N

N

Probabilistic Model Checking for Activity Recognition
in Medical Serious Games
Thibaud L’Yvonnet, Elisabetta de Maria, Sabine Moisan, Jean-Paul Rigault

» To cite this version:

Thibaud L’Yvonnet, Elisabetta de Maria, Sabine Moisan, Jean-Paul Rigault. Probabilistic Model
Checking for Activity Recognition in Medical Serious Games. SEH 2021 - 3rd ICSE Workshop on
Software Engineering for Healthcare, Jun 2021, Madrid, Spain. 10.1109/SEH52539.2021.00019 . hal-
03180187

HAL Id: hal-03180187
https://inria.hal.science/hal-03180187

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03180187
https://hal.archives-ouvertes.fr

Probabilistic Model Checking for Activity
Recognition in Medical Serious Games

Thibaud LYvonnet!, Elisabetta De Maria?, Sabine Moisan', and
Jean-Paul Rigault!

LSTARS UCA-INRIA, Sophia Antipolis, France
{thibaud.lyvonnet,sabine.moisan,jean-paul.rigault } @inria. fr
2MDSC UCA-I3S, Sophia Antipolis, France
edemaria@i3s.unice.fr

Abstract

Human activity recognition plays an important role especially in med-
ical applications. This paper proposes a formal approach to model such
activities, taking into account possible variations in human behavior. This
approach is based on discrete-time Markov chains enriched with event oc-
currence probabilities. We use the PRISM and Storm frameworks and
their model checking facilities to express and check interesting tempo-
ral logic properties concerning the dynamic evolution of activities. We
illustrate our approach on two serious games used by clinicians to mon-
itor Alzheimer patients. This paper focuses on the suitability of such a
formal approach to model patients’ behavior, to check behavioral proper-
ties of medical interest, and on the respective advantages of the PRISM
and Storm frameworks. Our goal is to provide a new tool for doctors to
evaluate patients.

Index terms— activity description, probabilistic model, model checking,
serious games, bio-medicine

1 Introduction

Human behavior recognition has become a crucial research axis [I] in many
contexts, such as visual surveillance, smart homes [2], or cars [3]. While much
has been done on simple action recognition, especially in computer vision [4], we
rather target complex activities that embed several combinations of actions. We
consider an activity as a set of scenarios describing possible behavioral variants.
The goal of recognition is to identify which scenario is played by analyzing input
data coming from different sensors (in our case mostly video cameras but also
binary or audio sensors).

Recently, serious games were introduced in the health domain to help evalu-
ate the performances of patients with neuro-degenerative diseases [5]. Behavior

and performance displayed by patients during these games give indications on
their disease level. In the line of [6], we expect that our approach to catego-
rize the behavior of patients could provide doctors with significant information
to complete their diagnosis. We chose to represent serious game activities as
discrete-time Markov chains whose edges can be decorated with probabilities
[7]. All the possible actions do not occur with the same probability, since some
behaviors are most frequent than others. We propose to quantify the likelihood
of these variations by associating probabilities with some actions. The recog-
nition process itself remains deterministic since, at recognition time, only one
scenario will be played and recognized.

To implement the Markov chains, we use existing tools, namely PRISM [g]
and Storm [9], that both allow model-checking. Thus we can define properties
of interest on a model and verify them. The advantage is that formal modeling
and model checking techniques provide probabilities associated with classes of
paths and allow to test universal properties on a model, contrary to simulation
techniques which only deal with existential properties. However, a drawback
of model-checking may be time explosion. Fortunately, Markov chains do not
impose to associate a real duration with each action, contrarily to, e.g., timed
automata. Thus we can manage the time in the activity models, restricting it
only to the instants when significant events occur, hence reducing the duration
of simulations or model checking.

We do not use formal modeling and model-checking in the classical engineer-
ing way, i.e. to develop and validate new software. Our perspective is different:
we do not address serious game design, but we rather apply model checking to
existing games that have already demonstrated their utility in medical practice
to qualify the behavior of their players.

We modeled three serious games used by our medical partners to analyze the
behavior of Alzheimer patients. These games target different brain functions
and also raise different formal modeling issues. Due to space limitation, we
only present two of them in this paper. We implemented the game activities
as discrete-time Markov chains using the PRISM language [§], which is also
accepted as input by Storm. We used temporal logic to encode some relevant
properties and we applied model checking techniques to automatically validate
the models with respect to these properties as well as to infer the probabilities
of some interesting paths.

These models represent all the envisioned paths (possible sequences of ac-
tions from the patient or the environment), for both common and uncommon
behaviors. Some actions are certain and need no probabilities, other ones de-
pend on the disease stage of the patient and are associated with probabilities.
The goal is to deduce how relevant to the disease stage the scenario played by a
patient is. For example, if a patient known to be healthy plays a "mild cognitive
impairment" (MCI) scenario, our system is able to detect this inconsistency.

Before performing clinical tests on patients, the focus of this paper is to
validate our modeling approach, to explore its interest in medical applications,
and to compare the respective advantages of PRISM and Storm concerning
model-checking.

