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Abstract

The paper focuses on the a posteriori tuning of a generative model in
order to favor the generation of good instances in the sense of some external
differentiable criterion. The proposed approach, called Boltzmann Tuning
of Generative Models (BTGM), applies to a wide range of applications.
It covers conditional generative modelling as a particular case, and offers
an affordable alternative to rejection sampling. The contribution of the
paper is twofold. Firstly, the objective is formalized and tackled as a
well-posed optimization problem; a practical methodology is proposed to
choose among the candidate criteria representing the same goal, the one
best suited to efficiently learn a tuned generative model. Secondly, the
merits of the approach are demonstrated on a real-world application, in
the context of robust design for energy policies, showing the ability of
BTGM to sample the extreme regions of the considered criteria.

1 Introduction
Deep generative models, including Variational Auto-Encoders (VAEs) (Kingma
and Welling, 2014; Rezende et al., 2014), Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014), and Normalizing Flows (Rezende and Mo-
hamed, 2015), have been used in a number of ways for (semi)-supervised learning
and design. Their usage ranges from robustifying classifiers (Kingma et al., 2014;
Li et al., 2019) to achieving anomaly detection (Pidhorskyi et al., 2018; Choi
et al., 2019)) or solving undetermined inverse problems (Ardizzone et al., 2019),
from super-resolution of images (Ledig et al., 2017) to computer-assisted creative
design (Park et al., 2019). In most cases, the fine-tuning of the generative model
is seamlessly integrated within the learning process: through the design of the
latent representation (Radford et al., 2016; Mathieu et al., 2016) or through the
loss itself, e.g. leveraging labelled information to train conditional generative
models (van den Oord et al., 2016) (more in section 2).
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This paper tackles the a posteriori tuning of a trained generative model,
aimed at favoring the generation of good samples in the sense of a given criterion.
The applicative motivation for the proposed approach comes from the design of
energy safety policies. In this context, an infrastructure must be tested against
a host of diverse production and consumption scenarios, and specifically against
their associated consumption peaks.1 One applicative goal of the proposed
approach, called Boltzmann Tuning of Generative Models (BTGM), is to address
this problem by generating consumption curves directly sampling the desired
top quantiles of the aggregated consumption distribution.

This paper considers the general setting defined by a trained generative
model and some criterion f , with the goal of generating samples biased toward
maximizing f . This goal is formalized as a constrained optimization problem
in the considered distribution space, and a first contribution is to show how
to soundly and effectively tackle this problem within the variational inference
framework, assuming the differentiability of the criterion (section 3). The
proposed BTGM approach can be applied on the top of any deep generative
model, covering conditional generative models (van den Oord et al., 2016) as a
particular case. It also opens some perspectives in privacy-sensitive domains,
e.g. to generate samples in critical and data-poor regions (see also Dash et al.
(2020)). In practice, BTGM offers an affordable and, to our best knowledge,
new alternative to rejection sampling.

Most generally, BTGM is an attempt toward reconciling data-driven models
(here, the generative model learned from extensive data) on the one hand, and
analytical, interpretable knowledge (here, the characterization of f) on the other
hand. While ML traditionally focuses on cases where knowledge/specification
is better conveyed through data, some specifications are better conveyed ana-
lytically, particularly so when they are poorly illustrated in the data (see also
Bessiere et al. (2017)). The challenge is to take advantage of both raw data and
analytical criteria in an integrated way. Along this line, a second contribution
of the paper regards how to formulate the user’s criterion f in the most effec-
tive way. Indeed the objective can be formulated in many different ways, up
to monotonous transformations of f . In order to avoid determining the best
formulation of the criterion along a tedious trial-and-error phase, an indicator
based on the analysis of the underlying optimization process is defined, enabling
the comparison of candidate criteria w.r.t. the tuning of the generative model at
hand.

Section 4 presents several case studies to illustrate the merits and flexibility
of the approach: recovering conditional generative modeling (4.1), comparing
candidate criteria (4.2), showing the flexibility of the approach in the energy
consumption modeling domain (4.3) and investigating the a posteriori deblurring
of a generative model (4.4).

