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Particle agglomeration in flows: fast data-driven spatial decomposition algorithm for CFD
simulations
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“Université Cote d’Azur, Inria, CNRS, Sophia Antipolis, France, CaliSto Laboratory
b Institute of Statistics, University of Valparaiso, Chile.

Abstract

Computational fluid dynamics simulations in practical industrial/environmental cases often involve non-homogeneous concen-
trations of particles. In Euler-Lagrange simulations, this can induce the propagation of numerical error when the number of
collision/agglomeration events is computed using mean-field approaches. In fact, mean-field statistical collision models allow to
sample the number of collision events using a priori information on the frequency of collisions (the collision kernel). Yet, since
such methods often rely on the mesh used for the Eulerian simulation of the fluid phase, the particle number concentration within a
given cell might not be homogeneous, leading to numerical errors. In this article, we apply the data-driven spatial decomposition
(D2SD) algorithm to control such error in simulations of particle agglomeration. Significant improvements are made to design a fast
D2SD version, minimizing the additional computational cost by developing re-meshing criteria. Through the application to some
practical simulation cases, we show the importance of splitting the domain when computing agglomeration events in Euler/Lagrange
simulations, so that within each elementary cell there is a spatially uniform distribution of particles.

Keywords: Agglomeration, Particle-laden flows, Population Balance Equation (PBE), Mesh-independence, Particle-based mesh,

Computational Fluid Dynamics (CFD)

1. Introduction

1.1. General context: particle agglomeration

Particle agglomeration is the process whereby solid particles
or liquid droplets dispersed in a flow adhere together to form
larger structures. This process can also be referred to as aggre-
gation [1, 2] or as coalescence for droplets. The agglomeration
process is at play in a range of fields belonging to both nat-
ural and applied sciences. For instance, in natural sciences,
agglomeration occurs in geo-morphology [3] (e.g. river delta
formation), meteorology [4, 5, 6] (e.g. droplet growth in clouds)
or astrophysics [7] (e.g. planetoids growth). In applied sciences,
agglomeration plays a major role in a number of industrial ap-
plications including in waste-water treatment facilities [8, 9],
in combustion systems [10, 11], in oil/sludge refining [12] and
food industry [13].

From this brief overview of applications, it appears that
the process of agglomeration involves a variety of objects
(molecules, polymers, solids, droplets, bubbles, etc.) and covers
a wide range of temporal and spatial scales (from molecular
scales with proteins up to astrophysical scales with planetoids).
Depending on the field, this process is also referred to as ag-
gregation (as for solid materials), flocculation (e.g. polymers),
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coalescence (such as droplets/bubbles) or coagulation (e.g. non-
Newtonian fluids).

In this paper, we focus on the prediction of agglomeration of
solid particles in the colloidal range (i.e. with a size ranging from
a few nanometers up to a few micrometers) that are suspended
in a flow. Nevertheless, most of the developments and examples
provided in this paper remain relevant for droplets or other
objects.

1.2. Modelling of particle agglomeration: existing approaches
and limitations

Given the importance of the agglomeration process in many
natural and industrial applications, accurate predictions are
paramount. This led to the development of a range of mod-
els to simulate particle agglomeration. The difficulty that arises
is that such simulations require to couple algorithms to solve the
fluid motion (e.g. [14]), numerical models for the transport of
particles by this flow (see e.g. [15, 16]) as well as algorithms
to detect collisions between particles and treat the outcome of
such collisions (see e.g. [12, 17]). This brings about multi-
disciplinary issues related to turbulence, multiphase flow as well
as physico-chemical sciences (for the interactions between par-
ticles). In the following, some of the existing algorithms are
summarised, sorted according to their level of description, start-
ing from microscopic approaches up to macroscopic approaches
(see also [17]):

Tracking of n-particles with direct collision detection and treat-
ment. These approaches are based on a microscopic level of
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description. They usually consist in a coupling of four mod-
elling approaches: (i) a fine-scale simulation of the fluid phase
(e.g. with Direct Numerical Simulation DNS); (ii) a fully re-
solved Lagrangian tracking of the motion of n particles (e.g.
explicit solver for translational and rotational equations of mo-
tion); (iii) a direct collision-detection algorithm (e.g. with an
overlap criterion [18] or with geometric criteria [19]) and (iv)
specific scenarios for the outcome of the collision (e.g. relying
on energy-based or momentum-based agglomeration models
to distinguish between sticking, sliding or rebound collisions
[20, 21]).

Such approaches allow to obtain the number of collision events
as a direct result of the simulation while providing detailed
information on aggregate properties (e.g. shape of agglom-
erates, spatial/temporal correlations between collisions) [22].
However, they suffer from their high computational costs: the
direct collision-detection algorithm (also called fully determin-
istic approach in [17]) requires n, X (n, — 1)/2 examinations
of particle pairs that are potential candidates for a collision,
where n, is the number of particles in the volume considered
(note that n,, can actually be a fraction of the total number of
particles n if a spatial division is used to improve the algorithm
efficiency). For that reason, such approaches have been applied
only in simple idealised cases.

One-particle (Lagrangian) tracking with given collision fre-
quencies and efficiencies. These methods have a “coarser”
level of description. They usually consist in a coupling of
four approaches: (i) an Eulerian simulation of a flow (e.g. us-
ing RANS models when dealing with turbulent flows); (ii) a
one-particle PDF Lagrangian model for the motion of parti-
cles [16, 23, 24, 25] (based on stochastic equations); (iii) a
detection model for particle collisions (e.g. a probabilistic
collision algorithm [17, 26, 27, 28, 29, 30] or a stochastic-
deterministic algorithm [17, 31, 32, 33]) and (iv) the use of
a collision efficiency to evaluate the proportion of collisions
that actually lead to the formation of aggregates. These ap-
proaches are thus based on a Bird-like algorithm [34, 35, 36],
which relies on a separate treatment of the transport step (trans-
port without interaction) and of the collision step (interaction
without transport).

It should be noted here that, in order to avoid the high compu-
tational costs associated with the tracking of all real particles,
the notion of parcel is often used: one “numerical” parcel is
a statistical representation of a large number of real particles.
In that case, the collision-detection algorithm is adapted for
parcels. Similar formulations have been used recently, replac-
ing the probability of collisions based on the relative motion of
pairs of particles/parcels with a probability of collisions evalu-
ated with a mean-field approach [37]. It thus requires a priori
information on the collision frequency and collision efficiency
(also used in PBE formulations). Besides, other inter-particle
collision models for hybrid Euler/Lagrange approaches rely
on fictitious collision partners and on kinetic theory for the
evaluation of the inter-particle collision probability (thus re-
moving the need to have precise information on the location of
surrounding particles) [17, 26, 27].

Population Balance Equations (PBE). PBE are macroscopic

approaches that allow to perform fast evaluations of the kinetics
of particle agglomeration at large-scale. They describe the
evolution in time of mean-field quantities. More precisely,
these equations describe the rate of variation of the number
density of a population of particles due to agglomeration within
a control volume V¢. As particles agglomerate, the distribution
of sizes changes according to the following integro-differential
equation [38, 39]:

a_”l(v’ 1)) :% f Ay-ww Pv-ww 1V — W, Hn(W, £)dw

ot 0

- ()

- f ayw Pvw n(V)n(W)dw,
0

where n(V, t) is the number density of particles of volume Vv at
time ¢ within the control volume Vc, « is the collision efficiency
and By w the collision frequency kernel between particles of vol-
ume V and W. The first term on the r.h.s. of Eq. (1) corresponds
to the formation of new aggregates of volume Vv produced by
the collision between pairs of smaller aggregates (such that the
sum of their volumes equals V) while the second term on the
r.h.s. accounts for the loss of particles of volume v due to their
agglomeration with other particles.

PBE approaches are compatible with the level of description
used in standard Computational Fluid Dynamics (CFD) simu-
lations [40, 39] (e.g. Euler-Euler simulations with turbulence
models). In particular, a large amount of studies rely on the
coupling between standard CFD approaches (e.g. Multiple Size
Group model named “MUSIG” or Quadrature-Based Moment
Methods named “QMOM”) and PBE models to compute the
agglomeration. Such approaches have been applied to both
homogeneous or inhomogeneous fluid flows [41, 42, 43, 44].
This is due to the fact that CFD computations of the fluid
flow naturally handle inhomogeneities in the flow quantities
(e.g. velocity) and their effect on the transport of the particles
[45, 46, 44]. Such methods can also handle spatially-dependent
values of the collision kernel [47].

However, these approaches are based on PBE formulations for
particle agglomeration. Hence, they suffer from the limitations
of PBE formulations that have been well identified in the litera-
ture [39, 48]. This includes the fact that the collision frequency
and the collision efficiency have to be provided. At the moment,
analytical formulas for @ and S are only available in simple
situations (e.g. collision due to Brownian motion only, gravity
only, shear only).

In the present paper, we focus on hybrid approaches which
combine Eulerian simulations of the fluid phase, one-point La-
grangian tracking of particles and a mean-field collision model
for agglomeration (see e.g. [37]). This coupling of several ap-
proaches induces several consequences when computing particle
agglomeration.

a. First, some limitations are actually inherent to the use of a
mean-field approach to compute particle agglomeration (as
in PBE formulations). In particular, a mean-field approach
implicitly assumes that there is no correlation between in-
dividual particles [39]. Although such approaches provide



proper information on the mean quantities, recent studies
of particle agglomeration have shown that correlations be-
tween successive collisions explains the abrupt growth of
aggregates observed locally in high vorticity regions of tur-
bulent flows [22]. To remove this limitation, higher-order
models are necessary. This is left out of the scope of the
present paper.

b. Another consequence of the mean-field approach is that it
requires prior knowledge of the collision kernel and colli-
sion efficiency. As mentioned before, analytical formulas
are available only in simple cases [39]. These analytical
formulas have been obtained considering only binary col-
lisions and that the fluid properties entering o and § are
constant within each control volume (i.e. cell here) during
the time step considered. Such assumptions can be lifted,
but it remains to be seen if analytical formulas can still be
obtained then. Regardless of these assumptions, the values
of @ and B can also be fixed with empirical formulas drawn
from experimental observations (when possible).

c. The main issue when coupling Lagrangian tracking of parti-
cles to mean-field approaches for particle agglomeration is
actually related to the need of having a uniform distribution
of particles within each control volume V¢ considered (i.e.
in each cell of the mesh). This is not an issue in Euler-
Euler simulations since the only information available is
the particle number concentration in each cell (meaning
that particles are implicitly homogeneously distributed in
each cell). However, in hybrid Euler-Lagrange approaches,
the discrete particle positions mean that this homogeneous
distribution might not be respected when using the same
mesh as the one used for the Eulerian simulation of the
fluid flow.

