluid (CSF) with the
highest values in the single fibers areas like the corticospinal
tract or the corpus callosum. As expected, both λ‖ and λ⊥
reach the limit value of 3 × 10−3 mm2/s in the CSF. While
λ‖ conserve high values in basically all the WM and, in
particular, in the single fiber areas. λ⊥ values are generally
very low in WM, in particular in the brain region where λ‖
is high. In general, the results of our neural network trained
on synthetic data are coherent with the results obtained by
fitting multi-compartmental models present in the literature
[2, 3, 4].

4. DISCUSSION AND CONCLUSION

In this work, we investigate for the first time how the dMRI
signal representation chosen as an input for FC-NN impacts
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Fig. 2. In-vivo microstructural parameters estimation ob-
tained on one HCP subject for RIF-NET with nh = 4 and
np = 128, the best performing network on the synthetic
dataset.

the estimation of the most common brain microstructural fea-
tures obtained from multi-compartmental models. Previous
works on the use of FC-NN for estimating microstructural in-
dices consider only the dMRI signal as an input for the net-
work [6]. We showed that the use of a compact and mean-
ingful representation like the novel RIF which we recently
proposed in Zucchelli et. al. (2020) [4] is able to improve
the performance of the neural networks in particular for small
networks. This result can be explained considering that dMRI
microstructural indices such as νia, λ‖, and λ⊥ are naturally
rotation invariants. Giving the network an input that is rota-
tion invariant increases the efficiency of the network itself that
can use all its weights to estimate the desired output. This ob-
servation is sustained by the fact that the performance of both
COEF-NET and SIG-NET tends to go nearer the one of SIG-
NET if the number of weights of the network increases. It
is interesting to note that in the case of SIG-NET for exam-
ple, simple rotation invariant features such as the spherical
mean [2] can be easily obtained from the raw diffusion signal
by the neural network itself. The increase of performance by
SIG-NET and COEF-NET can be explained by the fact that
the ability of the networks to extract RIF increases with the
complexity of the networks themselves.

In this work, we only considered FC-NN that takes a sin-
gle voxel signal representation as input and not the image-
oriented convolutional neural networks (CNN) that are com-
monly used in biomedical imaging [5]. The main advantage
of our approach compared to the latter is the possibility to
guide the network training using synthetic data for which it
is possible to have ground truth values. In order to obtain the
same results with image-oriented CNN, it is necessary to first
compute the brain microstructural features on hundreds of
subjects by fitting the chosen multi-compartment model and
secondly to train the networks using the result of the model
fitting, similarly to what has been done in [6]. This methodol-
ogy is not only slower but also less accurate because the error
in the model fitting are propagated to the CNN. This limits the
maximum performance of the CNN to the one of the multi-
compartment model used for the initial fitting. On the con-
trary, using a synthetic dataset with ground truth values we



are able to theoretically achieve the optimal performance as
long as our training set is representative enough. The param-
eters distribution of the synthetic dataset should mimic the
distribution of the microstructural parameters of a real brain.
This is a challenge in itself and can be considered one of the
main limitations of the FC-NN approach. Although we pro-
cess the brain voxel-by-voxel and no neighborhood informa-
tion is used by our FC-NN the resulting brain images (Figure
2) appear smooth and natural. There are no visible fitting arti-
fact or discrepancy in the value of the microstructural indices
for neighboring voxels.

In conclusion, the combination of our newly proposed
RIF and FC-NN are able to provide an accurate estimation of
brain microstructural indices. Our future works will focus on
identifying the weight and importance that each single invari-
ant carries on the microstructure estimation, the comparison
of our method with other NN approaches such as the spher-
ical convolution neural networks [10], and the application of
our networks to clinical data.
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