1These consumption peaks are usually estimated by Monte-Carlo methods, coupling a
generative model with rejection sampling, along a tedious and computationnally heavy process,
involving the critical estimation of the diversity factor (Gonen, 2015; Sarfraz and Bach, 2018).
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2 Related work
Probability distribution learning is most generally tackled within the Variational
Inference (VI) framework. VI being also at the core of the proposed approach, it
is presented in section 3.2 in a unified way, to both learn a probability distribution
from raw data, and tune an existing probability distribution along an analytical
criterion.

The current trends in generative modelling mostly leverage the deep learning
efficiency and flexibility to estimate a probability distribution from data, support-
ing an efficient sampling mechanism (Kingma and Welling, 2014; Rezende et al.,
2014; Goodfellow et al., 2014; Rezende and Mohamed, 2015). Most approaches
rely on the introduction of a latent space, whose samples are decoded into a data
space. The generative model is trained to optimize a goodness-of-fit criterion
on the original data. In VAEs (Kingma and Welling, 2014), the goodness of
fit is the log-likelihood (LL) of the initial data, estimated using the Evidence
Lower Bound (ELBO) (Bishop et al., 1998), as the distribution involves an
unknown/unmanageable normalization constant. In GANs (Goodfellow et al.,
2014), the goodness of fit criterion is replaced by a 2-sample test, adversarially
training the generator and a discriminator estimating whether the generated
examples can be discriminated from the original samples.
Distribution spaces. How to make the generative model space flexible enough
to accurately approximate the true distribution is mostly handled through using
richer latent spaces and/or inference models (Burda et al., 2016; van den Oord
et al., 2017; Roy et al., 2018; Razavi et al., 2019; Huang et al., 2019; Mathieu et al.,
2019a; Kalatzis et al., 2020; Skopek et al., 2020). The modelling of multi-mode
distributions can also be tackled using continuous and discrete latent variables
(Jang et al., 2017; Vahdat et al., 2018). Specific architectures are designed to
exploit the specifics of the data structure, such as Wavenet or Magenta for signal
processing (Oord et al., 2016b; Roberts et al., 2018) or PixelRNN/CNN for
images (Oord et al., 2016a; Salimans et al., 2017), enabling the data likelihood
to be explicitly computed and optimized. Normalizing Flows (Rezende and
Mohamed, 2015; Dinh et al., 2015) also proceed by gradually complexifying a
distribution, with the particularity that each layer is invertible and enables its
Jacobian to be analytically determined, thereby supporting the approximation
of the posterior distributions (Dinh et al., 2017; Kingma et al., 2017; Ardizzone
et al., 2019; Chen et al., 2020).
Loss functions. The loss function encapsulates the goodness of fit criterion.
Many VAE variants focus on the reformulation of the loss to finely control the
trade-off between the reconstruction quality and encoding compression (Higgins
et al., 2017; Rezende and Viola, 2018; Alemi et al., 2018; Mathieu et al., 2019b).
The loss design also aims to avoid pitfalls, notably in terms of instability or
mode dropping (Arjovsky et al., 2017) with GANs; other distances between the
generated and the original distributions (Nowozin et al., 2016; Arjovsky et al.,
2017) and/or more elaborate model architectures (Sajjadi et al., 2018; Shaham
et al., 2019; Torkzadehmahani et al., 2019) have thus been investigated.
Refining Generative Models. Most generally, the refinement of generative
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models is based on exploiting supervised information to build conditional models
(Mirza and Osindero, 2014; Sohn et al., 2015; van den Oord et al., 2016; Jaiswal
et al., 2019). Another strategy is to use several data samples, within a domain
adaptation or multi-task setting (Ganin et al., 2016), and to learn coupled
generative models (Chu et al., 2017). Most generally, the customization and
refinement of generative models builds upon one or several datasets, exploiting
prior knowledge about their features (labels), or about the relationships between
the datasets (Courty et al., 2017).