In this paper, we focus on the uniform distribution assumption,
later referred to as the spatially-uniform condition. It means that
no information on the particle coordinates is required in the
collision step [39]. In practice, this spatially-uniform condition
must be fulfilled locally during a time step in each volume el-
ement (i.e. computational cell in CFD simulations). However,
this assumption does not necessarily hold in Lagrangian simula-
tions of complex flows, where particles can be injected locally
in the system or accumulate in specific regions, thus leading
to significant gradients of particle concentration at the system
scale [32]. As an immediate consequence, numerical errors are
quickly propagated in the simulation [49, 50], which result in a
need for prior mesh-dependency analysis dedicated to the colli-
sion step. In this context, spatial-decomposition algorithms can
prove useful in any Euler-Lagrange approach. In fact, the use
of two distinct meshes, one for the fluid phase and another one
for the dispersed particle phase, is also adapted when computing
statistical information on the particle phase. In that case, a mesh
adapted to the particle positions will ensure more accurate statis-
tical information on particles (e.g. mean particle concentration,
mean particle velocities, etc.).

A variety of attempts have been made to reduce the mesh-
dependency of the agglomeration results from hybrid Eu-
ler/Lagrange approaches [51, 52, 53, 54, 55]. Initially, the pro-

posed methods focused on computing the agglomeration over
a volume comprising the cell (within the mesh used for the
CFD simulations) and its neighbours. Other proposed methods
generate a specific mesh for the computation of the particle
agglomeration (e.g. the No-Time Counter algorithm [51]) by
randomly choosing the partitioning orientation, every time step,
before splitting the domain, or by introducing an adaptive colli-
sion mesh method. More recently, the notion of collision cells
has been introduced and used to keep the collision frequency
independent of a computational grid [56, 57, 58]: it corresponds
to a local spherical cell in which a sufficient number of parcels
are present to ensure a low statistical error in the computations.
The main drawback of these approaches lies in the fact that
they do not rely on precise information coming from the spa-
tial distribution of the particles/parcels. More recently, a new
data-driven spatial decomposition (D2SD) algorithm has been
proposed to detect non-homogeneous concentrations in a set of
particles (point data) within a regular volume [50]. This D2SD
algorithm provides a spatial splitting according to the spatial
distribution of particles. More precisely, the D2SD algorithm
uses as an input data only the information on the location of the
center of gravity of each particle. One of the many advantages of
the D2SD algorithm is that the parameters leading to the optimal
domain decomposition are automatically tuned through the sta-
tistical information coming from the data (position of particles).
Thus, there is no bias coming from the choice of arbitrary param-
eter. The algorithm is coupled with a battery of uniformity tests
to check whether the input data and decomposed output data
satisfy the spatially-uniform condition. Then, the output data are
classified in regions according to the number density of particles
within it. This means that the particle number concentration is
homogeneous in each region of space obtained from the D2SD
algorithm. This classification of regions according to the number
density provides a spatial decomposition of the domain.

1.3. Objectives of the paper

The present article is a follow-up of the proposed D2SD al-
gorithm [50] that detects the presence of non-uniform spatial
distributions of point particles and that comes up with an optimal
spatial decomposition respecting locally the uniform distribu-
tion. The previous paper [50] was focussed on assessing the
robustness and accuracy of the algorithm. Furthermore, the
importance of applying the method when computing particle
agglomeration in complex 3D industrial/environmental cases
has been illustrated in a simple case, and the application of the
D2SD algorithm to CFD simulations was left out.

The objective of this paper is thus to adapt the D2SD algo-
rithm in order to respect requirements for standard CFD codes
and to illustrate the impact of its use in practical 3D cases. More
precisely, this article proposes numerical schemes for an efficient
use of D2SD, decreasing the computational cost of D2SD or/and
the number of times the algorithm is called during the simulation.
Several options are assessed, introducing a criterion to avoid
applying the full version of the D2SD algorithm every time step,
or simplifying uniformity tests. The main difficulty is to ensure
that the adapted algorithm keeps an appropriate balance between
its accuracy and its computational costs.



Beyond a particular application, the methodology adopted in
[50], and the present article, can be easily adapted to other con-
texts where a decomposition of the space respecting the spatial
homogeneity of a certain variable is aimed (e.g. to compute par-
ticle statistics in hybrid Euler/Lagrange approaches). Hence, we
want to promote the proposed methodology and its usefulness
in more general applications through the analysis of statistical
information provided by the data.

1.4. Layout of the paper

To address the above objectives, the paper is organised as
follows. First, the full D2SD algorithm is briefly recalled in
Section 2.1. Faster versions of the D2SD algorithm to fit the
computational efficiency and costs of CFD simulations are de-
tailed in Section 2.2. These faster versions are analysed in
terms of accuracy and computational efficiency on a series of
numerical experiments that are presented in Section 3. Finally,
numerical simulations are performed in practical 3D cases. The
results are analysed in Section 4, with a specific emphasis on the
accuracy of the results obtained.

2. Adaptation of the D2SD algorithm to CFD simulations

The input information of the D2SD algorithm is a set of posi-
tions of the center of gravity of » particles, X = (X', X2,..., X",
in a bounded spatial domain 9. The D2SD algorithm detects de-
viations from the uniformity of the spatial distribution of particle
positions, and generates a Cartesian partition of D, satisfying
the uniform distribution condition for the point cloud contained
in each cell of the partition. In particular, the domain partition
identifies each cell according to eight different levels of con-
centration, which allows one to quantify the difference in the
amount of particles in each region of O and to locate clusters of
particles.

For the sake of clarity and self-containment, the D2SD algo-
rithm [50] is briefly recalled in the following. To simplify the
presentation of the method and its adaptation, the D domain is
embedded and normalized as the unit cube D = [0, 1]¢, with d
being the dimension.

2.1. Principle of the D2SD algorithm

The method is presented in the case d = 3, its adaptation to
cases d = 1,2 being straightforward. The D2S2 algorithm relies
on three main ingredients.

» The first one is the histogram estimation of the probabil-
ity density function (PDF) associated with the set of particle
positions X. In order to extract information from this PDF with-
out introducing any external numerical parameter, the choice
is made to use the Freedman and Diaconis rule [59] for sizing
the histogram bin box % X hy X h3. This rule ensures a good
balance between robustness and computational complexity: in
each direction j = 1,2, 3,

iqr(X))
hi(X) = 22—, )
where the interquartile range iqr(X;) of the sample (X;) gives
the size of the central sub part of [0, 1] containing 50% of the

(X;) population. With this bin volume size h;(X) X hy(X) X
h3(X), a first Cartesian grid is constructed on 9, with a bin
number #bins on [0, 1]°. This grid is the skeleton of the domain
decomposition of the D2SD partition.

The approximate density (i.e. concentration) is computed for
eachbini € {1,2,...,#bins}, with:

221 Liening)
n i X)h(X)h3(X)

PDF(i) = 3)
Naturally, the values PDF(i) of the empirical PDF will vary (even
starting from a uniformly distributed sample).

» The second main ingredient of D2S2 is a classification cri-
terion of bins according to concentration levels. For this purpose,
a suitable choice of a threshold A is introduced, separating the
PDF values (and therefore the domain) into high-concentration
values and low-concentration values. The area in between is the
ambient (or medium) concentration. Particles are well dispersed
in this zone and their positions are uniformly distributed.

To avoid the use of arbitrary parameters, percentile indica-
tors are used as a measure of dispersion of the PDF-values
themselves. The 1d-distribution of the PDF-values (called here
reduced-PDF) together with its percentiles are computed : Q. is
the level for which x% of the values in {PDF(i);i = 1,..., #bins}
are below Q,. Given that we are targeting to separate high and
low particle concentrations, the suitable value for the threshold
A will be found in [Qgp, O100]- A region with a low number of
particles, as well as a region of "uniform ambient’ concentration,
can be identified as follows:

e bins with zero as PDF values are empty
e bins with PDF values below Q,( are “under concentrated”
e bins with PDF values in [Q», 4] are “ambient uniform”.

The threshold A plays the role of a contrast measure between
low and high concentration. But it is noteworthy that the higher
the concentration, the more this contrast must be refined. Con-
versely, a statistical test on the uniformity of the distribution of
positions is less rejected on a low concentration (or small sample
size). Thus an optimal threshold A* is computed, minimizing a
score function (detailed in Appendix B) that quantifies how far
a sample X is from being uniformly distributed.

Once A" is determined, five regions with a high-concentration
of particles can be identified, by computing the percentiles
{ézo, 540, éﬁo, ng} of the truncated reduced-PDF {PDF(i);i =
1,...,#bins, PDF(i) > A*}:

e bins with PDF values in [éZ()ya ézo(y+])] are of “density
level#y”,y € {0,1,2,3,4},

defining the eight density level regions illustrated in Figure 2
and the following ones.

» The third main ingredient of D2S2 is the computation of
A*as an optimum defined in (B.2). Browsing through all the
discrete possible values of A in the range [Qgo, Osol, a first
A} is determined with the minimal score function: for each
candidate A, a synthetic sample X* is introduced as follows.



Particles within the bins previously identified as low- or high-
particle concentration regions (with threshold 1) are temporarily
replaced by synthetic uniformly distributed particles (also called
ghost particles). The number of ghost particles within a cell
is determined using the cell-volume and ambient concentration
level (depending on A1), the ambient region stays unchanged. The
closer A is to the optimal value, the closer the new sample X*
(consisting of the ambient particles plus the ghosts) would be to
a uniform distribution. Thus, ideally, the sample X*1 would be
uniformly distributed.

The next step of the optimization involves checking whether
X4 passes a statistical uniformity test (see Appendix A). If
the test is accepted, the concentration levels are determined
with 4" = A7, and the bin cells are merged according to them
producing the final partition. If the uniformity test is rejected,
it means that some clusters or voids were missed in the process.
Based on the sample X%, synthetic PDF values {PDF'(i);i =
1,...,#bins} are recomputed, keeping unchanged the bin size
computed in (2):

LI
21 X"’ eBin(i)

PDFl(j) = )
O = X)X

A search of a A} is done minimizing again the score of synthetic
sample among the candidates in the PDF' values in [Qéo’ Qéo]'
The idea behind this iterative search is to increase the contrast
in the right hand side of the medium zone concentration. The
search of a 2" = A7, stops when the a posteriori uniformity is
accepted on the sample X"ina,

The statistical uniformity test is also used at the very first step
on the sample X. The D2SD algorithm is started only if this first
uniformity test is rejected.

