
HAL Id: hal-03182606
https://inria.hal.science/hal-03182606

Submitted on 26 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SDKSE-KGA: A Secure Dynamic Keyword Searchable
Encryption Scheme Against Keyword Guessing Attacks

Hongyuan Chen, Zhenfu Cao, Xiaolei Dong, Jiachen Shen

To cite this version:
Hongyuan Chen, Zhenfu Cao, Xiaolei Dong, Jiachen Shen. SDKSE-KGA: A Secure Dynamic Keyword
Searchable Encryption Scheme Against Keyword Guessing Attacks. 13th IFIP International Confer-
ence on Trust Management (IFIPTM), Jul 2019, Copenhagen, Denmark. pp.162-177, �10.1007/978-3-
030-33716-2_13�. �hal-03182606�

https://inria.hal.science/hal-03182606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

SDKSE-KGA: A Secure Dynamic Keyword
Searchable Encryption Scheme Against Keyword

Guessing Attacks

Hongyuan Chen1,[0000−0003−4273−7185], Zhenfu Cao1,2,[0000−0002−5250−5030]*

Xiaolei Dong1,[0000−−0002−5844−0223], Jiachen Shen1,[0000−−0003−2376−5068]*

1. Shanghai Key Laboratory of Trustworthy computing
East China Normal University, China

2. Cyberspace Security Research Center
Peng Cheng Laboratory, Shenzhen

and Shanghai Institute of Intelligent Science and Technology
Tongji University, China

51164500090@stu.ecnu.edu.cn, {zfcao,dongxiaolei,jcshen}@sei.ecnu.edu.cn

Abstract. A number of searchable encryption schemes have been wide-
ly proposed to solve the search problem in ciphertext domain. Howev-
er, most existing searchable encryption schemes are vulnerable to key-
word guessing attacks. During keyword guessing attacks, with the help
of the cloud, an adversary will learn what keyword a given trapdoor is
searching for, which leads to the disclosure of users’ privacy informa-
tion. To address this issue, we propose SDKSE-KGA: a secure dynamic
keyword searchable encryption scheme which resists keyword guessing
attacks. SDKSE-KGA has constant-size indexes and trapdoors and sup-
ports functionalities such as dynamic updating of keywords and files.
Formal proofs show that it is Trapdoor-IND-CKA and Index-IND-CKA
secure in the standard model.

Keywords: Searchable encryption · Dynamic · Keyword Guessing At-
tack · Trapdoor-IND-CKA · Index-IND-CKA.

1 Introduction

Searchable encryption is an effective way to solve the search problem in cipher-
text domain. It not only protects users’ privacy but also completes search task.
During the process of searchable encryption, users need encrypt data before up-
loading it. Then, they use trapdoors of keywords to execute search task. So the
cloud cannot get exact information about data and keywords.

Song et al. firstly proposed a searchable encryption scheme for mail system in
[1]. Then, the concept of searchable encryption (SE) came into people’s attention
and aroused a series of researches [2–6]. According to the encryption methods,
divide SE into searchable encryption scheme (SSE) and public-key encryption
with keyword search (PEKS). SSE has the advantages of high efficiency and
practicability. So people tend to research the functionality of SSE. [7,8] realized

2 H. Chen et al.

the function of multi-keyword search. [9,10] realized the function of fuzzy search.
[11] realized the ranking function of search results. PEKS has the advantage of
strong security. So people tend to improve search expressions and security. [12,13]
implement access control for users search privileges. [14] has the traceability for
malicious users. [15] implements the revocation of malicious users privileges. [16]
implements the verification of search results.

Consider one dynamic mail system: For user Alice, she has many friends
and business partners in real life. So her inbox may received all kinds of mails
everyday. The inbox will store these mails into cloud servers. Considering the
cloud is not fully trusted, all information should be encrypted. When Alice checks
mails, she will filter mails generally and search for parts of them. The search
keywords are determined by Alice herself, and she is likely to change keywords
according to the actual life. This application scenario requires our searchable
encryption scheme to support dynamic keywords.

Kamara et al. firstly proposed a dynamic searchable symmetric encryption
scheme in [17]. They gave the definition of dynamic CKA2 security and con-
structed algorithm by reverse indexes. But this scheme has the disadvantage of
information leakage. They offered an improved scheme in [18]. It uses red black
tree as index tree to protect information. But this advantage is at the cost of
reducing search efficiency. Hahn et al. presented a new scheme in [19]. It leaks
nothing except the access pattern and requires the scenario to have huge data
and a few keywords. Xia et al proposed a multi-keyword ranked search scheme
in [20], which supports dynamic environment, too. It uses balanced binary tree
as index tree and sorts search results for users. But it lacks trapdoor indistin-
guishable security. Later, they presented a new scheme in [21]. For mail systems,
it has significant reduction in IO cost. But the size of index is large. It will make
pressure on communication overhead.

Meanwhile, Byun et al. first introduced the concept of keyword guessing
attack in [25]. In keyword guessing attacks, adverseries take advantage of the
fact that the keywords that one user are likely to use commonly are very limited.
So they make guesses of the keyword corresponding to a trapdoor. With the help
of the cloud, they are able to verify whether the guess is correct and shortly they
will know which keyword this trapdoor is searching for. It is a crucial attack and
violates the goal of searchable encryption.

