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Visual Tracking of Deforming Objects Using Physics-based Models

Agniva Sengupta1, Alexandre Krupa1, Eric Marchand1

Abstract— In this paper, we propose a framework for track-
ing the deformation of soft objects using a RGB-D camera by
utilizing the physically-based model of the considered object. A
coarse, 3D template of the object being tracked is the only prior
information required by the proposed method. The proposed
approach does not rely on the accurate knowledge of the
material properties of the object being tracked. In this paper,
we integrate computer vision based tracking methodology
with physical model based deformation representation without
requiring expensive numerical optimization for minimizing non-
linear error terms. The proposed approach enables deformation
tracking by joint minimization of a geometric error and a direct
photometric intensity error while utilizing co-rotational Finite
Element Method (FEM) as the underlying deformation model.
The proposed method has been validated both on synthetic data
(with groundtruth) and real data.

I. INTRODUCTION

Physically based models have been used to analyze de-
formations of objects of complex shapes since the inception
of structural mechanics. Some of the recent computer-vision
based approaches have tried to leverage the advantages of the
physics based models for deformation tracking. Surprisingly,
these physical-model based approaches often fall short of
other competing deformation models in terms of accuracy
[1]. Many deformation tracking methodologies used by the
computer vision and robotics community utilizes geometric
regularizers or assumption of isometry or conformality as
a deformation model. However, structural mechanics offer
many highly evolved methodologies for modelling deforma-
tion in complex shaped objects. In this paper, we propose a
method of non-rigid object tracking using a RGB-D camera
that combines the minimization of a geometric error that
penalizes the model to pointcloud distance and a photometric
error that penalizes inter-frame photometric intensity differ-
ence. A coarse, 3D template of the object being tracked is
the only prior input necessary for the proposed approach.
The entire observable surface of the deforming object is
tracked in 3D using the data from the RGB-D camera.
The deformation model used for representing the underlying
physics is based on FEM. Thanks to the physics based
model, it is possible to track large deformations that do not
preserve the volume of the object. The proposed method
is robust to occlusion and the tracking accuracy is not
dependent on apriori knowledge of physical properties of the
deforming object. However, if the physical parameters are
known apriori, we demonstrate that the approach can also
be utilized for estimating the external contact forces applied
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on the surface of the deforming object. The following are
the main contributions of this paper:
• We propose a new methodology for deformation track-

ing using joint optimization of a geometric and pho-
tometric error defined on the surface model of the
deforming object. A non-linear least squares optimiza-
tion based method with an analytic expression of the
Jacobian relating the variation of geometric and visual
error to displacement of the vertices of the mechanical
mesh is proposed to track the deformation of objects

• The method proposed here has also been utilized to
track external forces applied on the surface of deforming
objects. Such applications are an important advantage of
using physically-based models for deformation tracking.

II. BACKGROUND

A method to track deformable objects by applying virtual
forces on the simulation of a physically based model was pro-
posed in [2]. The physics of the deforming object was mod-
elled as a collection of linked rigid bodies or particles and
the tracking was formulated as an Expectation-Maximization
(EM) problem. The qualitative results in [2] are impressive,
but there are a few sequences where the tracking suffers
noticeable drift in heavily occluded regions. It is not trivial to
modify the approach of [2] to utilize a Newtonian optimiza-
tion scheme for minimizing the visual error. [3] improved the
approach of [2] by considering co-rotational FEM. But, in
[3], no attempt was made to tackle the deformation tracking
problem using conventional optimization since the gradient
estimation of the high dimensional optimization step was
considered to be intractable. In this context, it must be noted
that physical model free, RGB-D based deformation tracking
approaches such as [4] depend heavily on the assumption that
the deformation is isometric. Consequently, these approaches
are not preferable when there is a significant change in the
volume of the deforming object. In [5], the authors utilized
co-rotational FEM to track deformation by purely geometric
matching of pointcloud with the 3D object model, producing
highly accurate tracking results at frame-rate. However, the
approach of [5] was also sensitive to occlusion, large inter-
frame motion and demonstrated a tendency to drift along
the tangent of large planar surfaces, which can be intuitively
explained as an inherent drawback of tracking solely using
point-to-point or point-to-plane correspondences. In [6], the
deformation tracking using physically based model has been
formulated as a conventional optimization problem, but only
using depth information. Moreover, the optimization in [6]
requires expensive simulation of object deformation using
FEM for computing the gradient of the visual error, which



is unsuitable for deformation tracking at frame-rate. [7] pro-
poses a force tracking methodology based on the approach
of [6] which is slow and does not utilize the photometric
information for tracking.