The main steps of D2SD can be summarised as follows (see
also Figure B.19):

stepl applies a battery of statistical tests to decide if the input
sample X is uniformly distributed. In case of acceptance,
there is no need for a specific domain partition. In case of
rejection, the next step is applied.

step2 aims to search for an optimal spatial decomposition that
respects the local-uniform condition by constructing the
PDF approximation and computing the optimal threshold
allowing to separate low and high concentrations.

step3 applies a battery of statistical tests to check whether the
last computed spatial decomposition satisfies the spatially-
uniform condition. If the test-battery is accepted, D2SD is
ended. If it is rejected, the algorithm goes back to step2
with the corresponding synthetic particle sample.

Once the required steps of the D2SD algorithm have been
completed, the output is a spatial decomposition distinguishing
between areas of zero concentration, low concentration, medium
concentration and high concentration. As required by mean-
field statistical approaches, each bin-cell defined with the D2SD
algorithm respects the local spatially-uniform condition.

2.2. Fast version of the D2SD for CFD purposes

As mentioned in the introduction, some existing CFD soft-
ware relies on Lagrangian methods for particle tracking coupled
to mean-field statistical algorithms for particle agglomeration.
Yet, the use of a mean-field approach requires a uniform particle
distribution in each volume considered. This means that, in each
cell within the mesh and for a given time step, the uniform distri-
bution condition has to be met. In the case of non-homogeneous
flows, the value of the fluid properties and particle concentration
can vary significantly within the whole domain D (i.e. from one
cell to another). For that reason, the D2SD algorithm appears
as a suitable candidate to create a new mesh that meets this
condition. This new mesh is thus only related to the position of
particles in the whole domain O and is independent from the
mesh used for the fluid simulation. It is only used during the
agglomeration step and has no influence on particle transport
(which, if necessary, can be still carried out using the mesh
used for the fluid simulation). The D2SD algorithm has been
shown to properly and accurately capture low, mild, or high non-
uniformities in the particle concentration (either void regions
or over-concentration [50]). The accuracy of the algorithm has
been characterised in a range of 2D and 3D numerical experi-
ments that are representative of realistic situations. When using
the D2SD algorithm with mean-field approaches for particle
agglomeration, it has also been shown that better results are
obtained compared to an arbitrary choice of mesh.

However, these tests have shown that the numerical costs asso-
ciated with the use of the original D2SD algorithm, hereinafter
referred to as full _D2SD, can dramatically increase when a
large number of particles » is involved. This is mostly related
to the numerical costs associated with the uniformity verifica-
tion steps (steps1,3) and the minimization problem in step2.
To take all the benefit of using the D2SD algorithm in a CFD
software, it is necessary to reduce the numerical costs associated
with this spatial decomposition since it is expected to be applied
every time step (i.e. using the information on particle positions
at time f). The solely -but key- issue when designing a fast
D2SD algorithm is to avoid losing too much accuracy. For that
reason, in the rest of the paper, we will often refer to efficiency
measured as the ratio between the computational costs and the
accuracy of the algorithm proposed.

Drawing on these computational issues, the aim of this section
is to present some decision/selection criteria offering a reduced
version of the D2SD algorithm. In particular, we assess here
three levels of simplification that are summarised in the follow-

ing:

Algo1l Full D2SD with re-meshing criterion.

The idea would be to update the spatial decomposition only
when deemed necessary, using the full_D2SD algorithm.
This implies first to develop a criterion to decide when
D2SD needs to be applied again, i.e. when the spatial
decomposition with particle positions X; at time ¢ becomes
too different from the spatial decomposition applied to
the sample X,_; at the time distance s. The criterion is
composed of two sub-criteria (see Section 2.2.2 below), one



based on the fluctuation of the dispersion of the particles
within the domain D, and the other based on the variation
of the particle concentration between regions.

Algo2 Quick D2SD, no re-meshing criterion.

This option consists of two modifications. First, the unifor-
mity tests in step1&3 are limited to sample size smaller
than a priori value n;, a critical sample size that can be set
according to a desired error level €. The aim of this modifi-
cation is to lower the computational cost due to uniformity
checks. The tolerance level can be chosen knowing that
the larger the number n of particles, the lower the relative
numerical error within the computation of agglomeration
events. In contrast, when n is small, introducing a parti-
tion of P whereas the particles are uniformly distributed
will immediately bring a numerical error, and this effect
increases when the number of particles decreases. Elimi-
nating this verification must therefore be limited to large
sets of particles (> n.,;;). For the case of a uniformly dis-
tributed population of particles, it has been numerically
shown in [50, Fig. 11] that a relative error of € = 107! is
obtained by removing step1l,3 with a set of n.; = 100
particles, against a relative error of 1072 by applying the
full_D2SD algorithm. The modified step1&3 are denoted
steplly,, s 3ln.;-

Second, the spatial decomposition algorithm in step?2 is
applied using chosen a priori information, speeding up the
process by simplifying the iterative search of an optimal
threshold in step2. More precisely, the idea is to choose an
a priori value A in place of the optimal value A*. With this,
the D2SD algorithm reduces to implementing the steps 2
with a fixed 1, together with step 1|, »3l,,,- The choice
for A is discussed in Section 2.2.1.

Algo3 Quick D2SD with re-meshing criterion.

This version combines the two previous options, i.e. a
re-meshing criterion is used to avoid applying the spatial
decomposition algorithm every time step while using a
simplified decomposition with an a priori evaluation of the
PDF-threshold .

These three levels of simplification to speed-up the compu-
tation of the spatial decomposition rely on two main notions:
the quick_D2SD algorithm and the re-meshing criteria that we
detail in the following.

2.2.1. Quick D2SD: a faster computation of spatial decomposi-
tion

The quick D2SD algorithm requires an “as good as possi-
ble” guess value A instead of the optimal one A*. Within the
procedures considered in step2, the reduced-PDF (required to
classify the regions by levels of concentration) is computed and
provides statistical information in order to propose an a priori
threshold. In this context, since we know that the optimal thresh-
old is searched within the set [Qg, Ogo] N U;PDF(i), we choose
here

;l = Q60. (4)

With this value, the algorithm will continue to classify 5 different
concentration levels in [, max; PDF(i)]. By underestimating
A* with A, the decomposition will induce a higher numerical
error. Nonetheless, since the 5 high-concentration levels are
computed from the percentiles associated with [1, max; PDF(i)]N
U;PDF(i), this numerical error will be possibly distributed on the
5 high-concentration levels instead of just one (that is exactly
what would happen if 1 overestimates A*). This choice will be
assessed later in Section 3.

2.2.2. Re-meshing criterion

In simulations of particle agglomeration with Euler-Lagrange
approaches, the local particle concentration in each cell can
vary in time due to three effects: (i) the motion of particles can
lead to their departure from the current cell and entrance in an-
other one; (ii) the agglomeration/fragmentation of particles will
change the total number of particles in a given cell; (iii) new
particles can be created due to source terms or inlet boundaries
while particles can leave the domain due to sink terms or out-
let boundaries. All these three aspects also play a role in the
transport step. However, we focus here on the collision step in
a Bird-like approach. Hence, the aim is to evaluate how much
the number concentration changes with time. Since the last two
possibilities can be related to each other, we propose here a
re-meshing criterion based on two separate criteria: a first one
on the dispersion of particles already present in the domain D
and a second one on the variation in the particle concentration
due to appearance/disappearance of particles.

In both cases, we consider the input pair (X, M), with X; the
set of particle positions and VY its corresponding spatial decom-
position at a given time-iteration k of the simulation. Before
formalising the re-meshing criterion, we describe below the
principle of the parts that compose it.

e Criterion on particle dispersion fluctuation.

In order to decide whether a new spatial decomposition is
required, the key information is actually a measure of the scatter-
ing/gathering fluctuation due to the motion of particles. For that
purpose, we resort here to the bin size computed in (2) with X,
since it is directly related to the information about how the parti-
cles are dispersed in each direction throughout their interquar-
tile range. The fluctuations in the particle scattering/gathering
between time steps are evaluated by comparing directly the
respective number of bins.

Denote N_bins(X,) as the number of bins estimated for the set
of positions X,. If a cluster spreads, the interquartile range value
will increase (i.e. the bin size will increase) so the total number
of bins will decrease. Conversely, if the cluster collapses, the
total number of bins will increase between time-iterations. With
this in mind, the idea is to quantify the percentage of lost/won
bins between time steps and to use this value as an indicator of
the fluctuations in particle dispersion. More precisely, at time
t + At, we compute the new bin size with (2), and we evaluate

. (N_bins(X;1as) — N_bins(X;))
AN_bins = -
N_bins(X;)

®



Positive (resp. negative) values of A,N_bins represents the per-
centage of bins won (resp. lost) between the mesh at time ¢ + A¢
and the mesh at time 7. Clearly, if |A,N_bins| = 0 or small
enough, there is no significant change in the particle global
dispersion.

Hence, the criterion on particle dispersion consists in applying
the D2SD algorithm at 7 + Az only if [A,N_bins| > €%, where €
is a given tolerance threshold. Otherwise, if |A;N_bins| < €%,
the spatial decomposition is not changed (i.e. M;a, = M,).

At this point, it is worth noting that, although the present
criterion does depend on the particle displacement (local concen-
trations vary when particles change cells), it is different from a
particle-in-cell CFL condition. The particle-mesh (or particle-in-
cell) CFL condition is indeed a usual criterion in hybrid Euler-
Lagrange approaches for CFD simulations [60, 61]. It is applied
to ensure a proper convergence of the solver for the dynamics
of particles, imposing At to not move particles more than one
cell during a time step (CFL< 1). Here, the criterion on parti-
cle dispersion fluctuation is used to determine the frequency of
re-meshing for the computation of agglomeration. The criterion
rather takes into account concentration fluctuations due to parti-
cle displacement (and thus to fluxes). Hence, the criterion does
not impose particles to avoid moving particles more than one
cell during a time step. However, if CFL< 1, concentration fluc-
tuations are expected to be relatively low statistically speaking
(whereas fluctuations can take any value when CFL> 1).

e Criterion on concentration variation.

This second indicator measures how much particle
concentration changes between two time steps due to
sources/sinks/agglomeration events.