The concept of offline keyword guessing attacks was proposed in [25]. Then
Yau et al. presented the concept of online keyword guessing attacks in [26]. Tang
et al. proposed a public-key encryption supporting registered keyword search
in [27]. But it requires the sender and the receiver to negotiate registered key-
words before the system was established. Compare with it, our scheme relaxes
the restrictions on communication between senders and receivers. Chen et al.
proposed a searchable encryption under dual systems in [28]. There are multi-
ple interactions between front server and back server. It prevents independent
servers from getting complete information to withstand attacks. Compare with
it, the cloud server in our scheme has less computational and communication
pressure.

Title Suppressed Due to Excessive Length 3

For the above mail system, we construct a dynamic searchable encryption
scheme which resists keyword guessing attacks. Our contribution is summarized
as follows:

1. Our SDKSE−KGA supports dynamic management of both keywords and
files. In the mail system, senders may send messages anytime and receivers
may delete messages too. The receiver may add or delete keywords by the
binary tree. Compared with other papers, the cost of updating keywords and
files is negligible. In addition, the update operation is completely executed
by the receiver, so there is no risk of leaking private data.

2. Our SDKSE −KGA has Index-IND-CKA(Index Indistinguishable against
Chosen Keyword Attack) security and Trapdoor-IND-CKA(Trapdoor Indis-
tinguishable against Chosen Keyword Attack) security. We will demonstrate
security under the standard model. Moreover, the indexes and trapdoors are
of constant size which helps to reduce transmission overhead significantly.

3. Our SDKSE−KGA resists keyword guessing attacks. Therefore, our scheme
has higher security level compared with other searchable encryption scenar-
ios. In this scheme, the search task is assigned to the cloud server and the
receiver, The cloud server performs fuzzy search while the receiver accu-
rate search, The cloud server is not able to obtain specific information of
keywords, so it cannot launch the keyword guessing attacks.

The rest of our paper is organized as follows. In Section 2, we will introduce
the system model and security model, and describe some symbols used in our
construction. In Section 3, we will introduce the keyword tree and fuzzy mapping
function in detail. Section 4 depicts SDKSE−KGA scheme in detail. Section 5
and Section 6 will show security analysis and performance analysis of SDKSE−
KGA. In the last section we will summarize this paper.

2 Definitions

2.1 System Model

There are three roles in our application scenario: mail senders, mail receivers and
the cloud server. The sender is responsible for adding keywords to these files,
encrypting files and generating exact indexes and fuzzy indexes for keywords,
and uploading them to the cloud server. The receiver is responsible for managing
all the keywords by constructing a binary tree, and generating fuzzy and exact
trapdoors. After receiving a fuzzy trapdoor, the cloud server conducts fuzzy
search upon fuzzy indexes and sends fuzzy results to the receiver. Then the
receiver performs exact search on the fuzzy results based on the exact trapdoors
to obtain final results. Fig 1 shows the system model.

Considering third-party cloud servers cannot be fully trusted, we hope the
cloud server get as little information as possible. Moreover, with the help of the
cloud, KGA will learn what keyword a given trapdoor is searching for, which
leads to the disclosure of users privacy information. In our model, the cloud

4 H. Chen et al.

server is only allowed to perform fuzzy search. Even if it has access to all the
fuzzy indexes of keywords and some of legal fuzzy trapdoors, it is still unable to
get the exact information of the search. Moreover, this model not only protects
the security of keywords, but also resists keyword guessing attacks.

Fig. 1: System model

2.2 Security Model

In this part, we define Index−IND−CKA security, Trapdoor−IND−CKA se-
curity and adaptive KGA security. Index−IND−CKA security means outside
attackers cannot determine exact index ExactIndex was generated by which
keyword in case of they know nothing about the exact trapdoor of the given
keywords. Trapdoor − IND − CKA security means outside attackers cannot
distinguish between the exact trapdoors of two challenge keywords [23]. The
definitions of Index − IND − CKA and Trapdoor − IND − CKA are similar
to these in [30]. We define the following security games to illustrate three kinds
of security.

Game 1 : (Index− IND − CKA security)
Setup. The challenger runs Setup algorithm to obtain the public parameters
and the master secret key. He retains the master secret key and gives the public
parameters to the adversary A.
Query phase 1. The adversary A adaptively selects keyword w to issue. The
challenger generates ETd for w and sends it to A.
Challenge. The adversary A selects target keywords w∗0 and w∗1 . Both of two
target keywords has not queried before. Then, the challenger generates the exact
index ExactIndex for w∗β and sends it to A where β ∈ {0, 1}.

Title Suppressed Due to Excessive Length 5

Query Phase 2. Repeat Query Phase 1.The adversary A continue to issue key-
words except the target keywords w∗0 and w∗1 .
Guess. The adversary gives β′ as the guess of β, if β′ = β, then the adversary
wins.
The advantage of A in this game is defined as follows:

AdvA = |Pr[β = β′]− 1
2 |

Definition 1. We say that SDKSE-KGA is Index-Indistinguishable security if
AdvA is negligible for any polynomial time attacker A.