III. METHODOLOGY

The proposed method tracks deformable objects using
a RGB-D camera with the help of a coarse 3D template
of the deforming object. The proposed approach can be
summarized by the following iterative steps:
• Rigidly track the deforming object w.r.t the camera
• Analyze the residual error after rigid tracking to deter-

mine the region which is likely to have deformed
• Minimize a combination of geometric and photometric

error terms to track the deformation using a set of
selected vertices of the model in those deformed region

We now describe the entire approach in details.

A. Notation

Throughout the rest of the paper, the notation Q is used to
denote the vertices of the volumetric mechanical tetrahedral
mesh K, while PS = (PSX,P

S
Y,P

S
Z) denotes the vertices

of the surface model S. The mapping S 7→ K is done
via barycentric mapping. Following standard convention,
the object to camera homogeneous transformation matrix is

given as CTO =

[
CRO

CtO
0 1

]
and this is utilized to align

K and S to the actual object, where CRO and CtO are the
rotation matrix and translation vector respectively. Between
two consecutive data frames, the pose of the object in current
frame (p) with respect to pose in the previous frame (p− 1)
is q = (ptp−1, θu), where θ and u are the angle and axis of
rotation pRp−1. The time derivative of q is given as pvp−1 =
δq, where v ∈ se(3) is the velocity screw. The color image
for the p-th data frame is given by Ip. The perspective
projection function Π(·) is used to project the 3D point P to
its corresponding 2D coordinates (u, v) in the image plane,

such that

uv
1

 = Π
([P

1

])
= KpΠp

cTo

[
P
1

]
, where Kp

is the camera calibration matrix in the standard notation
and Πp =

[
I3×3 03×1

]
. The function I(u, v) gives the

grayscale intensity at that pixel position and (∇Iup ,∇I
v
p)

gives the corresponding image gradient. (fx, fy) are focal
lengths in pixel units.

B. Deformation Model

We employ FEM [8] to model the underlying physics of
the non-rigid object. Let the four vertices of a particular face
of the tetrahedral mechanical mesh be denoted by the vertices
Q1, Q2, Q3 and Q4 and the centroid be a point QC. To
obtain the displacement of vertices as a result of application
of external force on the object, a second order differential
equation of the following nature needs to be solved:

MQ̈ + DQ̇ + KQ = Fext + Fe (1)

where M and D represent the mass and damping matrices of
the model respectively, and K is the global stiffness matrix.

Fext denotes the external forces acting on the vertices and Fe
are the internal elastic force vector acting on the vertices of
the tetrahedral elements. A linear solver based on conjugate
gradient descent [9] is used to solve Eqn. (1). Co-rotational
FEM [10] is a modification of linear FEM that allows
robust handling of strong deformations in the mesh. If the
model undergoes a large deformation, let the centroid of the
tetrahedral element at this deformed configuration be denoted
by a point QR

C. An arbitrary vertex Qx of the mechanical
mesh in the undeformed frame gets deformed to Q in the
new frame (variables with the ·̃ notation are expressed in
the corotated frame QR

C). With the co-rotational formulation
[11], it can be shown that d̃ = R>

(
U −QC + Qx

)
−Qx

given that R is the rotation matrix, U is the displacement
of Qx, expressed in the object frame of QC, and d̃ is the
displacement of Qx in the corotated frame QR

C. Applying
similar deformation to the vertices of the tetrahedron, the
internal, elastic forces can be represented by:

Fe = ReKeŨ
R (2)

Here, ŨR = (Q̃1, Q̃2, Q̃3, Q̃4), Ke represents the stiff-
ness matrix and Re is the 12× 12 block diagonal matrix of
four 3× 3 rotation matrices R stacked diagonally.