Denote L the set of 8 different levels of concentration dis-
cussed in step2, and Dy the region associated with the level £
of concentration. We define a probability measure P on £ as

follows:
Vol(Dy)

Vo1(D) "

VhelL, P(h) = Z

teL

Next, given the mesh M,, for any sample X, we define the number
density of particles at the level £ € L as:

Ny (6)

NxVol(Dy)’ ©

M

ox () =
where Ng’ (€) is the number of particles from the sample X that
are within the level ¢ of the mesh M;, and Nx the size of X,.
As a measure of variation of the concentration, we define the
coeflicient of variation:

P, = PX|
pXr+Ar pXr

Moo M
IpX1+A/ '0 X/| + 1

M,
p ti+At "

, N

with E the expectation under the measure P defined above.

By construction, the coefficient of variation in Formula (7) is
lower than 1 and increases with the difference of concentration
between the samples X, and X, (seen by the mesh M;). In other
words, if pf[’t A is close to zero, then no significant variation
of concentrations between time steps is detected and we can

step0.cl Update

keep the decomposition M, to compute the agglomeration at
time ¢ + Atr. More precisely, if pfz < € where & is another
tolerance threshold, we keep the mesh M,. Otherwise, we apply
full D2SD/quick_D2SD to obtain a new spatial decomposition.

The criterion based on particle dispersion fluctuation (5), is
less computationally expensive but also less accurate in some
cases where the variation in the number of bins is balanced (see
test case (c) in Section 3). Meanwhile, the criterion based on
the difference of the particle concentration (7) is more accurate
but at higher computational costs (as it requires the computation
of densities). Therefore, the criterion proposed in this article
is based on a two-step verification, starting with the verifica-
tion of the particle dispersion fluctuation, and, when necessary,
checking the particle concentration difference.

Formally, considering the input (X;, X;1as, Ms, €1, €2), the re-
meshing criterion consists of the three following steps (sketched
in Fig. 1) coming before step1 in Section 2.1:

step0.a Verify the percentage of the won/lost bins. Compute
A/N_bins in Equation (5). If |A,N_bins| < €% continue to
step0.b, otherwise continue to step0.cl.

step0.b Verify the difference of the concentration of particles.
Compute p?’t ., in Equation (7). If p?’t A < €, then con-
tinue to step0. c2, otherwise continue to step0.cl

the spatial decomposition. Apply
quick_D2SD/full D2SD to the set of particles posi-
tion X;;4; and deduce the decomposition M ;.

step0.c2 Keep the previous mesh. Set Mo, = M,.

Note that step0.b does not add computational cost when the
decomposition M, is good enough for the snapshot X;,x, since in
this case the densities must be computed for the agglomeration
step.

Threshold ¢, indicates how much a cluster is allowed to
disperse/collapse before changing the mesh. Threshold e, on
the other hand, indicates how much variation in concentration is
tolerated before re-meshing.

As pft A S E[Ip%’w - pi’rl], we can imagine that we are
looking for a maximum tolerated value for the concentration
difference m = max; Ip},'[(’HAI(l) - p};(”(l)l € [0, 1], and then set:

m
1+m

& ®)
The values of these parameters will depend on the error allowed
by the user. However, in the following section we suggest some
values for €, ; from examples.

We now can summarise the steps of fast-D2SD, for each time-
iteration (see also Fig. 1):

stepsO+stepl|,  +step2(fully/partly)+step3|,,,-

Remark. For simplicity, the mesh generated by the D2SD al-
gorithm is a non uniform Cartesian mesh. However, D2SD can
be adapted to more general meshes and to other geometry of



Step 0.b:
Difference of particle concentration

Step 0.c2:
Keep the previous decomposition

Output: Myyas

Step 0.a: \/

won/lost bins

Input:
X Xpan Mss €1, 6)

Step 0.c1:
Update the spatial decomposition

Figure 1: Sketch of the re-meshing criterion.

the domain than the unit cube: for step2 the key is to correctly
approximate the empirical PDF, for example, with the help of
a change of coordinate that puts the domain in correspondence
with the cube. The extension of steps1, 3 to more general ge-
ometries, it is a bit more complex as -usually- uniformity tests
are built on simple (mostly rectangular) domains, and general-
ising them would imply the construction of suitable statistics.
Nevertheless, this difficulty can be easily mitigated by embedding
the domain D in a rectangular domain D, and adding uniformly
distributed ghost particles in the complementary part D\D to
test uniformity. When it is possible, coordinates transformation
can also be an interesting alternative (see e.g. in Section 4.1.2).

It should also be noted that the ideas and tools driving the
D2SD algorithm can be easily adapted to other contexts where
there is a need to identify regions of space that are distinguish-
able from others through some property of the system (in our
case the number density of particles).

3. Testing the efficiency of the adapted D2SD algorithm

In this section, we evaluate the accuracy and efficiency of each
of the simplification options proposed for the D2SD algorithm.
This is done through a series of two-dimensional numerical
experiments that consider both common situations and more
specific scenarios where one of the indicators may fail.

To quantify the error resulting from the use of an adapted
D2SD algorithm instead of the original D2SD algorithm, we
introduce the measure &(k, My). It is defined as the relative error
between the agglomerations events computed using an initial
mesh My and the agglomeration events computed using the full
D2SD algorithm M, at the time instant k. Mathematically, we

define: |ﬂ(M ) M|
0
E(k,Mp) = —(M ) , 9

where, for any mesh M with £ levels,

X(f’)2

Vo 1(1)[) (19)

AM) = Zﬂ

is the number of agglomeration events computed using the mean-
field statistical approach for agglomeration on the spatial decom-
position obtained (with @ = 1), At is the time step, and 8 = By, v,
the primary particle collision kernel.

3.1. Testing the quick D2SD algorithm without re-meshing cri-
terion

We start by assessing the accuracy and efficiency of the quick
D2SD algorithm, which relies on the 60th percentile as an a
priori value for the contrast threshold A (instead of the iterative
search of the optimal one). For that purpose, we perform 2D
simulation in the same five cases investigated in the previous
paper, which were selected to represent a range of situations that
can happen in CFD simulations [50]:

i. homogeneously distributed population of particles;
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Figure 2: Testing D2SD with A = Qg for a population of particles uni-

formly distributed. In this case 1* = Qgp.

ii. slightly non-homogeneous distribution;

iii.
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Figure 3: Testing D2SD with A = Qg for a population of particles contain-
ing clusters of particles with a mild concentration. In this case 1* = Qgp.
(Levels are defined as in Fig. 2.)

medium non-homogeneous distribution;

Optimal grid Pseudo-optimal grid
Initial sample X using pdf-method P using 60th percentile
[ ] UJ -. 5]
08
07
~ -l
.. 05
A " m "
03
=i
02
§ .. [ ﬁ
M2 m—

Figure 4: Testing D2SD with 1 = Qg for a population of particles con-
taining clusters of particles with a medium concentration. Plot of the mesh
produced with A is included since A* # A. (Levels are defined as in Fig. 2.)

iv. highly non-homogeneous distribution;
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Figure 5: Testing D2SD with 1 = Qg for a population of particles:
containing clusters of particles with a high concentration. Plot of the mesh
produced with A is included since A* # A. (Levels are defined as in Fig. 2.)

v. symmetric case (with an empty region).

Optimal grid Pseudo-optimal grid
using pdf-method using 60th percentile

02 04 06 08 1

Figure 6: Testing D2SD with A = Qg for a population of particles with
a symmetric distribution. In this case, for full D2SD, 1] = Qg does
not pass the uniformity test. The optimal grid is obtained after a second
iteration for the computation of A*, showing the impact of the iteration
criterion. (Levels are defined as in Fig. 2).

Figures 2 - 6 display the five cases considered, showing the
spatial distribution (left) together with the optimal mesh decom-
position and the mesh decomposition obtained with 1 = Qg
(when it differs from the optimal mesh). It is complemented
by the results in Table 1, which contains information about:
the number of thresholds tested in the step2. f of the original



A A CPU*
CASE Thresholds - —
A A CPU
evaluated
Homogeneous 3 1 1 1
Slightly 2 1 1

non-homogeneous

Medium 3 1.08 | 1.15 1.51
non-homogeneous

Highly 9 125 | 1.01 | 221
non-homogeneous

Symmetric 4 1 1.019 | 3.19

Table 1: Testing D2SD with 1 = Qg for a population of particles: uniform
distributed, containing clusters of particles with a mild-medium or high concen-
tration or with a symmetric distribution.

D2SD algorithm, the ratio between the optimal threshold and the
60th percentile, the ratio between the number of agglomerations
A* for the optimal mesh or the number of agglomerations A
for the mesh obtained with A = QOgo, and the ratio between the
computational times of the original D2SD algorithm and the
quick D2SD method.

The first key result is that the quick D2SD mesh coincides
with D2SD (optimal mesh) in the cases of a uniform spatial
distribution or a slightly non-homogeneous distribution. This
means that the optimal threshold corresponds to the 60th per-
centile, i.e. 1" = Qgo. In these cases, the quick D2SD algorithm
provides the same results as the D2SD (i.e. without error). In
the other cases, the optimal threshold does not coincide with
the 60th percentile, the largest difference being reached for the
highly non-homogeneous case. Yet, despite this difference in the
threshold, the error made in the number of agglomeration events
does not exceed 15% (with the biggest difference occurring for
the medium non-uniform distribution). In terms of computa-
tional costs, the use of the quick D2SD algorithm can speed up
the results up to 200% or 300% in some cases compared to the
original D2SD algorithm.

To further analyse these results, we evaluate the ratio of the
number of agglomeration events % in each of the five cases
as a function of the number of initial particles. This allows to
assess the balance between the accuracy and efficiency of the
quick D2SD algorithm (i.e. numerical error to computational
cost). The results are presented in Figure 7, where we can verify
how the accuracy of the quick D2SD algorithm stabilises as
the number of particles n increases, and the difference in cost
increases with n. In general, we can say that 2 = Qg is a suitable
choice for the threshold in order to decrease the computational
cost. The only difficulty arises when the number of particles is
small, where it may be preferable to apply the original D2SD
algorithm.

These tests confirm that the quick D2SD algorithm can be
safely used to efficiently compute particle agglomeration in most
of the cases of interest, as long as the expected results are within
a 15% error range.
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3.2. Testing the re-meshing criterion

We assess here the criterion that determines when the D2SD
algorithm should be applied again, assuming that it has already
been applied in a previous time step. For that purpose, we design
test cases that account for both inhomogeneities in the spatial
distribution of particles and the motion of particles with time.
In Section 3.2.1, we start by describing and testing the D2SD
algorithms on each case, suggesting furthermore some values
for the thresholds €, and e. Then, the fast D2SD algorithms
are tested on selected cases and their efficiency is assessed in
Section 3.2.2.