Game 2 : (Trapdoor − IND − CKA security)
Setup. The challenger runs Setup algorithm to obtain the public parameters
and the master secret key. He retains the master secret key and gives the public
parameters to the adversary B.
Query phase 1. The adversary B adaptively selects keyword w to issue. The
challenger generates ETd for w and sends it to B.
Challenge. The adversary B selects target keywords w∗0 and w∗1 . Both of t-
wo target keywords has not queried before. Then, the challenger flips a coin
β ∈ {0, 1}, generates the ETd for w∗β and sends it to B.
Query Phase 2. Repeat Query Phase 1. The adversary continue to issue key-
words except the target keywords w∗0 and w∗1 .
Guess. The adversary gives β′ as the guess of β, if β′ = β, then the adversary
wins.
The advantage of B in this game is defined as follows:

AdvB = |Pr[β = β′]− 1
2 |

Definition 2. We say that SDKSE-KGA is Trapdoor-Indistinguishable security
if AdvB is negligible for any polynomial time attacker B.

Game 3 : (Adaptive KGA security)
Setup. The challenger runs this algorithm to obtain the public parameters and
the master secret key. Then he retains the master secret key and gives the public
parameters to the adversary C.
Query phase 1. The adversary C queries the fuzzy trapdoor and fuzzy index
of any keyword.
Challenge. The adversary selects the keyword w∗0 and w∗1 as challenge keyword-
s, and neither keyword has been quried before. Then the challenger randomly
selects the keyword w∗β(β ∈ {0, 1}), generates ciphertext FTdw∗β for it, and sends
the trapdoor to C.
Query Phase 2. Repeat Query Phase 1. The adversary C continue to query the
fuzzy trapdoor and fuzzy index of keywords except the target keywords w∗0 and
w∗1 .
Guess. The adversary gives β′ as the guess of β, if β′ = β, then the adversary
wins.
The advantage of C in this game is defined as follows:

6 H. Chen et al.

AdvC = |Pr[β = β′]− 1
2 |

Definition 3. We say that SDKSE-KGA is Adaptive KGA security if AdvC is
negligible for any polynomial time attacker C.

2.3 Notations

This part we will illustrate some symbols used in this scheme. To manage all
the keywords, we build a binary tree denoted by T , use L to indicate the height
of T . And the height L is related to N which means the number of keywords.
The fuzzy keyword mapped by the keyword w is expressed as wf . [I1, ..., Ih]
represents the location of keyword in the tree. The exact index and fuzzy index
of keywords are respectively represented by ExactIndex and FuzzyIndex. The
exact trapdoor and fuzzy trapdoor of keywords are respectively represented by
ETd and FTd.

Definition 3.(SDKSE −KGA) A securely dynamic keyword searchable en-
cryption scheme which resists keyword guessing attacks is a tuple of nine polynomial-
time algorithms

SDKSE = (Setup,Encrypt, TDGen, FuzzySearch,ExactSearch,KWInsert,

IndexInsert,KWDelete, IndexDelete)

such that

– Setup(λ,N) → (params,MSK) : In this algorithm, input the security pa-
rameter λ and the number of keywords N , generate keyword tree T , output
public parameters of the scheme params and master secret key MSK.

– Encrypt(params,w) → (FuzzyIndex, ExactIndex) : In this algorithm,
input params and keyword w. Generate fuzzy index FuzzyIndex and exact
index ExactIndex for w.

– TDGen(MSK,w) → (FTd,ETd) : In this algorithm, generate fuzzy trap-
door FTd and exact trapdoor ETd for keyword w by MSK.

– FuzzySearch(FuzzyIndex, FTd)→ (FuzzyCipher or ⊥) : In this algorith-
m, input fuzzy index FuzzyIndex and fuzzy trapdoor FTd to match. If the
match operation is successful, add these files associated with FuzzyIndex
to the fuzzy ciphertext set FuzzyCipher. If the operation is failed, output
⊥.

– ExactSearch(ExactIndex,ETd) → (C or ⊥) : In this algorithm, input
exact index ExactIndex and exact trapdoor ETd for operation. If the oper-
ation is successful, output file set which contain keyword w. If the operation
is failed, output ⊥.

– KWInsert(w) : Insert new keyword w to the tree T .
– IndexInsert(w) : Notify related files to update keyword list and generate

encrypted keyword C for new keyword w.
– KWDelete(w) : Disable node bound to keyword w from tree T .
– IndexDelete(w) : Notify related files to update keyword list and delete ex-

isting index of w.

Title Suppressed Due to Excessive Length 7

3 Preliminaries

3.1 Keyword Tree

The receiver is responsible for constructing the binary tree T . The tree T has
two tasks: managing keywords dynamically and running fuzzy mapping function.
Construct tree T based on the number of keywords N , height L = dlog2Ne+ 2.
Each leaf node may bind to one keyword. We call one leaf node that have not yet
bound keyword as available node. The number of available nodes is denoted by
avlS. In order to ensure the growth of the tree, we require avlS ≥ minS, where
minS = 2L−2. Each leaf node has three states: disable, occupied, available.
They are represented by [0, 1, 2] respectively. Disable state means this leaf node
is bound to one disable keyword. Occupied state means this leaf node is bound
to one keyword. Available state means this leaf node has not been bound.