The paper is organized as follows. Section [2] details discrete-time Markov
chains and their support in the PRISM and Storm model checkers. Section
illustrates our usage of model checking in the medical domain. Sections[4and [f]
respectively introduce the models of two games as discrete-time Markov chains.
Sections [f] and [7] apply model checking to these models. Section [§ compares the
modeling strategies for the games and the performances of PRISM and Storm.
Section [9] concludes and opens future research directions.

2 PRISM and Storm Model Checkers

Several probabilistic model checkers exist (e.g., PRISM [8], Uppaal [10], Storm
[9], or PAT [I1]). We decided to rely on PRISM and Storm, which are tools for
formal modeling and analysis of systems with random or probabilistic behavior.
PRISM is well established in the literature and has already been used to describe
human activity [I12] while Storm is more recent. Both tools support several types
of probabilistic models, discrete as well as continuous.

In this work we use discrete-time Markov chains (DTMC), which are tran-
sition systems augmented with probabilities. Their set of states represents the
possible configurations of the system being modeled, and the transitions between
states represent the evolution of the system, which occurs in discrete-time steps.
Probabilities to transit between states are given by discrete probability distri-
butions. Markov chains are memoryless, that is, their current state contains all
the information needed to compute the future states. More precisely:
Definition A Discrete-Time Markov Chain over a set of atomic propositions
AP is a tuple (5, Sinit, P, L) where S is a set of states (state space), Sinie C S is
the set of initial states, P : S x S — [0, 1] is the transition probability function
(where >, g P(s,s') = 1forall s € 5), and L : S — 247 is a function labeling
states with atomic propositions over AP.

2.1 Modeling Language

PRISM provides a state-based modeling language that Storm accepts as input
[13]. A model is composed of a set of modules which interact with each other.
The state of a module is given by the values of its local variables and the global
state of the whole model is determined by the union of the local states of all its
modules. The dynamics of each module is described by a set of commands of
the form: [Jguard — prob; : update; + ... + prob,, : update,; where guard is a
predicate over all the variables of the model, corresponding to a condition to be
verified in order to execute the command and each update indicates a possible
transition of the model, achieved by giving new values to variables. Each update
is assigned a probability and, for each command, the sum of probabilities must
be 1. The square brackets at the beginning of a command can either be empty
or contain labels representing actions. These actions can be used to force two
or more modules to transit simultaneously.

Let us consider a simple DTMC with a unique integer variable y which ranges
over {0,1}. Whenever y equals 0, the value of y remains at 0 with probability
0.5 or switches to 1 with probability 0.5. This can be expressed by the PRISM
command: [Jy =0 — 05: (y =0)+0.5: (¢ = 1). PRISM models can be
extended with rewards [14], associating (integer) values with model states or
transitions. For instance, in the previous example we can associate a reward
with y: each time y = 1, the reward is incremented. This is expressed in PRISM
with the following annotation: y =1: 1;.

2.2 Probabilistic Temporal Logic

The dynamics of DTMCs can be specified thanks to the PCTL* (Probabilis-
tic Computation Tree Logic) temporal logic. PCTL* extends the CTL* logic
(Computation Tree Logic) with probabilities. The following state quantifiers
are available in PCTL*: X (next time), F (sometimes in the future), G (always
in the future), and U (until). Note that the classical path quantifiers A (forall)
and E (exist) of CTL* are replaced by probabilities. Thus, instead of saying
that some property holds for all paths or for some paths, we say that a property
holds for a certain fraction of the paths.

The most important operator in PCTL* is P, which allows to reason about
the probability of event occurrences. A property P bound [prop] is true in a
state s if the probability that the property prop holds in all the paths from s
satisfies the bound bound (where a bound is a comparison operator followed by a
probability value). As an example, the PCTL* property P= 0.5 [X (y = 1)]
holds in a state if the probability that y = 1 is true in the next state equals 0.5.
Furthermore, the P PRISM operator can be used as P=7 [prop]; this computes
the probability for prop to occur. For instance, the property P=7[G(y = 0)]
expresses the probability that y always equals 0.

PRISM and Storm also support the notion of integer user-defined "rewards"
which can be seen as counters. They do not impact the number of states and
transitions of the model nor its behavior. The R operator allows to retrieve
reward values. PRISM provides model checking algorithms to automatically
validate DTMCs over PCTL* properties and reward-based ones. In particu-
lar, it deals with the PCTL* fragments PCTL (Probabilistic Branching Time
Logic) and PLTL (Probabilistic Linear Logic). Storm can only deal with PCTL
properties.

PRISM and Storm provide different model checking engines. Among them,
we use PRISM hybrid and explicit engines as well as Storm sparse engine.
PRISM hybrid engine uses symbolic data structures, such as binary decision
diagrams (BDDs) and explicit data structures, such as sparse matrices, which
makes it a partly symbolic engine. PRISM explicit engine and Storm sparse
engine both use only explicit-state data structures. Since they do not use sym-
bolic data structures for model construction, they can perform model checking
in cases where other engines fail.

In addition to classical model checking tools, PRISM offers the possibility
to run experiments, which is a "way of automating multiple instances of model

checking", according to the PRISM authors. This feature allows users to obtain
curves displaying the results of a property with respect to one or several vari-
ables. Besides, PRISM also proposes statistical model-checking, a way to test
properties through simulations.