3.2.1. Setting-up thresholds €; and €,

We have selected three different cases; for each case, we
apply the following analysis method: (1) we start with a set of
initial particle positions X;; (2) we apply the D2SD algorithm
to obtain the initial optimal decomposition M}; (3) particles are
displaced during a time step Ar and (4) we apply again the
D2SD algorithm (full computation reference) and we compare
the results to those obtained with the re-meshing criterion (fast
computation). This allows to determine at each time-iteration if
an update of the spatial decomposition is required. Finally the
number of agglomeration events is computed. This procedure is
repeated for ten time-iterations intending to assess the evolution
of the error and indicators as the simulation progresses. For
each time-iteration k, we compare the two meshes obtained, i.e.

M versus M;. To that extent, we compute the evolution of the

indicators A, sN_bins (i.e. percentage of won/lost bins) and pffl’”k

(difference of particle concentration with respect to the previous
and initial mesh) for various time steps k = 2, ..., 10 and initial
timem=1,k—-1.

Each case and the corresponding results are described in the
following:

a. A cluster that disperses uniformly in space.

This illustrates cases where a particle cluster disperses in the
domain to reach a homogeneous distribution at longer times,
as shown in Figure 8.

The dispersion of the initial cluster in space translates into
a strong evolution of the optimum splitting obtained by ap-
plying the D2SD algorithm every time step. This is espe-
cially true when comparing results with the one got at the 1%
time-iteration, where the distribution is still far from a ho-
mogeneous one (bottom figures). As a result, the number of
won/lost bins compared to the initial time-iteration is always
very high. Setting up a reasonable tolerance threshold of
€1 = 15% — 20% won/lost bins between two time-iterations
is consistent with the results observed in Fig. 8, drawing on
the fact that we expect re-meshing to be unnecessary when
a stationary state has been attained (see the right plots of
Fig. 8). The same trend is observed for the concentration
difference, which is always around 0.5 when comparing it to
the initial time-iteration but quickly decreases when compar-
ing to the previous time-iteration, where the concentration
difference with respect to the previous/initial time-iteration
at the stationary state is around 0.15. Indeed, this is also con-
sistent with a tolerance threshold of m = 20% of maximum
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Figure 7: Testing D2SD with A = Qg for a population of particles of size n = {500¢ : £ € {1,...,10}} in the case: homogeneous, slightly, medium and highly

non-homogeneous, and symmetric.

difference between concentration at ¢ and ¢ + At (see Equation
(8)) with associated threshold e, = 1/6.

Using the threshold of €; = 15—-20% for the won/lost bins and
€ = 15 —20% for the concentration difference, the present
results would suggest to re-mesh the first two time-iterations.
After the third time-iteration, a steady-state is reached and
re-meshing is not likely anymore.

Local injection in a homogeneous distribution.

This case is expected to be representative of typical CFD
simulations with an injection of particles. As seen in Figure 9
(top), the initial distribution is homogeneous and becomes
non-homogeneous with time due to the local injection of par-
ticles (this is not compensated by the uniform displacement
since the injection is the dominant phenomenon).

This complex evolution of the distribution is well captured
by applying the D2SD algorithm every time step (bottom fig-
ures). However, as displayed in Figure 9 (right), the won/lost
bins with respect to the initial time-iteration increases due to
the development of a strongly non-homogeneous distribution.
This is especially true in the first few time-iterations, where
even the won/lost bins between consecutive time-iterations
peaks up to 200%. However, at longer times, both the
won/lost bins and concentration difference between consecu-
tive time-iterations reach values similar to the homogeneous
distribution in time. This is due to the establishment of a
steady-state situation, where the number of particles remains
constant in the domain (due to the balance between newly
injected particles and particles going out of the square of
observation).

The won/lost bins with a threshold of €; = 15 — 20% provide
a quick first acceptance/rebuttal which is completed by the
2nd criterion on the concentration difference with a threshold
around & = 15 — 20% (when needed). Here, re-meshing is
expected to occur during the second and third time-iterations
and again around time-iteration 9.

Two clusters (expanding/shrinking in space).

This case is representative of a situation where two initial
clusters evolve in time (see also Figure 10): one is expanding
in space while the other one is shrinking. The rates of expan-
sion and shrinking are designed with opposite values, such
that the number of bins remains constant.
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As seen in the right plots of Figure 10, the number of won/lost
bins always remains below 10% regardless if it is compared
to the initial or previous time-iteration. The information on
the change in particle positions comes from the concentra-
tion difference, which is seen to steadily increase from 0.1 to
0.35 when compared to the initial time-iteration. The concen-
tration difference w.r.t. the previous time-iteration remains
relatively low (below 0.16).

This case thus highlights the interest of the two-step process.
Here, we expect the step0.a (won/lost bin) to be accepted
every time, but the concentration difference suggests to re-
mesh every few time-iterations because of the change in
particle locations (step0.b). Thus, resorting to a single-step
process (i.e. using information on won/lost bins only) would
lead to incorrect results while the two-step process does cap-
ture this change. The concentration difference will provide
more information on the actual changes in concentrations.

All these cases support the use of a re-meshing criterion based
on two indicators, namely the number of won/lost bins and
the concentration difference. Drawing on the present tests, we
suggest to set the tolerance thresholds as € = 15 — 20% and
€ = 1/6. It is worth noting that these thresholds are expected
to work even when the number of particles is small. In fact, in
such cases, the creation/removal of one particle will correspond
to significant changes in the concentration, meaning that the 2"/
criterion will be satisfied. Further testing of the algorithm at
very low particle numbers will be done in the near future.

The next step consists of applying dynamically the criteria
described by steps0.a-0.c in Section 2.2.2 and evaluating the
error &(k, M) made on the computation of particle agglomeration
(see Equation (9)), with M, the output of stepO at time-iteration
k. This means that the criteria are applied at every time-iteration:
if rejected, the current time-iteration becomes the new reference
mesh but, if accepted, the reference mesh is left untouched (see
Figure 1).

3.2.2. Efficiency of re-meshing and illustration of the effect of
the thresholds

Here, we analyse the results obtained with the re-meshing

criterion applied dynamically. Based on the results of Section
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3.2.1, we set the tolerance thresholds as ¢, = 20%, ¢, = 1/6,
where the latter corresponds to m = 20% for the maximum
difference Ip;'[(‘:l - p?{;‘ |, during time-iteration k.

As displayed in Figure 11, for each of these cases and each
(time) time-iteration k, we illustrate the evolution of the indi-
cators Ay_; 4N_bins, pl;f‘:l"k and the error E(k, M) (M being the
output of the criterion at time-iteration k). For the sake of clarity,
we have also added markers around the time-iteration identifier
(see x-axis on plots 11(a) and 11(b)) to highlight every time a
re-meshing is suggested by each criterion. Several conclusions
can be drawn from this set of figures. First, we observe that the
error made in evaluating the number of agglomeration events
always remains below 0.4, even in complex cases such as case c.
Second, in the cases where the population of particles reaches a
state of uniform distribution (last time-iterations in case a.), the
criterion suggests keeping the spatial decomposition unchanged
(i.e. no re-meshing is applied), in accordance with the small
error made on the calculation of agglomerations.

To further analyse how the setup of the thresholds € and €,
influences the error made on the prediction of agglomeration, we
focus on the case of clusters expanding/shrinking (case c). For
that purpose, two different pairs (€, &) of thresholds are used:
{(10%, ﬁ), (20%, é)}, corresponding respectively to m = 10%
and m = 20% in Eq. (8). The results obtained are shown in
Figure 12: it can be seen that, by tuning the values of ¢, a lower
error on the agglomeration prediction is obtained. This is related
to the fact that, with lower tolerance thresholds, a higher number
of re-meshing events are triggered. Indeed, compared to the
error associated with a threshold of 20%, the error associated
with a threshold of 10% decreases by almost half (an error of
about 0.4 against one of about 0.25). However, a higher accuracy
in the results obtained also comes with higher computational
costs since more re-meshing occurs. These experiments confirm
that the proposed re-meshing criterion is a suitable candidate
to increase the computational efficiency of the D2SD algorithm
while respecting a user-defined criterion on the error made in
the evaluation of particle agglomeration events.

3.3. Testing quick_D2SD not every time step

In this section, we assess the accuracy and efficiency of the
algorithm combining both the quick_D2SD algorithm and the
re-meshing criterion. For that purpose, we consider case (c) with
clusters expanding/shrinking and we compare the error made
between the computation of agglomeration events implementing
the quick_D2SD versus full_D2SD algorithm, both using the
re-meshing criterion, i.e. Algo 3 versus Algo 1. The results for
(€1, ) = (20%, 1/6) are displayed in Figure 13: we observe that
the error propagates as the time-iterations progress but remains
within acceptable levels. When applying Algo 1 (full_D2SD
with re-meshing criterion), we can observe a decrease of the
error made between the computation of agglomeration events.
Whereas by applying Algo 3 (quick_D2SD with re-meshing cri-
terion), the error propagates and increases as time-iterations
progress. Regarding the computational time, denoting by CPU*
the cumulative computational time (over all time-iterations) as-
sociated with the implementation of the full_D2SD algorithm:
Algo 1 was executed in approximately 40%CPU*, while Algo
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3 took 29%CPU*. These results underline the great advantage,
as far as computational cost is concerned, of the fast versions
of the D2SD algorithm proposed in this paper. In particular, it
highlights the improvement regarding the computational cost
when the Algo 3 is implemented. However, this gain comes
with a loss of accuracy, which can be clearly seen in the three
last time-iterations in Figure 13. Therefore, when implementing
the quick version of the D2SD algorithm, it is suggested to re-
fresh from time to time the spatial decomposition using the full
version in order to stop the propagation of numerical errors.

4. Application to a practical case and validation

In this section, the quick_D2SD algorithm is coupled to 3D
simulations of particle agglomeration in practical cases. The
objectives are two-fold: first, we want to assess the accuracy
and efficiency of the method in a validation case; second, we
illustrate how the D2SD can be applied in a practical case that
is representative of situations of interest in the multiphase flow
community.