It is very easy to delete one keyword. We just need to set the state of the
leaf node bound to this keyword to 0, and if this key is used again later, just
change the state of the leaf node to 1. Adding keyword can be divided in two
situations: If avlS > minS, select an appropriate available leaf node and bind
it to the keyword. Then set its state value to 2. If avlS = minS, then generate
child nodes of all available leaf nodes to double the number of available leaf
nodes. The growth process is shown in Fig 2. Now avlS > minS, so we continue
to add keywords.

Fig. 2: Grow Tree

Now we design fuzzy mapping function to map each keyword to a fuzzy
keyword. The position of the fuzzy keyword in the tree will be used to generate
the pair of fuzzy index and fuzzy trapdoor. The cloud server searches upon
the fuzzy index-trapdoor pair while the receiver searches upon the exact index-
trapdoor pair. Now we introduce the fuzzy mapping function. For one leaf node
in the binary tree, trace it up to n levels where n is a parameter defined by users,

8 H. Chen et al.

the obtained node is the corresponding fuzzy node of it. If two leaf nodes have
the same ancestor node after tracing the same layers, then these nodes share a
fuzzy node.

3.2 Bilinear Map

In our scheme, we apply bilinear map to FuzzySearch and ExactSearch algo-
rithm. The specific principle is as follows:

There is a composite group G with order n = p1p2p3p4 where p1, p2, p3
and p4 are distinct primes. Assume one of the generators of G is G, then the
generators of Gp1 , Gp2 , Gp3 and Gp4 are G1, G2, G3 and G4 respectively. And
G1 = Gp2p3p4 , G2 = Gp1p3p4 , G3 = Gp1p2p4 , G4 = Gp1p2p3 . We infer that for
distinct i and j, ∀Ri ∈ Gpi , Rj ∈ Gpj , e(Ri, Rj) = 1 holds.

3.3 Complexity Assumptions

The security of our scheme is based on six complexity assumptions [22]. The
hardness of these assumptions relies on the theorems proposed by [24].

In Assumption 1, given a group generator G, input security parameter λ,
then generate primes p1, p2, p3, p4, two groups G, GT , and the bilinear map
e. Set the integer n = p1p2p3p4. Select random element x from Gp1 , similarly
select G3 from Gp3 and G4 from Gp4 . Set D = {G, n, x,G3, G4}. T0 ∈ Gp1p2p4 ,
T1 ∈ Gp1p4 and β ∈ {0, 1}. Give (D,Tβ) to the adversary B, the adversary B
outputs a guess β′, if β′ = β, then he succeeds. Define Adv1G,B(λ) to denote the
advantage of B, Adv1G,B(λ) = |Pr[β′ = β]− 1

2 |.
The following assumptions are very similar to Assumption1, so we only in-

troduce their differences.
In Assumption 2,

D = {G, n, x,G1G2, G3, H2H3, G4},

T0 ∈ Gp1p2p3 ,T1 ∈ Gp1p3 .

And G1
R← Gp1 , G2, H2

R← Gp2 , G3, H3
R← Gp3 , G4

R← Gp4 .
In Assumption 3,

D = {G, n,G1, H2H3, G3, G4},

T0 = H2H
′
3,T1 ∈ Gp1p3 .

And G1
R← Gp1 , H2

R← Gp2 , G3, H3, H
′
3
R← Gp3 , G4

R← Gp4 .
In Assumption 4,

D = {G, n,G1, H2H4, G3, G4},

T0 ∈ Gp2p4 ,T1 ∈ Gp4 .

Title Suppressed Due to Excessive Length 9

And G1
R← Gp1 , H2

R← Gp2 , G3
R← Gp3 , G4, H4

R← Gp4 .
In Assumption 5,

D = {G, n, x,G1G2, G3, H1H2, I2I3, G4},

T0 = e(G1, H1),T1 ∈ GT .

And x,G1, H1
R← Gp1 , G2, H2, I2

R← Gp2 , G3, I3
R← Gp3 , G4

R← Gp4 .
In Assumption 6,

D = {G, n,G1G4, H1H2, I2, I3, I4, J1J2J4},

T0 ∈ J1J ′2J ′4,T1 ∈ Gp1p2p4 .

And G1, H1, J1
R← Gp1 , H2, I2, J2, J

′
2
R← Gp2 , I3

R← Gp3 , G4, I4, J4, J
′
4
R← Gp4 .

For Assumption 1 ∼ 6, we have the following definition:
Definition 4 : For any polynomial time, if Adv −NG,B(λ) is a negligible func-
tion of λ, then we think the group generator G satisfies Assumption N , N ∈
{1, 2, 3, 4, 5, 6}.