C. Visual Tracking

We track the deforming object by minimizing two error
terms defined on the surface of S. The minimization is
done using a set of control handles C on K, such that the
entire deformation becomes optimizable by regulating the
displacement of C. C are those vertices of K that shall be
controlled to minimize the error terms defined on S. Any
displacement of C gets propagated to all vertices of K using
the deformation model. We are interested in minimizing a
geometric error function Edepth and a photometric error
function Ephoto. The combined error term can be represented
as:

ES =
[
Edepth Ephoto

]>
(3)

ES is minimized using a set of displacement vector on
C. For the sake of simplicity, we describe the proposed
mechanism of minimizing ES with the help of a single
control handle, i.e., the u-th control handle of C, denoted
by uC. However, to optimize in a non-linear least squares
fashion, we need to obtain the gradient of the stacked
cost function. Numeric estimation can be computationally
expensive as determining the node displacements typically
involves multiple iteration of conjugate gradient descent for
solving an equation of the nature of Eqn. (1). One of the
key contribution of this paper is the proposed mechanism
for minimizing ES with non-linear least squares optimization
along with a strategy for analytically estimating the Jacobian.

Let us analyze the case of an arbitrary 3D point P
of the pointcloud, which lies on or near the triangle(
PSi PSi+1 PSi+2

)
of S. Let us assume that a small

displacement ∆uC =
[
∆uCX

∆uCY
∆uCZ

]
produces

the displacement ∆x,∆y and ∆z on the j-th surface plane



of S (due to the underlying deformation of the mechani-
cal mesh) comprising of three vertices PSi ,P

S
i+1 and PSi+2

respectively. This vector of vertex positions is given by:

ϑj =
[
(PSi )> (PSi+1)> (PSi+2)>

]
(4)

Subsequently, the gradient of the error ES(P) w.r.t uC is
given by the Jacobian:

JS(P) =
∂ES(P)

∂uC
=
∂ES(P)

∂ϑj
1×9

∂ϑj
∂uC
9×3

(5)

The term ∂ϑj

∂uC
is somewhat similar to the classical strain-

displacement matrix, as expressed conventionally in FEM
literature [12]. The details of how ∂ES(P)

∂ϑj
can be derived in

our case is described in Sec. III-E.
Computing ∂ϑj

∂uC
can be done by estimating the deforma-

tion of the mechanical model K, for every new control handle
explored by our proposed approach, only once. For the j-th
control handle Cj , this is done by successively displacing the
vertex in K corresponding to Cj by a small distance along
the positive direction of X, Y and Z axis. This estimation step
produce three deformed meshes per control handle, which
can be directly utilized for determining ∂ϑj

∂uC
using forward

finite differences. Assuming that uC points to the c-th vertex
of K, the values of ∂PS

i

∂uC
can be mapped to a matrix ΓO by

a mapping function C such that ΓO = C
(∂PS

i

∂uC

)
where:

∂ϑj
∂uC

=
(
∂PS

i

∂uC
,
∂PS

i+1

∂uC
,
∂PS

i+2

∂uC

)
(6)

Here, C represents the mapping ∂PS
i

∂uC
7→ ΓO. Assuming that

M denotes the number of vertices in K and S, C can be
expressed as:

ΓO = C
(∂PSi
∂uC

)
=

M∑
i=0

M∑
c=0

∂PSi
∂uC

⊗ Ji,cM×M (7)

where ⊗ gives the Kronecker product and Ji,cM×M denotes the
conventional single-valued matrix of dimension [M×M] for
the c-th control handle, such that:(

Ji,cM×M

)
x,y

=

{
1 if x = i and y = c,∀x, y ∈ M

0 else
(8)

and the x and y in the subscript of (·)x,y denotes the row
and column index of an element of the matrix. Based on the
matrix indices, ΓO can be represented as:(

ΓO

)
aM+i,bM+c

=
(∂PSi
∂uC

)
a,b
| ∀i, c ∈ M ∧ a, b ∈ {0, 1, 2}

(9)
We term the matrix ΓO as influence matrix (since it

denotes the influence of the displacement of a vertex on its
neighbors) and it can be conveniently computed offline once
per every object model and stored. During tracking, ΓO is
loaded from memory when required.