The alternative explored by BTGM is to use high-level, analytical infor-
mation, expressed via criteria, to refine a generative model. On the positive
side, this approach is flexible and does not depend on the regions of interest
of the instance space to be "sufficiently" represented in the dataset(s). On the
negative side, the approach might be too flexible, in the sense that the regions of
interest might be specified in a number of ways, although not all specifications
are equally easy to deal with. We shall return to this point in section 4.2.

3 Boltzmann Tuning of Generative Models
Let p and f respectively denote the initial generative model defined on the
sample space X ⊂ Rd, and the criterion of interest (f : X 7→ R). It is assumed
wlog that the generative model should be biased toward regions where f takes
high values. The sought biased generative model q is expressed as the solution
of a constrained optimization problem: maximizing the expectation of f under
q, subject to q remaining "sufficiently" close to p in the sense of their Kullback-
Leibler divergence:

Find q = argmaxEq[f ] s.t. DKL(q‖|p) ≤ CD (1)

with CD a positive constant. The Lagrangian L associated to this primal
constrained optimization problem is, with λ the Lagrange multiplier accounting
for the constraint:

L(q) =
∫
X
q(x)f(x)dx+ λ

∫
X
q(x) log

q(x)

p(x)
dx (2)

reaching its optimum for:

qβ(x) =
1

Z(β)
p(x)eβf(x) (3)

with β = 1/λ and Z(β) the normalization constant. BTGM tackles the dual
optimization problem of minimizing DKL(q||p) subject to Eqf being greater than
some constant Cf , yielding solution qβ for some β depending on Cf (below):

qβ = argmax
q

β Eqf −DKL(q‖p) (4)
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3.1 Finding β

Varying the strength of the bias, from no bias (β = 0 yields qβ = p) to β =∞
(with qβ with support in the optima of f) yields a family of distributions,
the Pareto front associated to the maximization of Eqf and minimization of
DKL(q‖p). Simple calculations yield (Appendix A):

d

dβ
DKL(qβ‖p) = βV arqβ (f) and

d

dβ
Eqβf = V arqβ (f) (5)

DKL(qβ‖p) and Eqβf being strictly increasing functions of β, there exists a
one-to-one mapping between the values of DKL(qβ‖p), and Eqβf , hence there
exists a single β value such that qβ solves the constrained optimization problem.
Further calculations yield the second order derivatives:

d2

dβ2
DKL(qβ‖p) = V arqβ (f) + βEqβ

(
f − Eqβf

)3 d2

dβ2
Eqβf = Eqβ

(
f − Eqβf

)3
(6)

Note that any generative model qβ enables by construction to empirically estimate
the first three moments of f under qβ , as well as DKL(qβ‖|p). Plugging these
estimates in Eqs. 5 and 6 and using second order optimization methods (Boyd
and Vandenberghe, 2004) enables to quickly converge toward the desired value
of β, i.e. such that Eqβf = Cf (Alg. 1).

Algorithm 1 BTGM

β ← 0
repeat
qβ ← argmaxq βEqf −DKL(q‖p) (section 3.2)
Estimate DKL(qβ‖p), Eqβf , V arqβ (f) and Eqβ

(
f − Eqβf

)3 by Monte-Carlo
sampling
Do a second-order update of β using Eq. 5 and 6.

until convergence of β

3.2 Building qβ

It is seen that Eq. 4 essentially defines a Variational Inference (VI) problem for
each β value. This problem is reformulated using the Evidence Lower Bound
(ELBO) (Bishop et al., 1998):

qβ = argmax
q

H(q) + E
x∼q

[βf(x) + log p(x)] (7)

with H(q) the entropy of q.
VI is intensively used for generative modelling, optimizing q based on samples

of the true distribution. The optimization of the ELBO (Ranganath et al., 2014)
classically proceeds by leveraging stochastic optimization (Hoffman et al., 2013)
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or building upon the reparametrization trick (Kingma and Welling, 2014). The
distribution space is chosen to efficiently approximate the posterior beyond the
mean-field approximation, using low-rank Gaussian distributions (Ong et al.,
2018), mixtures of Gaussian distributions (Gershman et al., 2012), or mixtures
of an arbitrary number of distributions via boosting methods (Guo et al., 2017;
Miller et al., 2017). An alternative is offered by Normalizing Flows, where the
neural architecture achieves an invertible transformation enabling its Jacobian
to be analytically determined, thereby supporting the approximation of the
posterior distributions (Rezende and Mohamed, 2015; Kingma et al., 2017). The
use of stochastic equations such as Langevin Monte-Carlo (Welling and Teh,
2011) can also be used to directly sample from the target distribution, without
explicitly modelling it beforehand.