4 Construction

In this section we will introduce SDKSE-KGA in detail.
Setup(λ,N) : First, the receiver builds the keyword tree T to manage ini-

tial keywords. For keyword w, encode it as [I1, . . . , Ih] according to its position
in the binary tree. Note h = L − 1. Next, runs group generator G and ob-
tains (p1, p2, p3, p4,G,GT , e). Then, selects random elements x, y, u1, ..., uh, ω ←
Gp1 , G3 ← Gp3 , G4 ← Gp4 , R4, R4,g, R4,h, R4,u1 , ..., R4,uh ← Gp4 . G3 is the gen-
erator of Gp3 and G4 is the generator of Gp4 respectively. So a random element
of Gp4 can be chosen by raising G4 to random exponents from Zn. At last,
set n = p1p2p3p4, X = xR4,g, Y = yR4,h, U1 = u1R4,u1

, ..., Uh = uhR4,uh ,
E = e(g, ω). The public parameters params = [G, n,X, Y, U1, . . . , Uh, R3, R4, E].
The master private key MSK = [x, y, u1, . . . , uh, ω]. The receiver publishes the
params and retains the MSK for generate trapdoors later.

Encrypt(params,w) : w represents the keyword to be encrypted, parse it
to [I1, ..., Ih]. The sender selects random integer s ← Zn and random elements

R4, R
′
4 ← Gp4 . Picks random message M . Next, set

CT0 = MEs,
CT1 = (H

∏h
i=1 U

Ii
i)sR4,

CT2 = GsR
′
4.

Set CT ← [CT0, CT1, CT2] ∈ GT ×G3. Define ExactIndex = [M,CT].
Then, according to the fuzzy mapping function, the keyword w is mapped

to wf , parse it to [I1, ..., Ihf]. The sender selects random integer sf ← Zn and

random elements Rf,4, R
′
f,4 ← Gp4 . Picks random message Mf . Next, set

10 H. Chen et al.

CTf,0 = MfE
sf ,

CTf,1 = (H
∏hf
i=1 U

Ii
i

)sfRf,4,

CTf,2 = GsfR
′
f,4.

Set CTf ← [CTf,0, CTf,1, CTf,2] ∈ GT ×G3. Define FuzzyIndex = [Mf , CTf].
TDGen(MSK,w) : w is the keyword to be retrieved. Parse w to [I1, ..., Ih].

The receiver selects random integers r1, r2 ← Zn and random elements

R1
3, R3

2, R3
3, R

4
3, R3

5, R6
3 ← G4

p3 .

To obtain the exact trapdoor ETd of the keyword w. Set Td1 = xr1R1
3, Td2 =

ω(y
∏h
i=1 u

Ii
i)

r1
R3

2, Td3 = ur1h R
3
3, Td4 = xr2R4

3, Td5 = ω(y
∏h
i=1 u

Ii
i)

r2
R3

5,

Td6 = ur2h R
6
3. Set

ETd = [Td1, Td2, Td3, Td4, Td5, Td6].

Map the keyword w to wf , parse it to [I1, ..., Ihf]. The receiver selects random
integers rf,1, rf,2 ← Zn and random elements

R1
f,3, Rf,3

2, R3
f,3, R

4
f,3, Rf,3

5, R6
f,3 ← G4

p3 .

To obtain the fuzzy trapdoor FTd of the keyword w. Set Tdf,1 = xrf,1R1
f,3,

Tdf,2 = ω(y
∏hf
i=1 u

Ii
i

)
rf,1

Rf,3
2, Tdf,3 = u

rf,1
hf

R3
f,3, Tdf,4 = xrf,2R4

f,3, Tdf,5 =

ω(y
∏hf
i=1 u

Ii
i

)
rf,2

Rf,3
5, Tdf,6 = u

rf,2
hf

R6
f,3. Set

FTd = [Tdf,1, Tdf,2, Tdf,3, Tdf,4, Tdf,5, Tdf,6].

FuzzySearch(FuzzyIndex, FTd) : Parse FTd to [Tdf,1, Tdf,2, Tdf,3, Tdf,4,
Tdf,5,Tdf,6]. FuzzyIndex = [Mf , CTf], parse CTf to [CTf,0, CTf,1, CTf,2].
Compute

M ′f = CTf,0 · e(Tdf,1,CTf,1)e(Tdf,2,CTf,2)
.

If Mf = M ′f , add all files containing exact keywords which mapping to wf into
the fuzzy result FuzzyCipher. Then FuzzyCipher will be sent to the receiver.

ExactSearch(ExactIndex,ETd) : Parse ETd to [Td1, Td2, Td3, Td4, Td5, Td6].
ExactIndex = [M,CT], parse CT to [CT0, CT1, CT2]. Compute

M ′ = CT0 · e(Td1,CT1)
e(Td2,CT2)

.

If M = M ′, then output the file set C which contains the keyword w.
KWInsert(w) : Select an appropriate leaf node to bind the new keyword w

in the binary tree.
IndexInsert(w) : Generate the index based on the location in the tree and

add it into index list.
KWDelete(w) : Disable the keyword w in the binary tree.
IndexDelete(w) : Delete the index of w from the index list.