3 Model Checking in the Medical Domain

Real-time activity recognition is particularly relevant for serious games: the
expected behavior is well identified and it is possible to rely on different sensors
while playing the game. In the health domain, serious game can be used to train
medical staff [I5] or to help diagnose and treat patients [16], [17]. When formally
modeling a patient playing a serious game, one can associate probabilities with
actions to characterize a healthy or a pathological behavior. These probabilities
are initially defined according to physicians’ past experience. Properties can
then be written to extract relevant data to be compared, first, with experimental
results in order to refine the model and, ultimately, with real patients results.

Model-checking techniques have been used in the medical domain to verify
safety critical software or artifacts and it becomes a crucial step in medical
tools engineering [I8]. In these applications, the model of the patient mainly
relies on physiological data (blood pressure, pulse rate, respiratory rhythm...)
that may influence the modeled device operation or the ongoing medical process.
Contrarily to this kind of utilization, we do not address model checking of serious
games software for design purposes, but we model the actions and behavior of
patients playing these games in order to help physicians refine their diagnosis.
Our goal is to observe and record data on the patient’s interaction with the
game. The type of interaction and its differences with a "normal" game session
will help physicians diagnose a possible disease.

This usage of model checking is related to human activity recognition. It is
close to [I9] where model checking is used to detect differences between actual
medical actions and ideal ones as described in a formal model of clinical guide-
lines. Similarly, in [20] the authors apply temporal logic and model checking
to support automated real-time recognition of activities of daily living. These
approaches apply model checking as we do, both to verify properties of a pre-
defined formal model of activity and to confront it with real data coming from
patients or doctors activities. However, they do not rely on probabilities, which
is essential in our case to accurately differentiate the possible patients’ behav-
iors.

We model the behavior of a patient in serious games with discrete-time
Markov chains (DTMCs). To the best of our knowledge, DTMC models are
barely used for the description of human behavior; yet we can cite [2I] that uses
DTMC to describe pedestrian trajectories. In computer vision, Hidden Markov
Models (HMMs) are a popular approach for the description of activities [22] 23].
However, neither PRISM nor Storm (nor most probabilistic model checkers)
allow to check temporal logic properties over HMMs.

As use cases, we consider serious games currently used by our medical part-

ners to analyze the behavior of Alzheimer patients. These games were designed
to provide fun training tools for patients with mild cognitive impairment, but
each one targets a different brain function. Thus they constitute a good panel of
tests that can complement the set of validated neuro-psychological tests usually
conducted by clinicians. In this paper we describe the modeling of two of them:
the Code game [5] and the Inhibitory Control game [24].

As we started modeling with PRISM modeling language, we had to cope
with one of its limitations: in PRISM Markov chains, it is not possible to put
a limit on the number of times the model can loop over a state. Even with a
low probability on the loop transition, there is still a risk for a simulation to
never quit the loop. To avoid this issue, all the possible states must be explicitly
represented in the model, leading to an "unwound" model. But this unwinding
turns out to be an advantage to implement the effect of patients’ fatigue. Indeed
as the game proceeds, patients are likely to become tired, thus the probabilities
of some actions should vary accordingly. We included in all game models a
simplified yet realistic fatigue profile based on pre-computed probabilities at each
time step of the game in the unwound model. As PRISM modeling language can
be used as input for the Storm model checker, all presented models are verified
with both PRISM and Storm.

The games, their models, and some interesting properties on these models
are detailed in the next sections.

4 Code Game Model

The Code game [5] targets selective and sustained visual attention functions. It
runs on a touch-pad. Patients are asked to match a random picture displayed in
the center of the touch-pad with the corresponding element in a list of pictures
at the bottom of the screen (see figure [1)). If the patient chooses the right
picture, a happy smiley is displayed and a new picture is proposed. Otherwise
a sad smiley is displayed and the patient is asked to try again. If the patient
does not interact quickly enough with the touch-pad (more than 10 seconds of
inactivity), the game prompts her to choose a picture. Whenever the patient
exits the game zone, the game is aborted.

A game session lasts at most five minutes (three-hundred seconds), thus we
know that there will be a finite number of states in the Markov chain. Hence, in
the PRISM model, we made the assumption that a patient needs at least three
seconds to select a picture (minimum time needed to think of which picture to
choose and to touch the screen to select it).

4.1 Model Design

With the previous assumption, we translated the time constraint of three-
hundred seconds into a maximum number of actions (or events) that can happen
in a scenario. If the patient keeps on selecting pictures, a smiley (happy or sad)
is displayed. This event is called selection and it cannot happen more than a

A
[N

t

Figure 1: Display of the Code game.

0 selection 100

0
inactivitYI/
30

Figure 2: Combinations of events triangle.

hundred times in a row (300/3 = 100). On the other hand, if the patient does
not interact with the game for ten seconds, the system displays a message. This
event is called inactivity and it cannot happen more than thirty times in a row
(300/10 = 30).