For that purpose, the following section is divided into two sub-
sections. In Section 4.1, quick _D2SD is applied to a validation
case, which consists of the simulation of particle agglomeration
undergoing diffusive motion but with a non-homogeneous spa-
tial distribution of particles. In Section 4.2, the quick_D2SD
algorithm is applied to a practical case representative of particle
dispersion in an atmospheric boundary layer with an obstacle.

4.1. Validation case

The quick_D28SD is first applied and compared to numerical
results obtained with micro-scale simulations for the agglomera-
tion of particles undergoing diffusive motion. Since the aim is to
validate the D2SD algorithm, we focus our attention on a case
involving non-homogeneous repartition of particles, here with a
local injection. The case studied together with the micro-scale
model and theoretical expectations on the rate of agglomeration
are presented in Section 4.1.1 while the use of the quick_D2SD
algorithm and the comparison to these results are discussed in
Section 4.1.2.

4.1.1. Micro-scale simulation of particle agglomeration with
local injection
Case studied: local particle injection. A case of non-
homogeneous particle repartition has been selected in order to
highlight the interest of using the D2SD algorithm in such com-
plex cases, as well as to assess the accuracy of the quick_D2SD
algorithm. We have opted here to simulate the case of particles
undergoing diffusive motion since a theoretical estimation of the
agglomeration rate can be computed in that case. More precisely,
we focus on the non-homogeneous case of particles within a
spherical domain of radius Ry, but with a higher concentration
around the sphere centre. Since the aim of these micro-scale
simulations is to extract from the results statistical information
on the agglomeration rate, the case studied has to be a steady-
state. For that reason, we did not set-up a simulation in a sphere
with rebound conditions on the edges. In that case, even if par-
ticles are initially non-homogeneously distributed, the purely
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diffusive motion will result in a steady state corresponding to a
case of homogeneously distributed particles within the sphere
(see case a in Section 3.2.1). We rather opted for a continuous
injection of particles near the sphere centre, which results in a
non-homogeneous steady-state where particles are more con-
centrated near the sphere centre. Particles reaching the domain
boundary are removed from the simulation. When a collision
between two particles is detected, one of the colliding partners
is removed from the simulation (this corresponds to the sticky
case where particles adhere to each other upon colliding).

Theoretical collision rate. As mentioned previously, we have
focused on this case since the collision rate can be estimated
theoretically (details about the derivation of the collision rate are
provided in Appendix C). Here, the average number of particles
evolves as

d ___ B B
pr (N@) = Vol(D) (N@) (N(@) - 1)) (11)
where the collision rate 3 is given by
8T R2
_8aR, o (12)

\2my '

It should be noted here that this formula for the collision rate
was obtained, assuming that particles are homogeneously dis-
tributed within the domain. Actually, in this case, the same
formula holds, although particles are not distributed homoge-
neously: this is because in each circular region around the centre
of the domain, the concentration can be considered as locally
homogeneous. This means that the same collision rate holds and
that a higher number of collisions occurs in regions with higher
concentrations (since the collision frequency is multiplied by the
local particle concentration to compute the number of collision
events).

Microscopic Langevin simulations. We perform here numerical
simulations of particles undergoing Langevin diffusive motion
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using the following equations:

dX; = Vdt,

(13)
dv; = —’)/Vidt + odB;(1),

with the particle position X;, the fluid velocity V;, the friction
v, the noise amplitude o and a family of independent Brownian
motion (B;(¢);t > 0);. All the particles are considered to have
the same radius R,,. Nj,je; particles are injected in the domain at
the sphere centre every Nj,, time-iterations. Particles reaching
the domain boundary (here at Ry = 0.5) are eliminated from
the simulation. This allows one to obtain a steady-state once
the number of particles entering the domain is compensated
by the number of particles exiting the domain. The motion of
particles is computed with a time step small enough so that
the average particle displacement in a time step is close to the
particle radius, i.e. |X;( + Af) — X;| = R,,. This allows to detect
the collision between two particles using geometric arguments
assuming a ballistic regime within the time step (i.e. the motion
of a particle within one time step follows a straight line). When
such a collision is detected, one of the partners is removed from
the simulation. This choice corresponds to the case of sticky
collisions (i.e. a collision does lead to agglomeration). The
collision rate is extracted from these simulations by recording
the number of collisions N, that occurred during a certain
amount of time #y;,,,. Since the particles are not homogeneously
distributed in the domain, the collision rate is analysed as a
function of the distance from the sphere centre (where particles
are injected at a given frequency). For that purpose, we define
a number of spherical rings according to their distance from
the centre, here comprised between r R;/50 and (r + 1) R, /50,
with r = 0,...,49. Then, drawing on Eq. (11) which gives
the evolution of average number of particles in the domain,
the collision rate is estimated within each ring over a given
simulation time g,

Ncoll(r)
tsimuNp(r)(Np(r) -1

ﬁapprox. (r) = (14)
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where N,(r) is the number of particles averaged in time in the
ring labelled r, and N_,;(r) the number of collisions averaged in
time in the same ring.

Results obtained. Figure 14 displays the comparison between
the theoretical value of the collision rate and the results obtained
with the numerical simulations as a function of the distance
from the point source (where particles are injected locally). The
coefficients o and y are respectively fixed to 1 and 1. As
expected from standard mean-field formulations, the collision
rate appears to be independent of the distance from the point
source, despite the variation in the particle concentration. The
results are less accurate as the distance from the point source
increases since the number of particles present in these regions
is lower (leading to higher statistical noise).

4.1.2. Simulations with quick_D2SD

The next step consists in coupling the quick_D2SD algorithm
to standard CFD simulations. Here, the particle positions gener-
ated by the fine Langevin simulations are used as an input data
for the quick_D2SD algorithm every time step. This allows one
to test the accuracy and efficiency of the quick_D2SD algorithm.

The quick_D2SD algorithm has been applied to 1000 consec-
utive iterations sampled from the simulation with 10 particles
injected every 4 time steps. We have used a spatial transforma-
tion proposed in [50], that allows to analyse the homogeneity in
the particle concentration using spherical coordinates instead of
Cartesian ones (which better fit the present case). Sometimes
it is desirable/more appropriate to make use of non-Cartesian
meshes; this can be achieved by the use of non-Cartesian coor-
dinates. However, when changing coordinates, it is mandatory
that the transformation preserves the uniform density, otherwise
steps1, 3 have to be modified properly.

The results obtained for the identification of high concentra-
tion regions from quick_D2SD are illustrated in Fig. 15: it can
be seen that clusters of particles are clearly identified near the
sphere centre while other regions further from the centre can
also be identified as having a concentration slightly higher than
the average one.
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Using Eq. (10), we compare the number of collision events
computed using the D2SD algorithm over the whole spheri-
cal domain to the one directly extracted from fine Langevin
simulations and the one provided by applying the mean-field
formulation on the whole domain. The results are shown in
Table 2, indicating that the evaluation of the number of collision
events is greatly improved using the D2SD algorithm compared
to the results obtained using the mean-field approach over the
whole domain. In fact, the mean-field formulation applied over
the whole domain leads to a significant underestimation of the
number of collision events (around 75%). Meanwhile, the error
made using the D2SD algorithm is much smaller: it increases
slightly using the quick_D2SD algorithm with re-meshing crite-
rion instead of the full_D2SD algorithm (from 18.5 % to 20.2
%) but the computational costs are reduced by a factor 3 with
the quick_D2SD algorithm.

CASE Langevin full D2SD | quick-D2SD | Mean-field
simulation one cell
Nb. coll. events 523 426 417 130

Table 2: Values of the number of collision events over 1000 time-iterations
computed using the fine Langevin simulation, the full_D2SD or quick_D2SD
algorithm with re-meshing and the mean-field approach over the whole domain
(one cell only).

4.2. Practical case

Case description.. The chosen practical test case corresponds to
the flow in a neutral boundary layer on which a square obstacle
is placed. The dimension of the obstacle along the y-direction
(i.e. span-wise) is considered to be much larger than the other
characteristic lengths, meaning that the flow can be simplified to
a 2D flow around an obstacle. This case is actually representative
of flows over large obstacles in atmospheric dispersion studies
(e.g. flow over a building). This case has been chosen due to
its relevance in the atmospheric dispersion community and also
since the flow obtained is highly non-homogeneous.

Simulation set-up. The geometry used in numerical simulations
is the same as the one used in a previous paper [62] (see also
Fig. 16): the domain consists in a rectangular box with a length
of 5 m, a height of 1 m and a thickness of 0.1 m while the square
obstacle is located in the middle of the channel with a fixed size
of 0.1 m. The mesh is made up of 798 400 square cells (with a
fixed thickness equal to the domain thickness). The boundary
conditions are chosen as follows (more details can be found in
[62]): the inlet condition is set to be representative of the flow
features typical of rough boundary layers (with a log-law for the
scaling of the average velocity U, along the direction z); an out-
let condition is imposed on the other side of the box; a symmetry
condition is applied at the top while a smooth wall condition is
applied at the bottom surfaces. The simulation is run resorting to
a Reynolds Stress Model for turbulence (more precisely a Rotta
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model) and using the open-source CFD software Code_Saturne
[63].

Fluid flow. Numerical simulations of the fluid phase have been
run until a statistically steady-state was reached. The results of
the fluid velocity and of the turbulent kinetic energy are shown
in Fig. 16, which shows several features. First, the isocontours
of the magnitude of the fluid velocity reveal the complex flow
structure, especially in the wake of the obstacle where a recir-
culation region is clearly visible (actually a similar but smaller
recirculation occurs just above the obstacle). Second, the isocon-
tours of the turbulent kinetic energy (obtained by computing half
of the trace of the Reynolds stress tensor in the simulation) show
high levels of turbulent kinetic energy just before the obstacle
and in the region separating the main longitudinal flow from the
recirculation region in the wake of the obstacle. These two re-
gions actually correspond to high-shear regions. These features
demonstrate the strongly non-homogeneous flow that results
from the impact of an incoming flow stream on the obstacle.