For estimating Eqn. (5), we derive a new matrix RΓ such
that:

RΓ

3M×3M
= CRO ⊗ IM×M (10)

where IM×M is an identity matrix of dimension [M ×M].
RΓ allows us to rotate the influence matrix to the current
camera reference frame. This transformed matrix ΓC is given
by ΓC = RΓΓO. We then derive a new matrix Γ by
thresholding ΓC such that its value at an arbitrary index m,
n associated with the i-th vertex PSi is given by:

Γm,n =

{
1 if ε > 3α||∆uC ||

2

0 else
(11)

given that ε =
∑2
a=0

∑2
b=0

((
ΓC

)
m+a,n+b

)2

where ∆uC

is the calibrating deformation (implying that ||∆uC || is a
constant for a particular ΓO). α is a tunable parameter which
regulates the area for which the value of Γ will be 1.

This thresholding of Eqn. (11) is done because we in-
tend to utilize the point-to-plane distance as the error term
Edepth. It is known classically that point-to-plane distance
minimization using planar (or nearly planar) surface model
can result in the model ‘sliding’ over the 3D data [13]. The
calibrating deformation ∆uC produces larger deformation in
vertices closer to the vertex index c, i.e., ΓC highly prioritizes
vertices close to c. This, in turn, converts the Jacobian in Eqn.
(5) to effectively consider only a small patch of surface near
the vicinity of the c-th vertex, while neglecting the small
magnitude of deformation observed in the vertices farther
away from the c-th vertex. To overcome this problem, we
propose to binarize ΓC to Γ for obtaining the gradient of
Edepth. However, the Jacobian for Ephoto can be obtained
directly from ΓC without modification.

D. Determining the Control Handles

It is possible to estimate suitable positions for the control
handles by analyzing the cost function. Given the two
objective functions Edepth and Ephoto, we define two vectors
Zdepth and Zphoto, such that their values at the index
corresponding to the 2D image point Π(Pl) is given by:

Zdepth
Π(Pl)

= (Wdepth)l,lEdepth(Pl)

Zphoto
Π(Pl)

= (Wphoto)l,lEphoto(Pl)
(12)

for the l-th point Pl of the pointcloud. Zdepth and Zphoto

forms a vectorized image from the pixel intensities cor-
responding to the error values of Edepth and Ephoto re-
spectively. Wdepth and Wphoto are the diagonal weighting
matrix derived from Edepth and Ephoto using Tukey based
m-estimator [14]. The combined error matrix ZΠ on the
image plane is obtained by:

ZΠ =
〈

vec−1
H×W

(
Zdepth

)〉
�
〈

vec−1
H×W

(
Zphoto

)〉
(13)

where � denotes the Hadamard product and 〈·〉 gives the
normalized matrix. vec−1

H×W(·) denotes the vector to matrix
map RHW 7→ RH×W, where H and W are the height and
width image respectively. A median blur with 3 × 3 sized
kernel is applied on ZΠ followed by a linear thresholding
and the output of this operation is clustered into multiple
clusters. The centroid of each cluster is associated with the
nearest projection of the visible vertices of K on the image



plane. These associated vertex indices of K are identified as
the control handles for that particular frame.

E. Non-rigid Error Minimization

Assuming that an estimate of pTp−1 has already been
obtained (using the method described in Sec. III-F), a combi-
nation of depth based geometric error and direct photometric
error is minimized to track the deforming object. We now
define the error term that needs to be minimized for a single
point P of the pointcloud at the p-th data frame. The point-
to-plane distance based geometric error is given by:

Edepth(Pp) = nj ·Pp − dj (14)

assuming that the j-th surface plane of S (where nj is the
normal and dj is distance to origin) corresponds with the
point P on the image plane. We propose a photometric error
term defined on the (p-1)-th frame by:

Ephoto(Pp−1) = Ip(Pp−1
e )− Ip−1(Pp−1) (15)

The updated point position Pp−1
e is determined by a barycen-

tric map Pp−1
e =

[
(PSi )′ (PSi+1)′ (PSi+2)′

]
B such that

Pp−1 corresponded with the triangle
(
PSi PSi+1 PSi+2

)
and (PSi )′ gives the updated vertex position of PSi when
subject to the update ϑ, given that B is a column vector
denoting the barycentric coordinates of Pp−1 w.r.t PSi ,P

S
i+1

and PSi+2.
Eqn. 3 can be slightly modified to:

ES =
[
Edepth µEphoto

]>
(16)

as the combined cost function, where µ = β
‖Edepth‖
‖Ephoto‖ is used

for bringing the geometric and photometric error terms to
the same scale and 0.9 ≤ β ≤ 1.2 is a tunable parameter
for weighting the relative influence of the photometric cost
function.