To represent all the combinations of these two events, we picture a right-
angle triangle (figure [2). The edge of length one hundred (representing the
scenario of a succession of selections) and the edge of length thirty (represent-
ing the scenario of a succession of inactivities) form the perpendicular sides of
the triangle. Each state of this triangle, except those on the hypotenuse, has
three exclusive possible transitions: either increment selection and move on the
selection axis, increment inactivity and move on the inactivity axis, or leave the
game. To represent the action of the patient leaving the game before the end of
the five minutes we use a Boolean variable called quit game. If it is true, the
state previously reached in the triangle is considered as the final state of the
game session.

All states on the hypotenuse represent the end of the five minutes of the
game. The only possible transition from them is equivalent to quit_game.

4.2 PRISM Implementation

The model is composed of a single module which includes three integer variables
representing the location of the patient and the events of selecting a picture or of
being inactive for more than 10 seconds (called respectively location, selection,
and inactivity). For instance, location ranges from 0 to 2 (in the room, in the
gaming area or outside it) and selection ranges from 0 to 100, where the value
i represents the fact that the patient has had i interaction(s) with the game so
far.

To take advantage of PRISM rewards, we use Boolean variables and as-
sociated rewards to represent the other events of the game. The event "a
happy (resp., sad) smiley is displayed" for a good (resp., bad) answer is repre-
sented by the variable happy _smiley, with reward Happy smiley reward (resp.,
sad_ smiley, with reward Sad_smiley reward). The event "the patient leaves
the game area before the end of the five minutes" is represented by quit game,
with reward Leave game_reward. The event "the console displays a message
after ten seconds of inactivity" is represented by non_ interaction, with reward
Non_interaction reward.

Only one of these Boolean variables at a time can be true, which means that
the event it represents happened, thus the associated reward is incremented. The
amount of time spent in the game by the patient is represented by Gaming _time.
Its reward is more complex than the others because it increases by three units for
each good or bad answer and by ten units for each inactivity message displayed
by the console. A global Boolean variable time Is Qwver is also defined to ease
the readability of the module. It determines whether the maximum number of
actions that a patient can perform has been reached.

Depending on the values of all the previous variables, the state of the patient
can go through different transitions. Some of them have attached probabilities.
The transitions taken along a path describe the patient’s behavior in a spe-
cific scenario. These probabilities come from discussions with medical staff and
represent a typical patient with mild cognitive impairment. For instance, the
probability to give a good (resp. bad) answer at the beginning of the game
(when the patient is not tired yet) is around 0.5 (resp. around 0.25).

In this model, for 5 minutes of game, PRISM generates 7,903 states and
21,466 transitions, which is easily tractable.

5 Temporal Logic Properties for Code Game

In the previous model we encoded and tested several properties in PCTL, both
to verify the model and to provide interesting medical indications. This section
presents two properties of the last category.

The first property concerns interaction of the patient with the game. Among
all properties of this model, this one is the longest to compute both in PRISM
and in Storm.

Property 1. PRISM. What is the probability for a patient to choose the
correct picture exactly once and to never choose a good one again until the end
of the game?

P =?[(F happy_smiley) & (G (happy _smiley =>
(X G happy _smiley & \quit _game)))]

The probability to verify this property is 1.6475x 10~? in PRISM which is rather
low. The complexity of this property comes from the nesting of G operators that
makes this formula impossible to verify with Storm because it does not support

this type of nesting (specific to PLTL formulas). Thus we wrote another formula
that checks the same paths for Storm.

Property 1. Storm. What is the probability for a patient to get only one
good answer reward until the end of the game?

P =?[true U" {rew{” Happy _smiley reward’} <=1,

rew{” Happy smiley reward’} >=1,
rew{” Leave _game_reward’} <= 0} (location = 2)]

This formula relies on probabilities to gather rewards, which is not supported

by PRISM. The probability to verify this property is exactly the same as in
PRISM, 1.6475 x 10~Y.

Concerning medical interpretation, in the case of a cohort selection based
on this model, MCI patients are not expected to choose only one right answer
and then stay until the end of the game without exiting. If a cohort differs too
much in the frequency of this behavior, practitioners must discard or deeply
change it. Otherwise, the risk to perform a clinical test on the wrong sample of
population is too high.

The second property is relative to the quality of the actions (correct or not)
that can be performed by a patient. It provides an average "score" for the
model.

Property 2. Is the average amount of good responses given by a patient
greater than or equal to, e.g., 307

R{”Happy smiley reward’} >= 30[F (location = 2)]

This property is true both in PRISM and Storm for our model.

Still in the case of a cohort pre-selection, the group of patients should obtain
an average "score" similar to the one given in this property. If the score differs
too much from this result, the cohort must be rejected.

6 Inhibitory Control Game Model

The Inhibitory Control game is part of the TAE Web platform [24]. It targets
the inhibitory control function whose role is to inhibit some reflexes and which
is affected in several neuro-degenerative diseases.

DA

Figure 3: Display of the Inhibitory Control game signals. The coin is the target
and the warning sign is the decoy.