Title Suppressed Due to Excessive Length 11

5 Security Proof

In this section, we will prove the security of SDKSE − KGA. Each keyword
owns an exact trapdoor-index pair and a fuzzy trapdoor-index pair. The sender
generates fuzzy indexes and exact indexes and sends them to the cloud. The re-
ceiver generates fuzzy trapdoors and exact trapdoors and sends fuzzy trapdoors
to the cloud. Notice that in both FuzzySearch and ExactSearch algorithms,
only if the location strings corresponding to the trapdoor and the index are i-
dentical, the match operation will succeed. Since the fuzzy trapdoors and fuzzy
indexes are generated upon the position, which one-to-one mapped into the lo-
cation string of the fuzzy node, the match operation will only succeed when the
fuzzy trapdoor and fuzzy index are generated upon the same fuzzy node. On the
other hand, fuzzy nodes and exact nodes are different from each other, so the
match operation upon a fuzzy trapdoor and an exact index will always generates
⊥. Therefore, even the cloud gets exact indexes, the privacy of users will not be
destroyed.

Now we will prove our SDKSE − KGA is Index − IND − CKA and
Trapdoor − IND − CKA secure.

Theorem 1. Our SDKSE −KGA scheme is Index− IND − CKA secure if
a group generator G holds assumptions in [22].

Proof. We will give the definitions of semi-functional indexes and semi-functional
trapdoors for ExactIndex and ETd , and show a series of games. Semi-functional
indexes are composed by CT0,CT1,CT2.

CT0 = CT ′0, CT1 = CT ′1x
rzc
2 , CT2 = CT ′2x

r
2.

where CT ′0, CT ′1 and CT ′2 are components of CT generated in Encrypt algorithm.

And x2 ∈ Gp2 , r, zc
R← ZN . Semi-functional trapdoors are as follows:

Td1 = Td′1x
γ
2 , Td2 = Td′2x

γz1
2 , Td3 = Td′3x

γz2
2 ,

Td4 = Td′4x
γ′

2 , Td5 = Td′5x
γ′z′1
2 , Td6 = Td′6x

γ′z′2
2 ,

where Td′1, Td′2, Td′3, Td′4, Td′5, Td′6 are components of ETd generated in

TDGen algorithm, x2 ∈ Gp2 , and γ, γ′, z1, z
′
1, z2, z

′
2
R← ZN .

In addition, we need to construct a series of games.
GameReal: Game 1.
GameRestricted: It is similar to GameReal except that the adversary cannot
query keywords which are prefixes of the challenge keyword modulus p2.
Gamek:0 ≤ k ≤ q, and q is the number of queries made by the adversary. The
difference between Gamek and GameRestricted are query results. The challenge
index is semi-functional index in two games and the first k results of trapdoor
are semi-functional trapdoors in Gamek.
GameMhiding: It selects random elements from G and constructs CT0 of the
challenge index.
GameRandom: The second component and the third component of challenge

12 H. Chen et al.

indexes are independent random elements in Gp1p2p4 in this game.
In GameRandom, the adversary knows nothing about keyword from the chal-

lenge index. So we need prove GameReal and GameRandom are distinguishable.
First step, the adversary selects keywords w0 and w1, w0 6= w1 mod n and
w0 ≡ w1 mod p2. The simulator ∫ factor n by computing gcd(w0 − w1, N).
But the assumption 1,2,3 will prove that n cannot be decomposed. As a result,
GameReal and GameRestricted are distinguishable. Second step, we will prove
GameRestricted and Gamek are distinguishable. According to assumption 1, con-
struct a new game. In this game, if T = T0, the index generated by challenger
is semi-functional index. In this case, the game is equal to Game0 eventually.
If T = T1, the index generated by challenger is normal index and the game
is equal to GameRestricted. T0 and T1 have the same distribution in statics, so
GameRestricted and Gamek are distinguishable. Third step, we will prove the
series games Gamek(0 ≤ k ≤ q) are distinguishable. Use the same way to con-
struct a new game according to assumption 5. The trapdoors sent by challenger
are semi-functional trapdoors. If T = T0, the game is equal to Gameq. If T = T1,
the game is equal to GameMhiding. So Gameq and GameMhiding are indistin-
guishable. Continue to deduce, we will get the conclusion that GameMhiding

and GameRandom are indistinguishable by constructing the new game according
to assumption 6. Finally, GameReal and GameRandom are distinguishable. The
proof is completed.

Theorem 2. Our SDKSE−KGA scheme is Trapdoor−IND−CKA secure.

Proof. InGame 2, the adversary selects target keywords w0 and w1, then receives
ETdw∗β from the challenger. As we all known, ETdw = [Td1, Td2, Td3, Td4, Td5,

Td6] where Td1 = xr1R1
3, Td2 = ω(y

∏h
i=1 u

Ii
i)

r1
R2

3, Td3 = ur1h R
3
3, Td4 = xr2R4

3,

Td5 = ω(y
∏h
i=1 u

Ii
i)

r2
R5

3, Td6 = ur2h R
6
3. x, y, w, u1, . . . , uh belong to public pa-

rameters, R1
3 ∼ R6

3 are random elements selected from G4
p3 . So the adversary

only infer the value of β from Td2 or Td5. According to the property of bilinear
pairing, R2

3 in Td2 can be removed by elements of Gpi ,i ∈ [1, 2, 4]. The location
strings [I1, . . . , Ih] of w0 and w1 are known to the adversary, he is able to com-
pute m0 = y

∏h
i=1 u

Ii,0
i

and m1 = y
∏h
i=1 u

Ii,1
i

. m0 and m1 are the elements in
Gp1 . In statistics, the distributions of mr

0 and mr
1 are exactly the same where r

is a random element in Zn. So the adversary is not able to guess the value of β
by m0, m1. In other words, the adversary should not be able to distinguish the
trapdoors of w∗0 and w∗1 . The proof is completed.