In the considered context, VI is used to tune an existing q after f . Note that
qβ mostly specializes the initial generative model p (as opposed to, exploring the
very low probability regions of p, which would significantly degrade DKL(qβ‖p)).
Therefore qβ will expectedly have its typical set (Nalisnick et al., 2019) roughly
included in the typical set of p. Accordingly, q is sought via deterministically
perturbing the samples drawn according to p (returning x = g(x̂) with x̂ sam-
pled from p and g : X 7→ X the perturbation). The Normalized Flow neural
architecture2 is used to find g, for it makes its Jacobian explicit and easy to
compute its determinant. With J(g) the Jacobian matrix of g, it comes:

q(x) = p(x̂) |J(g)(x̂)|−1 (8)

The optimization problem (Eq. 7) then reads:

Find g = argmax
g

E
x̂∼p

[βf(g(x̂)) + log p(g(x̂)) + log |J(g)(x̂)|] (9)

Some care is exercised at the initialization of Algorithm 1, setting g very close
to identity; the subsequent iterations proceed by warm-start, setting gi to the
gi−1 learned in the previous iteration.

3.3 Operating in latent space
The use of latent space is pervasive in generative modelling, notably for the
sake of dimensionality reduction. The samples in the latent space (drawn after
some simple, usually Gaussian, prior distribution p(z)) are mapped onto the
instance space by the decoder module p(x|z), in a deterministic (x = E dec(z)) or
probabilistic (x ∼ dec(z)) way. The generative model is p(x) =

∫
z
p(x|z)p(z)dz.3

Most interestingly, BTGM can operate in the latent space too, tuning the
latent distribution p(z) and yielding a tuned latent distribution noted qβ(z).
The sought tuned distribution qβ(x) in the instance space is derived from qβ(z)

2The study of other neural architectures is left for further work.
3Note that in the VAE case, p(x|z) can be considered as a quasi deterministic distribution

when using an observation model with small variance.
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through the decoder module:

qβ(x) =

∫
z

p(x|z)qβ(z)dz

Operating on the latent space with a frozen decoder module offers sev-
eral advantages. Firstly, the optimization criterion remains well defined, with
DKL(qβ(z)‖p(z)) an upper bound of DKL(qβ(x)‖p(x)) (Appendix B). Secondly,
conducting the optimization process in the latent space is easier and yields more
robust results, due to the dimension of the latent space being usually lower than
that of X by one or several orders of magnitude, and the generative distribu-
tion p(z) being usually a simple one, e.g. N (0; Id). Last, freezing the decoder
ensures that the support of the eventual generative model remains included in
the support of the initial one. Formally, applying BTGM in the latent space
amounts to replacing criterion f by f̂ defined on the latent space as4:

f̂(z) = Ex∼p(x|z)f(x) (10)

4 Case studies
This section reports on four case studies conducted with BTGM. The code is
available in supplementary material.

4.1 Conditional generative modelling
BTGM covers conditional generative modelling as a particular case. In a
supervised learning context, with h an (independently trained) classifier and
h(`|x) the probability of x to be labelled as `, let criterion f be set to log h(`|x)
in order to bias the generative model toward class `. Model qβ reads:

qβ(x) ∝ p(x)h(`|x)β (11)

defining a standard conditional generative model of class ` for β = 1 (assuming
that h(`|x) accurately estimates p(`|x)). Through parameter β, one can also
control the fraction of samples closest to class `, by setting the constraint
DKL(qβ‖p) ≤ −log(ρ) with ρ the mass of the desired fraction (Fig. 5, Appendix
D). In the same spirit, BTGM can be used to debug classifier h, e.g. by
generating samples in the ambiguous regions at the frontier of two or several
classes (e.g. using as criterionf the probability of the second most probable class
or the entropy of the prediction of the classifier), and inspecting h behavior in
this region.