In this game, the patient must click exactly once, as fast as possible, on
a target (figure [3] left) that appears on the screen for a short period of time.
Knowing that human’s visual reaction time for a healthy adult performing a
"go/no-go" task is around 259 ms [25], the game considers a possible anticipation
from the patients and refuses to award a point if they clicked in less than 259 ms
after the occurrence of the target. As long as the patient does not click and as
long as a new signal does not appear, the patient can click and score a point. A
second signal, a "decoy" (fig. [3| right), tests the inhibitory control function. It
is a warning sign that may appear instead of the target. In this case the patient
must not click on it, despite a color similar to the target. The difficulty relies
on both the brevity of the occurrence of signals and on their common color.
A patient who clicks on every decoy may have an inhibitory control problem.
The delay between signal occurrences is random within a given range, defined
at game configuration. There is a short training phase at the beginning of each
session: three targets and a decoy are presented to the patient, but the game
does not register the patient’s results. Then the "real" game starts and the
results are stored.

We chose the following settings for the Markov chain model: 300 ms of dis-
play time for each signal, 2000 & 1500 ms separating two signals (not constant),
10 occurrences of target and 5 of decoy, 3 training occurrences of target and 1
of decoy. These parameters are the same for all players.

6.1 Model Design

To model this game we consider it as a succession of events, each one corre-
sponding to the occurrence of a signal. Since the model only transits on signal
occurrences, to determine the current scenario we need to know the previous
action of the patient. Thus, for each event, we take into account the action of
the patient since the last event.

We consider six potential actions: no click, one click but with anticipation,
one fast click, one slow click, one double click, and several clicks. Given the
rather short duration of the game (up to 72.2 s), we do not consider the possi-
bility to prematurely leave the game. The initial probabilities associated with
the different actions depend on two factors: the nature of the previous signal
and the time elapsed before the occurrence of the new signal. To represent this
time in a Markov chain we consider that the time elapsed between two signals
can be short, medium, or long. This information is reflected in the label names
of the transitions between states. The nature of the signal is reflected by both
the label and the state variables. The probabilities of the different actions also
depend on the time spent in the game to take into account the fatigue factor.

6.2 PRISM Implementation

Contrary to the previous game, the patient behavior strongly depends on the
game one. Thus we used two separate modules, one for the game and one for
the patient to separate the two concerns. We also added an observer module to

10

facilitate the computation of probabilities. The implementation thus contains
three PRISM modules.

The game module is composed of seven Boolean and two integer variables.
The integer variables count the number of targets (resp. decoys) that appeared
during the game session. The main Boolean variables determine if the next
signal will appear in a short, medium, or long time span, if the next transition
will lead to a target or to a decoy, or if the game will reach its end. Both the
nature of the next signal and its speed are decided using probabilities. For each
signal, the probabilities for it to be fast, medium, or slow are identical (%) The
probability for the next signal to be a target or a decoy depends on the number
of remaining signals.

The implementation contains 24 transition labels to represent all possible
combinations of features related to patient actions and signals (such as occur-
rence speed, type of signal, etc.). The most important label is transiting, which
is associated with transitions updating some of the previous Boolean variables.
Other labels are associated with transitions leading either to a new signal or to
the end of the game.

transiting fastend

‘ > Target -+ ‘

}

MediTarg

It

FastTarg SlowTarg mediEndA
- Game choice [« - .
transiting FastDeco L’—J SlowDeco H
‘ MediDeco *
o ey |«
transiting slowEnd

Figure 4: Simplified automaton of the Inhibitory Control game.

Figure [4] depicts the main transitions of the model. The label names are
a combination of keywords indicating a fast, medium, or slow occurrence of a
target or a decoy, either in the training phase or in the regular game phase. All
the labels of this module are used to synchronize with the patient module.

The patient module is composed of fifteen Boolean variables that mainly
(i) describe actions of the patient between two consecutive signals, (ii) memo-
rize the previous signal to determine whether the patient displayed the correct
behavior. To manage every transition of the model, we spell them out for each
possible combination of the following elements: nature of the previous signal,
nature of the new signal, and occurrence speed of the new signal. When the
end of the game is about to be reached, we consider the combination of the
nature of the previous signal and the speed at which the end screen will appear.
Depending on the transition, the probabilities associated with the actions vary.

The probability for the anticipate action is computed taking into account
the time lap preceding the previous signal. The longer it is, the higher the
probability, inducing a global decrease of all other action probabilities. The
probabilities for unique click (fast or slow), several click, double-click, and no

11

click actions mainly depend on the nature of the signal and on the time elapsed
since the beginning of the game. These probabilities are computed with different
functions depending on the phase of the game (training or regular phase). These
functions refer to variables belonging to the observer module.

The observer module is mainly composed of integer variables that take
into account the speed of signal appearance, the delay between signals, and
the number of occurrences of targets or decoys. These variables facilitate the
expression of interesting behavioral properties in the next section.

In this model, for a total of 13 targets and 6 decoys, PRISM generates
485, 347 states and 2, 640, 864 transitions, which is still tractable with a standard
modern computer.

7 Temporal Logic Properties for Inhibitory Con-
trol Game

Table [I| summarizes the model variables used in this section. We present first a

reward-based property that gives an idea of the overall performance of a patient
during the game.