The combined cost function that we seek to minimize is
Eqn. (16) w.r.t uC , the displacement of the control handle.
The Jacobian relating the change of uC to the change of ES
is obtained by utilizing Eqn. (10) and Eqn. (11) in Eqn. (5),
such that:

J =
∂ES
∂uC

=
[
∂Edepth

∂ξ Γ µ
∂Ephoto

∂ξ ΓC

]>
(17)

where:

∂Edepth

∂ξ
=

−n>j − n>l
(
A
[
PSi+2 −PSi+1

]
×)

−n>l (A
[
PSi −PSi+2

]
×

)
−n>l

(
A
[
PSi+1 −PSi

]
×

)

>

(18)

given that:

A =
1

‖nj‖
(I3×3 − njn

>
j ) (19)

provided (·)× gives the skew-symmetric matrix and:

nj = (PSi+2 −PSi )× (PSi+1 −PSi ) (20)

and nl = Pp
l −PSi . On the other hand:

∂Ephoto

∂ξ
=

[
∇Iu

p

∇Iv
p

]>

b1 0
0 b1
b2 0
0 b2
b3 0
0 b3


> Gi

PS

Gi+1
PS

Gi+2
PS


(21)

where:

Gq
PS =

 fx
(PS

q )Z
0 −fx

(PS
q )X

(PS
q )2Z

0
fy

(PS
q )Z

−fy (Pq)Y
(PS

q )2Z

∀q ∈ i, (i+1), (i+2)

(22)
and B =

(
b1, b2, b3

)
are the barycentric coordinates.

The optimization method of our choice is Levenberg-
Marquadt (LM) like [15], and the update is given by:

δuC = −(H + λIN×N)−1J>W>WES (23)

where H = J>W>WJ is the approximation of the Hes-
sian and W = diag

(
Wdepth,W

µ
photo

)
where Wdepth and

Wµ
photo is obtained using the Tukey based m-estimator on

Edepth and µEphoto respectively. λ is a scaling factor and
N is the size of the error vector ES . The new position
uC + δuC of Cj is to be applied on the mechanical model
such that it deforms to minimize the errors from (14) and
(15). Apart from α in Eqn. (11), β related to Eqn. (16) and λ
(and excluding the clustering mechanism of Sec. III-D), there
are no parameters involved in the non-rigid visual tracking
approach presented here.

F. Initialization

The rigid pose of the object in the camera’s reference
frame is updated at the beginning of each frame using an
approach similar to [16], by jointly minimizing a geometric
error and a sparse feature based error, given by:

eD(pvp−1) =
((
pRp−1P

p−1 + ptp−1

)
· nj
)
− dj (24)

eK(pvp−1) =

(
Π(Pp−1)x − x∗
Π(Pp−1)y − y∗

)
(25)

where Pp−1 represents an arbitrary 3D point from the
last data frame, which has been matched to the j-th
plane of the object’s 3D model, denoted by the normal
vector nj = (nX

j , n
Y
j , n

Z
j ) and distance to origin dj .(

Π(Pp−1)x,Π(Pp−1)y
)

are the projection of the same
arbitrary point in the (p-1)-th image while (x∗, y∗) are the
same image points matched in the p-th image using Harris
corner features. pvp−1 ∈ se(3) gives the velocity twist
between the (p− 1)-th frame and p-th frame.

G. Force Tracking

Next, the method of Sec. III-C - III-E is used to estimate
the deforming forces acting on an object. Two additional
information are required for force tracking: the material
properties of the object being tracked, i.e., Young’s modulus,
Poisson’s ratio, Rayleigh stiffness etc. and the approximate
point of contacts on the object. The force tracking exper-
iments have been performed by tracking the tool applying
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Fig. 1: Variance of H with Y and σ for the two simulated objects,
cuboid and icosphere (color coded with the value of H)

the force using fiducial markers. Once a point PP have
been identified as the point of contact, its nearest mechanical
mesh vertex QP is obtained using a nearest neighbor search.