4If p(x|z) is deterministic or has a low variance, the expectation can be well approximated
by a single sample.

7



4.2 Assessing criteria ex ante

As said, an criterion f can be represented in a number of ways, e.g. considering
all g◦f with g a monotonous function; still, the associated optimization problems
(Eq. 7) are in general of varying difficulty. In order to facilitate the usage of
BTGM and avoid a tedious trials and errors phase, some way of comparing a
priori two criteria is thus desirable.

It is easy to see that the Pareto front of BTGM solutions (section 3.1) is
invariant under affine transformations5 of f . In the following, any criterion f is
normalized via an affine transformation (below), yielding an expectation and
variance under p respectively set to 0 and 1.

Informally, the difficulty of the optimization problem reflects how much p
has to be transformed to match qβ . This difficulty can be quantified from the
log ratio of p and qβ , specifically measuring whether this log ratio is subject to
fast variations. A measure of difficulty thus is the norm of ∇x log qβ(x)

p(x) . Note
that the distribution of this gradient norm can be empirically estimated:

∇x log
qβ(x)

p(x)
= β∇xf(x) (12)

Overall, samples generated from p are used: i/ to normalize the candidate criteria;
ii/ to estimate the distribution of their gradient norm; and iii/ to compare two
criteria and prefer the one with more regular distribution, as defining a smoother
optimization problem. This analysis extends to the tuning of generative models
in latent space, replacing f with f̂ (Eq. 10).

The methodology is illustrated in the conditional modelling context (sec-
tion 4.1), to compare the two criteria f(x) = h(`|x) and f(x) = log(h(`|x)),
respectively referred to as flog.h and fh. The distribution of their gradients
under p is displayed on Fig. 1. The binned distribution of the gradient norms in
latent space for all ten classes, is estimated from 10,000 samples (truncated for
readability: the highest values for the gradient norm of fh go up to 60-100, to
be compared to 10-15 for the gradient norm of flog.h).

The distribution of the fh gradient norm shows a high mass on 0 with quite
some high values, suggesting a complex optimization landscape with a number of
plateaus (gradient norm 0) separated by sharp boundaries (high gradient norms).
In opposition, the distribution of the flog.h gradient norm is flatter with a more
compact support, suggesting a manageable optimization landscape where the
gradient offers some (bounded) information in most regions. Accordingly, it is
suggested flog.h is much more amenable to the tuning of the generative model
than fh, which is empirically confirmed (Appendix C). Overall, the proposed
methodology allows to efficiently and inexpensively compare a priori candidate
criteria, and retain the most convenient one.

5The addition of a constant is cancelled out by the normalisation constant of qβ , and a
multiplicative transform resulting in choosing another β value.
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Figure 1: Comparing criteriaflog.h (in blue) and fh (in orange) on MNIST: binned
distribution of their gradient norms (better seen in color). The distribution tails
are truncated for the sake of visualization, see text.

4.3 A real-world case study
This section focuses on using BTGM as an alternative to rejection sampling on
the real-world problem of smart grid energy management and dimensioning. For
the sake of reproducibility, an experiment on MNIST along the same rejection
sampling ideas is detailed in Appendix D.

The goal is to sample the extreme energy consumption aggregated curves
under a number of usage scenarii (e.g. traffic schedules, localisation of electric
car charging stations, telecommuting and its prevalence), to estimate the peak
consumption. The aggregation of multiple consumers into a single consumption
curve tends to smooth the consumption peak, as measured by the so-called
diversity factor (Sarfraz and Bach, 2018). The difficulty is that the relationship
between the aggregated and the individual consumption curves is ill-known,
essentially studied by Monte-Carlo sampling, making it desirable to design a
flexible generative model of aggregated consumption curves.