Particle tracking. Particles are then tracked within this steady
fluid flow (i.e. the fluid flow computed previously is used for
initialization and remains fixed during particle tracking). For
that purpose, we resort to the stochastic Lagrangian module
implemented in the open-source CFD software Code_Saturne
(details about the stochastic Lagrangian model are available in
[64]). Particles with a fixed diameter of 10 or 100 um and a den-
sity of 1000 kg.m~? are continuously injected through the inlet
boundary. The number of particles injected every time step has
been varied between 5 and 50. Injected particles are uniformly
distributed across the whole injection area, independently of the
velocity profile. This particle injection method leads to a higher
number of particles near the wall: particles in the upper region
move indeed faster than particles near the surface. As a result,
the number concentration of particles before the obstacle is not
a uniform distribution (as would be expected from an injection
that respects the flow rate). This injection method has been
retained here since it allows to test if the D2SD algorithm is
able to detect non-uniform number concentrations in complex
geometries. In line with the boundary conditions for the fluid
phase, particles are assumed to rebound on the bottom wall sur-
faces (meaning that no deposition occurs) while a symmetry
condition is applied on the top boundary and an outlet condition
is imposed on the downstream boundary. The simulation is ran
using a fixed time step of 0.01 s for 20 s. The simulation time
has been chosen to be long enough so that a stationary regime is
obtained for the number of particles in the domain. This regime
is typically reached after 15 s and the total number of particles in
the domain varies between roughly 8,300 particles (for 10 parti-
cles injected per time step) and 42,000 (for 50 particles injected
per time step). A snapshot of particle positions is displayed in
Fig. 17, where several features can be seen: first, in the region
upstream of the obstacle, the particles are uniformly distributed
along the longitudinal direction while the particle concentration
decreases linearly with the distance from the wall (this is due to

18

the injection of particles uniformly on the inlet area, regardless
of the velocity profile); second, 100 um particles tend to accu-
mulate just before and around the obstacle while they are much
less present in the wake of the obstacle; third, 10 um particles
appear to be much more homogeneously distributed throughout
the domain. These observations are actually mainly related to
the particle inertia: small 10 um particles behave almost like
fluid particles due to their low inertia (meaning that they do not
accumulate in non-homogeneous fluid regions) while particles
with a high inertia tend to accumulate in regions around the
obstacle and deplete low-energy regions (e.g. the recirculation
in the wake of the obstacle).

Agglomeration. Drawing on these particle-laden flow simula-
tions, we now investigate the role of particle agglomeration in
such complex cases. For that purpose, the quick_D2SD algo-
rithm has been coupled to the CFD simulations to analyse the
spatial repartition of particles in the domain and compute the
corresponding number of collisions. The number of collisions
obtained is compared to the one obtained with a mean-field for-
mula considering either the whole domain as a single cell or
using the mesh used in the CFD computation.

As mentioned in the introduction, one of the difficulties that
arise when computing particle collision and agglomeration in
complex flows lies in the definition of the collision frequency
for a mean-field approach [39]. In the present case, since no
information is available experimentally or numerically for the
collision frequency, we first consider a simple case to illustrate
the interest of the D2SD approach: particles are assumed to
agglomerate only through Brownian motion (i.e. independently
of the local flow properties). In that case, the collision frequency
between particles of sizes R; and R; is simply given by [39, 2]:

2
_ 4kpTy (Ri +RJ‘)
B 3/,lf RiRj

; s)

where T is the fluid temperature, kp the Boltzmann constant,
1y the fluid kinematic viscosity. Since the fluid temperature is
homogeneous across the whole domain, the collision frequency
is constant and the number of collisions is only driven by the
spatial repartition of particles. In the present case, we have
retained a value of 8 = 5 x 1078 for purely illustrative purposes
(which corresponds to a fixed fluid temperature across the whole
fluid domain).

The spatial decomposition obtained with the D2SD algorithm
for both sizes (10 and 100 um) is shown in Figure 18 for 20
particles injected per time step: the void region in the wake of
the obstacle is clearly visible in the case of large inertial par-
ticles. The results for particle agglomeration are summarised
in Table 3. Several conclusions can be drawn from these re-
sults. First, the computation of collisions using the mesh used
for the CFD calculation is not appropriate and leads here to an
overestimation of the number of agglomeration events. This is
due to the fact that the mesh has been designed to capture the
flow field around the obstacle, leading to very small sizes (here
squares of 2.5 mm with a thickness of 100 mm). As a result,
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most cells are actually populated by less than 1 particle, meaning
that agglomeration can only occur in the cells where two or more
particles are present. However, when such a situation happens,
the small cell volume immediately leads to a local but significant
over-estimation of the number of collision events. Adding all
contributions of these cells with two or more particles leads
to an over-estimation of the number of events. At this point,
it is worth noting that the results using the CFD mesh could
also severely under-estimate the actual number (if all cells were
not populated by more than one particle). Second, the number
of collisions calculated using quick_D2SD is the same as the
one with the full _D2SD algorithm. This further confirms the
accuracy and efficiency of the quick_D2SDalgorithm compared
to the full_D2SD algorithm. Besides, the average number of
particles present in a single D2SD cell is roughly equal to 600,
meaning that a large enough sample is used when computing
the number of agglomeration events (this contributes to lower
the computational error). Third, the efficiency of the algorithm
can be analysed by comparing the computational times. This is
displayed in Table 3, which provides the ratio CPU/CPU* of com-
putational times for each method, considering CPU* the computa-
tional time for the mean-field approach using the CFD mesh as a
referential time. From this, we can observe that the quick_D2SD
algorithm reduces the computational cost by 74 — 78% with
respect to its full version. On the other hand, the quick_D2SD
algorithm has an associated cost approximately 11 times the
cost using a mean-field approach on CFD mesh. Naturally, the
computation of the number of agglomerations using the CFD
mesh is faster than the computation after the construction of any
dedicated mesh; nevertheless, we have already seen that this
advantage in computational cost comes with a significant degra-
dation of the accuracy of the computed number of aggregations.
Finally, it is worth pointing out that the results obtained with the
quick_D2SD algorithm is comparable to the one obtained with
a single cell (which is roughly 4.000 times faster). With such a
result, it can be tempting to resort to a single cell. However, the
issue of a single cell is that it does not provide information on
where the aggregates will be formed. In fact, with a single cell,
aggregates can be formed anywhere in the domain with the same
probability. In reality, the formation of aggregates does depend
on the local number concentration (aggregates should never be
formed in void regions, but should be formed more frequently in
regions with a higher-than-average number concentration). This
information will be key in long-term simulations, i.e. when such
models are used to predict the evolution of the aggregate sizes
with time.

To further analyse how the results evolve with the number
of particles present in the domain, we compare the simulations
obtained with 1 to 50 particles injected every time step. The
results are summarised in Table 4. First, it can be seen that
the estimations using the D2SD are generally similar to the
one with a mean-field approach over a single cell covering the
whole domain, although slightly higher. This can be attributed
to the fact that the particle repartition in the domain only weakly
deviates from the uniformity assumption for 10 ym particles
and that particles are mostly homogeneously distributed in the
vast majority of the domain (except near the obstacle especially

Mean- Mean-field
CASE full D2SD | quick D2SD| field on a on CFD
single cell mesh

10 ym size
| Meanagglo. A | 209 | 300 | 285 | 583 |
| cpuceut | 4247 | 111 | 290e-3 | 1|

100 pm size
| Meanagglo. A | 332 | 301 | 280 | ¢ 618 |
| cpucu | s425 | 1187 | 623¢-3 | 1 |

Table 3: Values of the mean number of agglomeration events per time step
computed using full_D2SD or quick_D2SD with re-meshing, the mean-field
formula over the CFD mesh and the mean-field formula over the whole domain
(one cell only). Additionally, we include the ratio CPU/CPU* of computational
times for each method, considering CPU* the computational time for the mean-
field on CFD mesh, as referential time. The value of the agglomeration kernel is
B=5x10"8

for 100 um particles). We also know from our previous paper
that the violation of the uniformity assumption can lead to mis-
estimations of the agglomeration [50, 49]. Second, the evolution
with the number of particles tends to follow the same trend
as the one with a mean-field approach over a single cell (i.e.
proportional to N?). For quick_D2SD, the largest deviation
from this law occurs for the lowest number of particles. It is
probably related to the fact that the numerical error increases as
the number of particles decreases (since there are less particles
per cell). For the mean-field approach on the CFD mesh, the
evolution also deviates from the N? law at low numbers of
particles. This is due to a purely numerical artifact: more and
more cells are actually populated by 1 or less particles (meaning
that agglomeration does not occur in these cells) leading to a
mesh-dependent result. At this stage, it is also important to
recall that we compare here an average number of collision
events obtained with a single cell with those obtained using
the D2SD-mesh. In the present case, the number of particles
in the whole domain (typically around 10* up to 10°) might
appear to be quite low. This will undoubtedly result in statistical
fluctuations due to the low number of particles. However, in
reality, when running simulations to compute the evolution of
aggregate sizes with time, the statistical error made in each cell
will be reduced due to the averaging of the results in each cell
over a large number of temporal iterations. For that reason,
we have decided not to increase the number of particles in the
domain here (which can also be increased by adapting the D2SD
algorithm to treat parcels instead of particles).

A more realistic choice for the collision kernel will be to resort
to the kernel for the collision between particles in a turbulent
flow. One possibility is then to use the kernel derived by Saffman
and Turner for collisions in homogeneous isotropic turbulence

(39, 21:
4 € 3
B=3 /V_f (Ri+R)) (16)

where v is the fluid dynamic viscosity and e the turbulent dissi-
pation rate. In that case, the collision kernel is not homogeneous
across the whole simulation domain since the turbulent dissipa-
tion rate is not constant (see the isocontours of € on Fig. 17).



Mean-field | Mean-field
CASE quick_D2SD| on a single on CFD
cell mesh
Part. size Nb. injected Mean agglo. A
1 0.06 0.07 0.11
5 1.91 1.79 3.93
10 ym 10 7.48 7.06 14.0
20 30.0 28.5 58.3
50 187.3 179.4 359.8
0.08 0.07 0.26
5 1.89 1.71 3.96
100 um 10 7.48 6.89 14.2
20 30.1 28.0 61.8
50 186.8 175.3 380.1

Table 4: Comparison of the values of the mean number of agglomeration events
A per time step obtained for simulations with 1, 5, 10, 20 and 50 particles
injected every time step. Values are computed using the quick_D2SD algorithm
with re-meshing, the mean-field approach over the CFD mesh and the mean-field
approach over the whole domain (one cell only). Values of the agglomeration
kernel are 8 = 5 x 1078 for 10 um and 100 um particles.