Thereafter, the force applied on PP is given as
∥∥∥∥∑
i

FQi

∥∥∥∥,

for all indices i such that Qi is a neighbor of QP, wherein
the force vectors FQi

is derived using (2).

IV. RESULTS

The results can be roughly divided into three categories:
• For the simulated objects with groundtruth, we focus

on comparing the fundamental concept of the non-rigid
tracking approach proposed here with comparable state-
of-the-art methods. We also use challenging simulated
sequences to quantitatively validate the robustness of
our approach;

• For deformation tracking on real data, we emphasize
the capability of our algorithm to accurately track large
volumetric deformations in soft objects;

• We provide experimental validation of the force tracking
approach proposed in Sec. III-G

A. Simulated Results: Validation with Groundtruth

We base our simulated results on two objects1, a cuboid
and an icosphere, as shown in Fig. 3 and Fig. 2. The
simulated data is generated using the Blender software
[17] and the object deformations are generated manually
using harmonic coordinates with B-spline basis [18]. Some
quantitative results on synthetic sequences are expressed as
a percentage of the largest diagonal of the bounding box
of the objects (2.884m for the cuboid and 3.408m for the
icosphere), and hence the values are unitless.

First, we demonstrate that the difference in accuracy
between maintaining the influence matrix Γ constant (C.
Γ) and re-computing and updating Γ (U. Γ) at each frame
numerically is not significant. To establish this proposition,
we run tests on the synthetic data with and without holding
Γ constant for both standard, linear FEM (SF) and co-
rotational FEM (CRF). The results, summarized in Table I,
are expressed in terms of the Hausdorff distance (H) from
groundtruth (GT). It can be clearly seen that the variation
in accuracy of tracking is between 0 to 0.59 % for both
the sequences tested here. This comes in exchange for a
large improvement in runtime (upto > 53% improvement
in per frame time requirement, see Sec. IV-D for time
requirements of the implementation) of the entire algorithm,

1All data available at: github.com/icra2021/VisualDeformationTracking

Cube Icosphere

SF Constant Γ 5.76 % 4.83 %
Updated Γ 5.75 % 5.42 %

CRF Constant Γ 2.14 % 5.25 %
Updated Γ 2.14 % 5.34 %

[19] 2.93 % 7.93 %
[6] 3.28 % 6.67 %

TABLE I: Tracking accuracy for two synthetic sequences in terms
of Hausdorff distance between tracking output and GT

since multiple FEM simulations per iteration of LM is highly
expensive. We also use these sequences for comparing the
proposed approach to [19] and [6]. The corotational FEM
based version of the proposed approach outperforms [19] and
[6] in both the sequences. Fig. 2 shows the visual comparison
of all the approaches tested on the synthetic sequences.

Using a specific control handle and maintaining all other
parameters constant, the variation of the tracking accuracy
(in terms of H) of the method proposed in this paper w.r.t
the Young’s modulus (Y) and Poisson’s ratio (σ) is shown in
Fig. 1. It is clear that the tracking accuracy do not vary signif-
icantly with change in Young’s modulus. This observation is
in accordance with [6]. However, the tracking accuracy varies
significantly with change in Poisson’s ratio. This is because
materials with Poisson’s ratio in the range of 0.35 − 0.45
are highly ductile in nature and hence significantly harder to
track with.

Fig. 3 shows the output of the proposed approach on two
challenging deformation sequences on cuboid and icosphere.
The two objects were subjected to large volumetric defor-
mation and were occluded using large floating objects in the
synthetic scene. The mean value of H is 0.0696m for the
cuboid and 0.0836m for the icosphere, while the value of H
for every frame of the sequence if shown in Fig. 4.

SF CRF
Input [19] [6] U. Γ C. Γ U. Γ C. Γ

Fig. 2: Comparison between GT and tracking output for the two
synthetic sequences cube and icosphere. The red edges and vertices
shows the object model from the GT, the black ones are from the
tracking output.