In a preliminary phase, a VAE is trained on weekly consumption curves to
model the aggregated consumption of 10 households (Fig. 2a and 2b). A first
criterion f1 considers the maximum consumption reached over the week, with
the aim to sample the 1% top quantile of the curves (yielding CD = − log 10−2 =
4.61). The tuned generative model (Fig. 2c and 2d) sample curves with a
significantly higher peak consumption; note that these curves have a high weekly
consumption, too. Indeed, the generative model makes it more likely to reach a
high peak during a high consumption week than in an average consumption week
(e.g. due to external factors such as cold weather). The freezing of the decoder
enables to preserve the plausibility of the generated samples, while sampling in
the extreme regions of the distribution according to f1.

A second criterion f2, concerned with maximizing the difference between the
mean consumption on Wednesdays and the mean consumption over the whole
week, is considered to illustrate the versatility of BTGM (Fig. 2e and 2f). Other
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choices of f are discussed in Appendix E.

4.4 Refining a generative model a posteriori

Another potential usage of BTGM is to refine existing generative models, e.g.
preventing a VAE from generating out-of-distribution samples (Arjovsky and
Bottou, 2017). Let pV AE denote an overly general generative model, and let
f be defined as a adversarial classifier, discriminating the generated samples
from the true data distribution pD. When converged and in the large sample
limit, the discriminator yields an estimation of pD(x)

pD(x)+pVAE(x) (Goodfellow et al.,
2014).

When using criterion f(x) = log pD(x)
pVAE(x) , given by the pre-activation output

of the discriminator, to tune model pV AE , one gets the generative model qβ
defined as:

qβ(x) ∝ pV AE(x)1−βpD(x)β (13)

In this scheme, BTGM aims to actually draw the generative model closer to the
true distribution pD. Compared to the mainstream GAN scheme, the difference is
that the discriminator is used a posteriori: the generative modelling is decoupled
from its adversarial tuning and the concurrent training procedure is replaced by
the sequence of two (comparatively straightforward) optimization procedures,
firstly training pV AE and secondly tuning it toward f . Results illustrating the
proposed methodology are presented in Appendix F. This sequential adversarial
generative modelling relies on two interdependent assumptions. Firstly, pV AE
must be able to accurately reconstruct the whole training dataset; more precisely,
the support of distribution pV AE must cover that of the data distribution pD.
Secondly, the discriminator needs be not saturated and give highly-confident
predictions, for its gradient to provide sufficient information to refine pV AE (this
also requires the former assumption to hold).

5 Discussion and Perspectives
The contribution of the paper is a new theoretical formulation and algorithm
for the a posteriori refinement of a wide class of generative models, including
GANs, VAEs, and explicit likelihood models. When the considered generative
model relies on the use of a latent space, BTGM can operate directly in the
latent space, favoring the scalability of the approach w.r.t. high-dimensional
spaces. BTGM offers a new alternative to rejection sampling in order to explore
the extreme quantiles of the data distribution w.r.t. any criterion f , subject
to f being differentiable. The proof of concept presented in the domain of
energy management, where the consumption peak is estimated from the extreme
quantiles of the consumption curves, is to our best knowledge the first and only
alternative to rejection sampling in this context.

Three perspectives for further work are considered. In the short term, a
first goal is to use BTGM to better understand when and why the dropping
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(a) 5 true consumption curves. (b) 5 samples from the unbiased model p.

(c) 5 samples from the model qβ tuned to
maximize peak consumption.

(d) Mean and standard deviation of sam-
ples generated after p and qβ tuned to
maximize peak consumption.

(e) 5 samples from the tuned model qβ
tuned to maximize Wednesday’s consump-
tion only.

(f) Mean and standard deviation of sam-
ples generated after p and qβ tuned to
maximize Wednesday’s consumption only.