This means that applying the faster D2SD algorithm — as it
has been described — is not enough to properly define spatial
regions with homogeneous repartition of particles and homoge-
neous fluid properties. In practice, this implies that the D2SD
algorithm should also include requirements for a homogeneous
turbulent dissipation rate here. A first option to respect this
additional constraint is to apply a two-stage D2SD algorithm:
one stage for spatial-homogeneity and a second stage for homo-
geneity in terms of fluid properties (here the energy dissipation
rate). Another option would be to further split the spatial regions
defined by the D2SD algorithm according to the isocontours of
the turbulent dissipation rate. Such developments are left out
of the scope of the present paper and will be performed later.
Nevertheless, the main conclusion that can be drawn from this
example is the following: computing particle collision and/or
agglomeration in complex flows with hybrid Euler/Lagrange
approaches requires extensive developments to identify regions
with both a uniform spatial repartition of particles and homo-
geneous fluid properties (or whatever properties are actually
required as inputs in the collision frequency ).

5. Conclusion

In this paper, a fast version of the data-driven spatial decom-
position (D2SD) algorithm has been developed. As for the
original D2SD algorithm, the fast D2SD allows to detect non-
homogeneous particle concentrations within a regular volume,
relying solely on the information coming from the set of particles
(without requiring other input parameters). The quick_D2SD
algorithm developed here combines two simplifications to re-
duce the computational costs associated with the full D2SD
algorithm. First, a simplified decomposition is applied with an
a priori evaluation of the PDF-threshold that is used to classify
regions according to their concentration level, which is taken
here as 1 = QOeo- Second, a re-meshing criterion is used to avoid
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applying the spatial decomposition algorithm every time step
in a CFD simulation. More precisely, the re-meshing criterion
is composed of two tests to check if the spatial decomposition
becomes too different from the one obtained at a previous time
step: one test is based on the fluctuation of the dispersion of the
particles within the domain 9 and another test is based on the
variation of the particle concentration.

The accuracy and efficiency of the proposed adaptations of
the original D2SD algorithm have been tested on a number of
situations involving a range of initial distribution of particles (ho-
mogeneous or non-homogeneous) and various particle motion
representing practical situations, mostly 2-dimensional exam-
ples for visualisation reasons. These test-cases allowed to set-up
the thresholds (¢, €) that are required in the quick_D2SD al-
gorithm, and analyse their effect on the overall accuracy. In
particular, the results obtained support the use of a re-meshing
criterion based on two indicators coupled to a faster D2SD algo-
rithm, since it accurately reproduces the results obtained with
the original D2SD algorithm applied every time step, even in
complex situations.

This faster D2S2 algorithm has been tested in two 3D cases.
First, the case of diffusive particles injected locally within a
spherical domain has been considered as a validation case. For
that purpose, the results obtained with the D2SD algorithm have
been compared to the results given by fine Lagrangian simula-
tions (based on a Langevin model). It was shown in particular
that the D2SD algorithm allows to significantly improve the
prediction of the number of agglomeration events compared to a
simple evaluation using a mean-field formulation over the entire
domain (which severely underestimates the number of agglomer-
ation events). As illustrated in [50], similar results are expected
(underestimating or overestimating the number of agglomeration
events) when an arbitrary mesh is chosen for the collision step.
Second, the flow around an obstacle has been used to illustrate
the interest of the method in practical CFD cases involving com-
plex geometries. It was shown that the results obtained with
the quick_D2SD algorithm are less dependent on the mesh used
(compared to the CFD mesh or to a single-cell) and that the com-
putational costs of the quick_D2SD become more compatible
with other CFD computations. We also mention that D2SD can
be adapted to non-Cartesian geometry as previously discussed
in [50].

These results support the need to apply spatial decomposition
techniques when resorting to hybrid Euler/Lagrange approaches
coupled to mean-field approaches for the computation of particle
agglomeration (such as the mean-field approach). However,
these results also shed light on the limitations of such mean-field
approaches: mean-field formulations indeed require that the
population of particles is uniformly distributed in the volume
considered and that other properties are constant (e.g. fluid
velocity or turbulent dissipation as seen in Section 4.2), while
neglecting any spatial/temporal correlation between collisions.
Despite the apparent simplicity of mean-field formulations, these
simulations show that complex algorithms have to be designed
in order to use such formulations in CFD simulations of complex
non-homogeneous flows.

Besides, in order to consider only the error coming from the



selection of the mesh, we have considered only the treatment
of primary particles in the present paper. However, the D2SD
algorithm (and therefore its simplified versions) can be easily
adapted to the assessment of parcels. In the latter case, the steps
to be adapted will be those in which the probability density
function is approximated, considering the statistical weight of
each parcel as if the composing particles were present in the
same cell. All other steps of the algorithm remain the same.
Further developments are also needed to be able to use complex
non-Cartesian meshes and possibly unstructured meshes. Such
developments will be key when applying the method to realistic
cases, where the number of real particles is so high (e.g. 10' or
more) that it is not appropriate to explicitly track the motion of
each individual particles but rather to resort to the tracking of
parcels.

Appendix A. Statistical uniformity test

The first step of D2SD consists of checking if the input sample
X corresponds to the case of uniformly-distributed particles, i.e.
whether or not we need an appropriate spatial decomposition.
For that purpose, several statistical uniformity tests (considered
in the classical literature of goodness of fit) could be applied.
However, any uniformity test will naturally have a statistical
error associated with it, stemming from the randomness of the
observed sample X, and the sample size n. In order to reduce
the number of false positives (the number of times we decide to
decompose the domain given that the particles are actually uni-
formly distributed), we apply a set of uniformity tests, and see if
enough of them reject the uniformity of X. The total number of
tests applied is optional. In our case, after some numerical ex-
periments performed in [50], we consider the set: three different
discrepancy tests [65] (used for measuring if a given set of points
is uniformly scattered) and a Henze-Zirkler normality test [66]
applied to the sample Y := {(D’I(X‘), O 1(X?),.. .,(D’I(X”)},
with @ the cumulative distribution function of a standard normal
random variable. The latter is based on the inverse transfor-
mation sampling method, where, in order to generate random
numbers from any probability distribution with cumulative dis-
tribution function (CDF) F, the transformation F~'(2[0, 1]¢)
is considered, with U[0, 11¢ being the uniform distribution on
the unitary cube [0, 11¢. Then, for F = @, if X is uniformly dis-
tributed in D, we would have that Y is a sample from a standard
Gaussian random variable. The reason for considering Gaussian
variables is that, given its usefulness in applications, it has taken
most of the attention in the multidimensional case, compared to
specialised tests for uniformity. Additionally, a Pearson test (see
e.g. [67]) is applied in order to check the independence of the
sample (more details can be found in [50]).

Then, considering the results of the different tests and their as-
sociated uncertainty, a majority voting criterion is implemented,
i.e. we accept the spatially-uniform condition for X if more than
half of the tests (in our case -at least- three tests) accept the
uniformity.
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Appendix B. The measure score-function to uniformity

In order to find the optimal threshold 1*, we consider a mea-
sure, henceforth called the score function, that quantifies how far
a sample is from being uniformly distributed. For that purpose,
we resort to the score function defined by the distance of X to
the boundary of the domain D = [0, 114 [68], remarkably used
for testing multivariate uniformity:

1
dpy(X, U) := fo 1G.2(2) — Hopu(2)| dz, (B.1)
where G,z stands for the empirical cumulative distribution
function of the sample Z = (Z',7%,...,7" € R", with Z!
2d(X',0D), and Hyp.q/(z) = 1 - (1—-2)%, for 0 < z < 1. Here,
d(X',dD) denotes the Euclidean distance between the point X’
in O and the boundary of the domain 0D (see [68] for further
details).

The ideal or reference score Sigea1 i Obtained by averaging
the score associated with a family of uniformly distributed sam-
ple U of size n. The A" search is a minimization problem aims to
decrease the distance between the ideal score value Sigea1 and
the score S (1) = d,(X*, U) associated with the synthetic sample
construct in step2 ofthe D2SD algorithm:

A" = argmin, E(X"). (B.2)

The associated error to minimize is

ISideal - <S (/l»symheticl

Sideal

EXY) =

where the bracket (S (1))synthetic denotes the average of the score
over several samples of the synthetic observations. The latter is
done to account for the uncertainty of ghost particle injection.

Appendix C. Collision rate of Brownian particles

Let us call N(¢) the number of particles present in a spherical
domain at time ¢ for a given realisation of the initial positions
and of the noises. The mean number of collisions n.,; between
times ¢ and ¢ + At is given by the average number of pairs of
particles that approach each other within a distance equal to the
sum of their radii, that is 2R,,.

Suppose that there is a reference particle i at X;(#) and another
one, j, at X that approaches i with a velocity V;(#) — V;(¢) given
by Eq 13. As displayed in Fig. C.20, particle j will collide with i
between ¢ and ¢ + At if two conditions are satisfied: (i) the radial
component of its relative velocity along the line connecting
the two spheres is negative W = [V;(¥) — V()] - r/|r| (with
r = X;(®) — X;(?)); (i) particle j is located at a distance less
than 2R, + |W|At from i. Assuming that particles are uniformly
distributed in the sphere [0, R], the probability that particle j
collides with 7 given its velocity difference W < 0 is given by

47 (2R, )2 |W| At

Proba(coll | W) = VolD)

(C.1)

with Vol(D) = 47R3 /3 the volume of the domain.
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Figure B.19: Sketch of the D2SD algorithm. Figure taken from [50].

Figure C.20: 2D sketch of the criterion for a particle j to collide with a particle i
fixed at the center.

The probability that particle i has a collision between ¢ and
t + At can be written by summing over all particles j # i present
at time ¢ and averaging with respect to the velocity difference W.
Assuming that particle positions and velocities are completely
independent, one obtains the probability ?’Colle[ rreaq that particle
i collides between ¢ and ¢ + At

) 2
P

colle[t,HAt]

P(N@) - 1) (WO=W)) Ar,

Vol(D) €2

where 6 denotes the Heaviside function and (-) ensemble aver-
ages. For velocities following a Langevin process with fric-
tion y and noise amplitude o, the velocity difference W is
a Gaussian process with variance o?/y. One then obtains
(WOW < 0)) = —a/ As a result, the mean number
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of collisions noyefr,+q OCcurring between ¢ and ¢ + At reads
1 ol
2 colle[tt+At]

i

87rR2
——  NOWN®® -1 A

Vol(D) 2ny

We consider the case where each collision leads to the removal
of one particle from the simulation. This leads to the following
evolution equation for the average number of particles:

_B
Vol(D)

with the collision rate (or collision frequency) 8 defined by
B 8 R%, o

_7)/.

Neollet,t+Af]

(C.3)

d
3 NW) = - (N(@) (N() = 1)) (C4)

(C.5)
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