Theorem 3. Our SDKSE −KGA scheme is Adaptive KGA secure.

Proof. Case 1: If two challenge keywords will map to different fuzzy keywords,
they will generate different fuzzy trapdoors. So the KGA security game is ex-
actly the same as Trapdoor-IND security game. In this case, the advantage of
adversary winning the game is negligible.

Case 2: If two challenge keywords will map to the same fuzzy keywords, they
will generate the same fuzzy trapdoors. The challenge keywords w∗0 and w∗1 have

Title Suppressed Due to Excessive Length 13

the same distribution in statistics. The adversary cannot determine β based on
the fuzzy trapdoor. In other words, he cannot distinguish between w∗0 and w∗1 .

In both cases, the advantage of the adversary winning the game is negligible.

6 Performance

This section mainly gives the performance analysis of SDKSE-KGA. The Setup
algorithm requires h+ 2 multiplications and one pairing, it takes 2(h+ 3) multi-
plications and 6 modular exponentiations to generate one exact trapdoor where
h denotes the height of keyword tree in the scheme. It takes h + 2 multiplica-
tions and 3 modular exponentiations to generate one index. For Search algo-
rithm, it requires 2 pairings and 2 multiplications. The computational overhead
of KWInsert and KWDelete are negligible.

Fig. 3: Index Size

Our SDKSE − KGA scheme supports keyword and file updating at the
same time. To add a document, [20] and [17] need to iterate through keyword
arrays and [18] needs to traverse a KRB tree. So the updating cost is very high.
In addition, the index and trapdoors of our scheme are of constant size which
reduces transmission overhead significantly. Table 1 shows the efficiency compar-
ison between [20], [17], [18] and SDKSE-KGA and Fig 3 shows the comparison
of the index sizes of different schemes.

Compared with other searchable encryption schemes which resist keyword
guessing attacks, In terms of communication overhead, the size of index and
trapdoor in SDKSE-KGA scheme is not affected by the number of files. Table 2
shows our advantages between this scheme and others. In this table, G represents
a member of the group, Pairing means a bilinear pair operation, Exp means

14 H. Chen et al.

Table 1: Comparisons with dynamic searchable schemes

Compare Items [20] [17] [18] SDKSE −KGA

Dynamic file X X X X

Dynamic Keyword × × × X

Trapdoor-IND X × × X

Index Size O(n2) O(n) O(n) O(1)

Trapdoor Size O(n2) O(1) O(1) O(1)

Insert File O(n) O(n) O(n) O(1)

Insert Keyword N/A N/A N/A O(n)

power operation while Mul means multiplication operation. n is the number of
all files.

Table 2: Comparisons with schemes resisting KGA

Schemes Index Size Search Overhead KGA Dynamic

[27] 2 |G| Pairing X ×

[28] 3 |G| (7Exp + 3Mul)n X ×

[29] 2 |G| Pairing X ×

SDKSE-KGA 3 |G| 2Pairing X X

7 Conclusion

In this paper, we proposed a secure dynamic searchable encryption scheme
SDKSE −KGA which resists keyword guessing attacks for mail systems. The
complexity of the index and the trapdoor of SDKSE−KGA are both constant
size. Therefore, SDKSE−KGA is capable of supporting dynamic management
of mails and keywords and resisting keyword guessing attacks. In addition, it is
both Index− IND − CKA and Trapdoor − IND − CKA secure.

8 Acknowledgement

This work was supported in part by the National Natural Science Foundation
of China (Grant No.61632012, 61672239, 61602180. and U1509219), in part by
Natural Science Foundation of Shanghai (Grant No. 16ZR1409200), and in part

Title Suppressed Due to Excessive Length 15

by ”the Fundamental Research Funds for the Central Universities”. Zhenfu Cao
and Jiachen Shen are the corresponding authors.

References

1. Song D, Wagner D A, Perrig A, et al. Practical techniques for searches on encrypted
data[J]. ieee symposium on security and privacy, 2000: 44-55.

2. Boneh D, Crescenzo G D, Ostrovsky R, et al. Public Key Encryption with Keyword
Search[C]. theory and application of cryptographic techniques, 2004: 506-522.

3. Waters B, Balfanz D, Durfee G E, et al. Building an Encrypted and Searchable
Audit Log.[C]. network and distributed system security symposium, 2004.

4. Curtmola R, Garay J A, Kamara S, et al. Searchable symmetric encryption: im-
proved definitions and efficient constructions[C]. computer and communications se-
curity, 2006: 79-88.

5. Wang P, Wang H, Pieprzyk J. Threshold Privacy Preserving Keyword Searches[C].
International Conference on Current Trends in Theory and Practice of Computer
Science. Springer Berlin Heidelberg, 2008:646-658.

6. Dong J P, Cha J, Lee P J. Searchable Keyword-Based Encryption[J]. Iacr Cryptol-
ogy Eprint Archive, 2005, 2005.

7. Moataz T, Justus B, Ray I, et al. Privacy-Preserving Multiple Keyword Search on
Outsourced Data in the Clouds[C]. Ifip Wg 11.3 Working Conference on Data and
Applications Security and Privacy Xxviii. Springer-Verlag New York, Inc. 2014:66-
81.