Figure 2: Applying BTGM to tune the generation of weekly energy consumption
curves, reporting the consumption (in kW on y axis) vs the day (on x axis).
Top: real sample curves (a) and p-generated samples, with p the initial VAE
model (b).
Middle row: tuning p toward top 1% weekly energy consumption curves
(criterionf1); tuned generated samples (c), and comparison of p with p tuned
after f1 (d).
Bottom row: tuning p toward top 1% Wednesday energy consumption curves
(criterionf2, see text); tuned generated samples (e), and comparison of p with
p tuned after f2 (f). The VAE p, composed of encoder and decoder modules
with 10 blocks of residual networks each, is trained from ca 8 million weekly
consumption curves; the mean and deviation of the initial and tuned generative
models are computed over 1,000 samples. Better seen in color.
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phenomenon occurs in the adversarial setting. On-going results show that a
VAE model can indeed be refined a posteriori using a discriminator as criterionf ;
however, it is observed that mode dropping does appear when the pressure on f is
increased beyond a certain level. In order to avoid this loss of diversity, a research
perspective is to extend BTGM to the general multi-criteria optimization
setting, tuning the considered generative models with several criteria (e.g. the
discriminator f , and the lequi-distribution of the classes).

A second perspective is to use BTGM in the context of privacy-sensitive data.
The use of generative models for releasing non-sensitive though realistic samples
has been explored (Torkzadehmahani et al., 2019; Long et al., 2019; Augenstein
et al., 2020). BTGM makes it feasible to train a model from large datasets
(thus offering a better model with better privacy guarantees) and focus it a
posteriori on the target of interest, e.g. a rare mode of a disease. The eventual
biased generative model will expectedly both inherit the privacy guarantees of
the general model, and yield the focused samples as desired.

Another perspective is to extend BTGM in the direction of Bayesian Op-
timization (Mockus et al., 1978; Rasmussen, 2004), and Interactive Preference
Learning pioneered by (Brochu et al., 2010; Viappiani and Boutilier, 2011).
Specifically in the context of Optimal Design, the expert-in-the-loop setting
can be leveraged to alternatively bias the generative model toward the experts’
preferences, and learn a model of their preferences. While facing the challenges
of interactive preference learning, this approach would pave the way toward a
focused augmentation of the data, under the experts’ control.
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A Closed form derivatives of DKL(q‖p) and Eqf
From Eqs. (1-2)

qβ(x) = argmin

∫
X
q(x)f(x)dx+

1

β

∫
X
q(x) log

q(x)

p(x)
dx

it follows:
qβ(x) =

1

Z(β)
p(x)eβf(x) (14)

with normalization constant Z(β) ensuring that qβ is a probability distribution.
The derivatives of DKL(q‖p) and Eqf follow from Lemmas 1 and 2.

Lemma 1. The derivative d
dβ logZ(β) reads:

d

dβ
logZ(β) = Eqβf (15)

Proof. As Z(β) =
∫
x
p(x)eβf(x)dx by definition, it follows:

d

dβ
logZ(β) =

1

Z(β)

d

dβ
Z(β)

=
1

Z(β)

d

dβ

∫
X
p(x)eβf(x)dx

=
1

Z(β)

∫
X
f(x)p(x)eβf(x)dx

=

∫
x

f(x)qβ(x)

= Eqβf

(16)

Lemma 2. Let h : X → R be a function (possibly depending on β). The
derivative of its expectation on qβ wrt β reads:

d

dβ
Eqβh = Eqβ

[
fh+

∂h

∂β

]
−
(
Eqβf

) (
Eqβh

)
(17)

Proof.
d

dβ
Eqβh =

d

dβ

1

Z(β)

∫
x

h(x)p(x)eβf(x)dx

=
1

Z(β)

∫
x

(
h(x)f(x) +

∂h

∂β
(x)

)
p(x)eβf(x)dx

− 1

Z(β)2
dZ

dβ

∫
x

h(x)p(x)eβf(x)dx

= Eqβ
[
hf +

∂h

∂β

]
−
(
Eqβh

) d

dβ
logZ(β)

= Eqβ
[
fh+

∂h

∂β

]
−
(
Eqβf

) (
Eqβh

)