Variable Representation
prev_none Boolean true before the first signal.
prev_targ Boolean indicating if the previous signal
prev_ deco was a target or a decoy.
transiting Boolean indicating if the model
is in a transition state.
not_ click Boolean indicating the type of
click_ fast patient’s action.
click_slow
num__action Integer counting the number of
actions done by the patient.
next_end Boolean indicating the end of the game.
game_on Boolean indicating if the game is on or off

Table 1: Excerpt of Inhibitory Control Game model variables.

Property 1. What is the average accumulation of good answers on targets
at the end of the game?

R{”good _on_target’} =7 [F (lgame on & next end)]

The result for this property is 5.55 for both PRISM and Storm. This result is
consistent with a modeled patient who has issues playing this game and probably
needs further examination regarding the inhibitory control function.

We also used the "run experiment" tool of PRISM (which does not exist in

Storm) to obtain diagrams that summarize the evolution of the patient’s good

12

or bad actions in time. The following property explores the evolution of the
probabilities during the game, it provides a good understanding on how the
fatigue influences the patient’s behavior.

Property 2. What is the probability to click only when required for the
game signal number 47

P =?[F (num_action =i & ((prev_none & not_click)

| (prev_targ & (click _fast | click _slow))
| (prev_deco & (not_click))) & ltransiting)]

This property evaluates the probability to perform a good action in the game
and a similar property can be written to check the probability to perform a bad
action. Figure[5]shows the results for these two properties. It gives a global idea
of the patient’s behavior and clearly shows the good effect of the training phase
between action 2 and 6 but, starting from action 10, the patient does more bad
actions than good ones.

0.9

2

% 0.5

S04 -good action|

& [=bad action
0.3

2 4 6 8 10 12 14 16 18 20 22
Action

Figure 5: Probability to perform a good or a bad action for each instant when
an action is expected from the patient. Here, action number 1 on the horizontal
axis is the one recorded before the occurrence of the first signal.

8 Experiment Feedback

Specifying an activity formal model suitable for model checking is not straight-
forward and there is no unique modeling approach. This process highly depends
on the modeler’s personal experience. This paper described our modeling expe-
rience for two different serious games. However, we are aware that this approach
is not the only possible one.

A game may necessitate more than one model, mainly one for the patient’s
behavior and one for the program implementing the game. The patient model
should represent all possible behaviors, including the ones that deviate from the
rules. The game model should represent the intrinsic game strategy and also
possible reactions to patients’ actions. These two models must communicate
and exchange various kinds of information. To this end, we used the PRISM
synchronization mechanism on transition labels which corresponds to a rendez-
vous communication: the first module which reaches a transition waits for the

13

other ones to reach the same transition. On the formal side, all the models
must satisfy the model checking requirements, in particular a bounded time
and a finite (possibly huge) state space.

When modeling our case study games, we implemented different modeling
strategies corresponding to the specific features and requirements of each game.
We identified three different factors that impact the difficulty to model a serious
game: time, past event dependency, and action randomness. These factors,
even more when they are combined, increase both game modeling difficulty and
model complexity. However, cognitive serious games have usually a rather short
duration and few possibilities of answers. Hence, we do not face huge scalability
issues.

8.1 Game Models

In the Code game, the answer for each picture is right or wrong and does not
depend on the picture itself nor on past events. This game was rather easy to
model since its only factor of difficulty is its timed aspect. In this kind of games,
only the patient’s model is needed: it is a simple state machine which is the
same for all the game steps. Of course time must be discretized.

The Inhibitory Control game requires two models, one representing the game
sequence of events, the other the patient’s behavior. Its game model is rather
complex because it must incorporate the random selections of both the signal
to display and the delay to display it. This random behavior greatly increases
the state space. This game was the most complicated one to model because
it combines the three factors of difficulty. Verifying this model with PRISM
is more time-consuming than the other game (up to 1 or 2 seconds compared
to a few one hundredths of seconds). There are even cases when the PRISM
computation seems to never stop, whereas Storm terminates in a reasonable
time.

The PRISM code of the games can be found at https://gitlab.com/
ThibLY/activity-recognition-modeling,

8.2 PRISM and Storm Comparison

We used both PRISM and Storm model checkers (the hybrid and explicit engines
of PRISM and the sparse engine of Storm) to verify all properties on the two
games. The computations times are rather different (usually less for Storm), as
shown in Table [2| for the properties presented in this paper, except for property
2 of Inhibitory Control game which is specific to PRISM "run experiment" tool.

For all properties in table 2] Storm is faster than PRISM, especially for
properties 1 of both games. These properties require a thorough exploration of
the model to find the specified states. Our intuition is that, at least for the Code
game, since states and paths cannot be easily compacted, the decision diagrams
used to build models in the (default) hybrid engine of PRISM cannot be fully

14

https://gitlab.com/ThibLY/activity-recognition-modeling
https://gitlab.com/ThibLY/activity-recognition-modeling

Property \ PRISM \ Storm
Code Game

Property 1 1.92 0.28
Property 2 0.016 0.005
Inhibitory Control Game
Property 1 \ 2.428 \ 0.534

Table 2: Comparison PRISM /Storm computation times in seconds.

exploited. The explicit data structures used to build models by the (default)
sparse engine of Storm seem more suitable for our case studies.