8. Yang Y, Liu X, Deng R. Multi-user Multi-Keyword Rank Search over Encrypted Da-
ta in Arbitrary Language[J]. IEEE Transactions on Dependable Secure Computing,
2017, PP(99):1-1.

9. Fu Z, Wu X, Guan C, et al. Toward Efficient Multi-Keyword Fuzzy Search Over
Encrypted Outsourced Data With Accuracy Improvement[J]. IEEE Transactions on
Information Forensics Security, 2017, 11(12):2706-2716.

10. Wang B, Yu S, Lou W, et al. Privacy-preserving multi-keyword fuzzy search
over encrypted data in the cloud[C]. INFOCOM, 2014 Proceedings IEEE. IEEE,
2014:2112-2120.

11. Zhang W, Xiao S, Lin Y, et al. Secure Ranked Multi-keyword Search for Mul-
tiple Data Owners in Cloud Computing[C]. Ieee/ifip International Conference on
Dependable Systems and Networks. IEEE, 2014:276-286.

12. Ameri M H, Delavar M, Mohajeri J, et al. A Key-Policy Attribute-Based Tem-
porary Keyword Search scheme for Secure Cloud Storage[J]. IEEE Transactions on
Cloud Computing, 2018, PP(99):1-1.

13. Liang X, Cao Z, Lin H, et al. Attribute based proxy re-encryption with delegating
capabilities[C]. International Symposium on Information, Computer, and Commu-
nications Security. ACM, 2009:276-286.

14. Cui J, Zhou H, Zhong H, et al. AKSER: Attribute-based Keyword Search with
Efficient Revocation in Cloud Computing[J]. Information Sciences, 2017, 423.

15. Hur J, Dong K N. Attribute-Based Access Control with Efficient Revocation in
Data Outsourcing Systems[J]. IEEE Transactions on Parallel Distributed Systems,
2011, 22(7):1214-1221.

16. Cui H, Deng R H, Liu J K, et al. Attribute-Based Encryption with Expressive and
Authorized Keyword Search[C]. Australasian Conference on Information Security
and Privacy. Springer, Cham, 2017:106-126.

16 H. Chen et al.

17. Kamara S, Papamanthou C, Roeder T, et al. Dynamic searchable symmetric en-
cryption[C]. computer and communications security, 2012: 965-976.

18. Kamara S, Papamanthou C. Parallel and Dynamic Searchable Symmetric Encryp-
tion[C]. financial cryptography, 2013: 258-274.

19. Hahn F, Kerschbaum F. Searchable Encryption with Secure and Efficient Up-
dates[C]. computer and communications security, 2014: 310-320.

20. Xia Z, Wang X, Sun X, et al. A Secure and Dynamic Multi-Keyword Ranked
Search Scheme over Encrypted Cloud Data[J]. IEEE Transactions on Parallel and
Distributed Systems, 2016, 27(2): 340-352.

21. Miers I, Mohassel P. IO-DSSE: Scaling Dynamic Searchable Encryption to Millions
of Indexes By Improving Locality[C]. Network and Distributed System Security
Symposium. 2017.

22. Seo J H, Cheon J H. Fully Secure Anonymous Hierarchical Identity-Based En-
cryption with Constant Size Ciphertexts[J]. Iacr Cryptology Eprint Archive, 2011,
2011(2011):215-234.

23. Zhao Y, Chen X, Ma H, et al. A new trapdoor-indistinguishable public key en-
cryption with keyword search[J]. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, vol. 3, no. 1/2, pp. 72-81, 2012.

24. Katz J, Sahai A, Waters B, et al. Predicate encryption supporting disjunctions,
polynomial equations, and inner products[C]. theory and application of cryptograph-
ic techniques, 2008: 146-162.

25. Byun J W, Rhee H S, Park H A, et al. Off-line keyword guessing attacks on recent
keyword search schemes over encrypted data[C]. very large data bases, 2006: 75-83.

26. Wei-Chuen Yau,Raphael C.-W. Phan,Swee-Huay Heng,Bok-Min Goi. Keyword
guessing attacks on secure searchable public key encryption schemes with a des-
ignated tester[J]. International Journal of Computer Mathematics, 2013,90(12)

27. Tang Q, Chen L. Public-key encryption with registered keyword search[C]. euro-
pean public key infrastructure workshop, 2009: 163-178.

28. Chen R, Mu Y, Yang G, et al. Dual-Server Public-Key Encryption With Keyword
Search for Secure Cloud Storage[J]. IEEE Transactions on Information Forensics
and Security, 2016, 11(4): 789-798.

29. Lu Y, Li J. Efficient searchable public key encryption against keyword guessing
attacks for cloud-based EMR systems[J]. Cluster Computing, 2018: 1-15.

30. Chen H, Cao Z, Dong Z, et al. SDKSE:A Secure Dynamic Keyword Searchable
Encryption Scheme for Email Systems[C]. 2018 3rd International Conference on
Security of Smart Cities, Industrial Control System and Communications, 2018.