B. Experiments on Real Data

The real data has been captured using an Intel RealSense
D435 camera. Three objects were used, a block of sponge, a
rugby ball (cut in half) and a soft dice. These objects were
strongly deformed from the top. The output of tracking has
been demonstrated visually2 in Fig. 5 while the evolution of
point-to-plane distance across the two sequences have been
logged in Fig. 6. The sponge and ball demonstrates highly
accurate tracking with a mean geometric error (from Eqn. 14)

2For a detailed video of the results, please visit: youtu.be/ScJnz j4-cs



Fig. 3: The cuboid and icosphere are subjected to large deformation
((a) & (b)) with large, floating objects flying across the scene (as
occlusion). The tracking output is shown in (c) and (e) while Edepth

is shown on the surface of S in (d) and (f)

of −0.81 mm and −0.18 mm respectively, with a standard
deviation of 0.47 mm and 0.62 mm. This accuracy is highly
robust to occlusion and demonstrates the suitability of the
proposed approach to robotic manipulation of soft objects.
The dice is a slightly smaller deformation, but shows a high
mean accuracy of ∼ 0.61 mm.

C. Force Tracking

To validate the force tracking methodology, we use a 6-
DOF anthropomorphic robot arm (Viper 850 from ADEPT)
fitted with a ATI Gamma IP65 force/torque sensor and a 3D-
printed stylus as an end-effector distal tool. The robot is used
only to utilize its force sensor to obtain a GT of the force.
We use the sponge and the ball to validate the force tracking
method. The Young’s modulus of the sponge and the ball
is determined by repeated indentation tests and is found to
be 460 kPa and 160 kPa respectively. Next, these objects
are subjected to a strong deformation using the robot’s 3D
printed end-effector, and the point of contact on the object is
tracked using pre-trained markers (fitted to the probe) from
the image data. The results of the force tracking approach,
as summarized in Fig. 7, shows an accuracy of ∼ 97% for
the sponge and of ∼ 90% for the ball when the deformation
is optimally observable.

D. Implementation

The approach proposed in this paper has been imple-
mented in C++ on an Intel Xeon CPU working at 3.70 GHz.
Utilizing only a single core of the computer (without using
GPU), the un-optimised code was able to achieve a runtime
of 350 ms - 550 ms per frame while tracking deformations
using the proposed approach, showing that it can be possible
to achieve real-time performance at frame rate.

No. of data frame

Fig. 4: The value of H (in m) across all the frames of the two
sequences shown in Fig. 3

Fig. 5: The color and depth image input for the ball, sponge and dice
sequences are shown in (a), (b), (f), (g), (k) & (l). The tracked model
are shown in (c), (h) & (m). (d), (i) & (n) shows the object model
overlaid on the image, while (e), (j) & (o) shows the geometric
error for the visible surfaces, derived using [20]
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Fig. 6: Value of the weighted geometric error, i.e., ‖WdepthEdepth‖
across the iterations of optimization for the sequences in Fig. 5

Fig. 7: Setup and results for force tracking. The red plot is the force
measurement from the robot’s force sensor and the blue plot is the
estimated force reported by the proposed approach

V. CONCLUSION

The paper presented here describes a new method for com-
bining geometric and photometric visual error minimization
with FEM to create an accurate and fast deformation tracking
method. The algorithm has been tested on synthetic and
real data and has been shown to outperform state-of-the-art
methods in tracking accuracy for generic deforming objects.
The algorithm proposed here can be extended to other, more
complex physical models without loss of generalization. The
method proposed here has been demonstrated as a reliable
visual force tracking system, when the material properties of
the object being tracked is available.
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[15] Jorge J Moré. The levenberg-marquardt algorithm: implementation
and theory. In Numerical analysis, pages 105–116. Springer, 1978.

[16] Souriya Trinh, Fabien Spindler, Eric Marchand, and François
Chaumette. A modular framework for model-based visual tracking
using edge, texture and depth features. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 89–96.
IEEE, 2018.

[17] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amster-
dam, 2018.

[18] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom
Sanocki. Harmonic coordinates for character articulation. ACM
Transactions on Graphics (TOG), 26(3):71–es, 2007.

[19] Antoine Petit, Vincenzo Lippiello, Giuseppe Andrea Fontanelli, and
Bruno Siciliano. Tracking elastic deformable objects with an rgb-d
sensor for a pizza chef robot. Robotics and Autonomous Systems,
88:187–201, 2017.

[20] Cloudcompare (version 2.11.1) [gpl software]. Retrieved from http:
//www.cloudcompare.org/, 2020.