In some cases, as for property 1 of Code Game, it was not possible to encode
the same formula in PRISM and Storm because they do not support the same
fragments of PCTL*. In particular, Storm does not accept PLTL properties
(where several state quantifiers can be nested), but some of them can be encoded
in Storm using its reward-bounded feature.

In a few other cases we did not get exactly the same result in PRISM and
Storm. As matter of fact, this is a general problem in probabilistic model check-
ing, where it is not usually possible to have a good guarantee of the accuracy
of the result. This is due to the representation of numbers and to choices made
in the resolution methods.

9 Conclusions and Future Work

This paper targets complex human activity recognition, which remains a chal-
lenging topic [26]. We propose a formal approach based on discrete-time Markov
chains to model human activities. Important properties of such models can be
automatically verified thanks to model checking. The proposed approach com-
plements the main existing ones in the field of activity recognition. We use
probabilities to explore paths associated with different behaviors.

We applied this approach to patients playing serious games in the medical
field. The goal is to differentiate their level of damages among different cog-
nitive functions. We identified three prospective applications of our approach.
First, to evaluate a new patient before the first diagnosis of doctors, we can
compare her game performance to a reference model representing a "healthy"
behavior. Second, to monitor known patients, a customized model can be cre-
ated according to their first results, and, over time, their health improvement
or deterioration can be monitored. Finally, to pre-select a cohort of patients, a
reference model can determine, in a fast way, whether a new group of patients
belongs to a specific category.

We selected several serious games for MCI patients, only two of them being
presented in this paper. With the help of clinicians, we encoded them as DTMCs
in PRISM, and we tested meaningful PCTL properties thanks to the PRISM
and Storm model checkers. Modeling these games allowed us to validate our
approach and to test its performance for different applications. To evaluate the

15

scalability of the models, we tested them with different (realistic) parameters
(e.g., more signals in the Inhibitory Control Game and a longer duration for
the Code Game). In both cases, the size of the model remains tractable. It
also demonstrated that the apparent complexity of a game does not impact the
difficulty of the modeling task. The results encourage us to pursue our research
on behavior modeling for patient analysis.

We used several model-checker engines from PRISM, but also from Storm to
verify medically oriented properties. We chose Storm because its model checker
accepts several modeling languages as input, including the PRISM one.

The contribution of this paper is a mandatory first step before demanding
clinical studies with patients playing the games. The probabilities in our models
are initially given by medical practitioners and need to be updated according
to real clinical experimentation results, in order to obtain more realistic models
and to provide more accurate predictions. To this end, we set up different
reference profiles (such as mild, moderate or severe Alzheimer) with the help of
clinicians and we proposed a medical protocol that was deployed in November
2020 and which is underway. Over a total period of ten months, two groups of
people are playing these games: a control group with no known cognition deficit
and a patient group with an identified medium cognition deficit. All game
data (scores, answers, and response times) as well as video recordings (focused
only on the hands of the participants) will be recorded and anonymized. At the
end of the experimentation, the final results will be used to adjust the models in
order to obtain a better representation of the behavior variants and to make our
models effective. Our ultimate goal is to integrate the model checking approach
proposed in this paper into a medical monitoring system.

Acknowledgements We thank the French Provence-Alpes-Cote d’Azur re-
gion for financing Thibaud L’Yvonnet Ph.D. We also thank our medical part-
ners from the CoBTeK laboratory of Université Cote d’Azur for our fruitful
interactions, and Tim QuatMann of the Storm team for his help.

References

[1] Michalis Vrigkas, Christophoros Nikou, and Ioannis A. Kakadiaris. A Re-
view of Human Activity Recognition Methods. Frontiers in Robotics and
Al 2015.

[2] S. Weerachai and M. Mizukawa. Human behavior recognition via top-view
vision for intelligent space. In Int. Conf. on Control, Automation and

Systems (ICCAS), pages 1687-1690, 2010.

[3] Ujjwal Ujjwal, Aziz Dziri, Bertrand Leroy, and Francois Bremond. Late
Fusion of Multiple Convolutional Layers for Pedestrian Detection. In 15th
IEEE Int. Conf. on Advanced Video and Signal-based Surveillance, pages
1-6, 2018.

16

4]

[5]

16]

7]

18]

19]

[10]

[11]

[12]

[13]

Hong-Bo Zhang, Yi-Xiang Zhang, Bineng Zhong, Qing Lei, Lijie Yang, Ji-
Xiang Du, and Duan-Sheng Chen. A comprehensive survey of vision-based
human action recognition methods. Sensors, 19, 2019.

Minh Khue Phan Tran, Francois Brémond, and Philippe Robert. Assistance
for Older Adults in Serious Game Using an Interactive System. In /th Int.
Conf. on Games and Learning Alliance (GALA), pages 286—291, 2015.

Alexandra Konig, Carlos Fernando Crispim Junior, Alexandre Der-
reumaux, Gregory Bensadoun, Pierre-David Petit, Frangois Bremond, Re-
naud David, Frans Verhey, Pauline Aalten, and Philippe Robert. Validation
of an automatic video monitoring system for the detection of instrumen-
tal activities of daily living in dementia patients. Journal of Alzheimer’s
disease : JAD, 44, 2015.

Elisabetta De Maria, Thibaud L’Yvonnet, Sabine Moisan, and Jean-Paul
Rigault. Probabilistic Activity Recognition for Serious Games with Appli-
cations in Medicine. In Osman Hasan and Frédéric Mallet, editors, For-
mal Techniques for Safety-Critical Systems, pages 106-124, Cham, 2020.
Springer International Publishing.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Proc. 23rd Int. Conf. on Computer
Aided Verification (CAV’11), pages 585-591, 2011.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A storm is coming: A modern probabilistic model checker. In In-
ternational Conference on Computer Aided Verification, pages 592—600.
Springer, 2017.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
UpPAAL. In Formal Methods for the Design of Real-Time Systems: 4th In-
ternational School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM-RT 2004, pages 200-236, 2004.

Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards Flexi-
ble Verification under Fairness. In International Conference on Computer
Aided Verification, pages 709-714, 2009.

Dorsa Sadigh, Katherine Driggs-Campbell, Alberto Puggelli, Wenchao Li,
Victor Shia, Ruzena Bajcsy, Alberto L. Sangiovanni-Vincentelli, S. Shankar
Sastry, and Sanjit A. Seshia. Data-Driven Probabilistic Modeling and Ver-
ification of Human Driver Behavior. In Formal Verification and Modeling
in Human-Machine Systems, AAAI Spring Symposium (FVHMS), pages
1-6, 2014.

Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck,
Joachim Klein, Jan Kfetinsky, David Parker, Tim Quatmann, Enno Rui-
jters, and Marcel Steinmetz. The 2019 comparison of tools for the analysis

17

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

of quantitative formal models. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 69-92.
Springer, 2019.

Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model
checking. In Int. School on Formal Methods for the Design of Computer,
Communication and Software Systems, pages 220-270, 2007.

Fabio Buttussi, Tommaso Pellis, Alberto Cabas-Vidani, Daniele Pausler,
Elio Carchietti, and Luca Chittaro. Evaluation of a 3D serious game for
advanced life support retraining. Int. Journal of Medical Informatics, 2013.

S. D. Atkinson and V. L. Narasimhan. Design of an introductory medical
gaming environment for diagnosis and management of Parkinson’s disease.
In Trends in Information Sciences Computing (TISC), pages 94-102, 2010.

Theresa M. Fleming, Lynda Bavin, Karolina Stasiak, Eve Hermansson-
Webb, Sally N. Merry, Colleen Cheek, Mathijs Lucassen, Ho Ming Lau,
Britta Pollmuller, and Sarah Hetrick. Serious Games and Gamification
for Mental Health: Current Status and Promising Directions. Frontiers in
Psychiatry, 2017.

Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. A systematic lit-
erature review of the use of formal methods in medical software systems.
Journal of Software: Evolution and Process, 30(5), 2018.

P. Groot, A. Hommersom, P. Lucas, R.-J. Merk, A. ten Teije, F. van Harme-
len, and R. Serban. Using model checking for critiquing based on clinical
guidelines. Al in Medicine, 46(1):19-36, 2008.

Tommaso Magherini, Guido Parente, Christopher Nugent, Mark Donnelly,
Enrico Vicario, Frederico Cruciani, and Cristiano Paggetti. Temporal logic
bounded model-checking for recognition of activities of daily living. In
Proc. 10th IEEE Int. Conf. on Information Technology & Applications in
Biomedicine, pages 1-4, 2010.

M. Hassan. A performance model of pedestrian dead reckoning with
activity-based location updates. In 2012 18th IEEE Int. Conf. on Net-
works (ICON), pages 6469, 2012.

A. S. Ahouandjinou, C. Motamed, and E. C. Ezin. A temporal belief-
based hidden Markov model for human action recognition in medical videos.
Pattern Recognition and Image Analysis, 2015.

Ahmad Jalal, Shaharyar Kamal, and Daijin Kim. A Depth Video-based
Human Detection and Activity Recognition using Multi-features and Em-
bedded Hidden Markov Models for Health Care Monitoring Systems. Int.
Journal of Interactive Multimedia & Artificial Intelligence, 2017.

18

[24] Taches Attentionnelles Exécutives. https://cmrr-nice.fr/lab/tae/|
2018. CoBTeK lab, Université Cote d’Azur.

[25] James T Eckner, James K Richardson, Hogene Kim, David B Lipps, and
James A Ashton-Miller. A novel clinical test of recognition reaction time
in healthy adults. Psychological assessment, 24(1):249, 2012.

[26] Eunju Kim, Sumi Helal, and Diane Cook. Human activity recognition and
pattern discovery. IEEE pervasive computing, 2009.

19

https://cmrr-nice.fr/lab/tae/

	Introduction
	PRISM and Storm Model Checkers
	Modeling Language
	Probabilistic Temporal Logic

	Model Checking in the Medical Domain
	Code Game Model
	Model Design
	PRISM Implementation

	Temporal Logic Properties for Code Game
	Inhibitory Control Game Model
	Model Design
	PRISM Implementation

	Temporal Logic Properties for Inhibitory Control Game
	Experiment Feedback
	Game Models
	PRISM and Storm Comparison

	Conclusions and Future Work