(18)
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Lemmas 1 and 2 yield the first and second derivatives of Eqβf .
Lemma 3. The first and second derivatives of Eqβf wrt β read:

d

dβ
Eqβf = V arqβf and

d2

dβ2
Eqβf = Eqβ

(
f − Eqβf

)3 (19)

Proof. Replacing h with f in Eq. 17, and noting that f does not depend on β,
yields the first derivative:

d

dβ
Eqβf = Eqβf2 −

(
Eqβf

)2
= V arqβf (20)

Noting that V arqβf = Eqβ
(
f − Eqβf

)2 and replacing h with
(
f − Eqβf

)2 (that
does depend on β) in Eq. 17 yields the second derivative:

d2

dβ2
Eqβf =

d

dβ
Eqβ

(
f − Eqβf

)2
= Eqβ

[
f
(
f − Eqβf

)2 − 2
(
f − Eqβf

) d

dβ
Eqβf

]
−
(
Eqβf

) (
Eqβ

(
f − Eqβf

)2)
= Eqβ

(
f − Eqβf

)3 − 2Eqβ
[
f − Eqβf

]︸ ︷︷ ︸
=0

d

dβ
Eqβf

= Eqβ
(
f − Eqβf

)3
(21)

Lemmas 1 and 2 likewise yield the first and second derivatives of DKL(qβ‖p):
Lemma 4. The first and second derivatives of Eqβf wrt β read:

d

dβ
DKL(qβ‖p) = βV arqβf and

d2

dβ2
DKL(qβ‖p) = V arqβf + βEqβ

(
f − Eqβf

)3
(22)

Proof. By definition:

DKL(qβ‖p) = Eqβ log
qβ
p

= Eqβ [βf − logZ(β)]

= βEqβ [f ]− logZ(β)

(23)

Lemmas 1 and 2 thus yield:

d

dβ
DKL(qβ‖p) = Eqβ [f ] + β

d

dβ
Eqβ [f ]−

d

dβ
logZ(β)

= Eqβ [f ] + βV arqβ [f ]− Eqβ [f ]
= βV arqβf

(24)
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and:
d

dβ
DKL(qβ‖p) = V arqβf + β

d

dβ
V arqβf

= V arqβf + βEqβ
(
f − Eqβf

)3 (25)

which concludes the proof.

B Bounding KL(q‖p) on latent space
Lemma 5. Let p(x, z) be a generative model built on a sampling of a latent
space (p(x, z) = p(z)p(x|z), with p(x|z) the decoder mapping the latent onto the
instance space). Let generative model q(x, z) be defined as q(x, z) = q(z)p(x|z)
(freezing the decoder and modifying the latent distribution). Then:

DKL(q(x)‖p(x)) ≤ DKL(q(z)‖p(z)) (26)

Proof. It is seen that, for any two distributions q and p of two variables, the
Kullback-Leibler divergence between their marginals is always smaller than the
Kullback-Leibler divergence between the full distributions:

DKL(q(a, b)‖p(a, b)) = Eq log
q(a, b)

p(a, b)

= Eq log
q(a)q(b|a)
p(a)p(b|a)

= DKL(q(a)‖p(a)) + EqDKL(q(b|a)‖p(b|a))
≥ DKL(q(a)‖p(a))

(27)

Replacing p(a, b) with p(x, z) = p(z)p(x|z) (respectively, q(a, b) with q(x, z) =
q(z)p(x|z)) yields:

DKL(q(x)‖p(x)) ≤ DKL(q(x, z)‖p(x, z))
≤ DKL(q(z)‖p(z)) + EqDKL(p(x|z)‖p(x|z))︸ ︷︷ ︸

=0

≤ DKL(q(z)‖p(z))

(28)

C Comparing two criteria: detailed analysis
As the intended bias can be expressed using different criteria, the question of
comparing these (based on the distribution of their gradient norms) was discussed
in section 4.2. Complementary experiments are conducted as follows, along the
same setting aimed to conditionalize generative model p using a classifier p(`|x).
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(a) Eqβ fh (y axis) vs β (x
axis).

(b) DKL(qβ‖p) (y axis) vs
β (x axis).

(c) Eqβ fh (y axis) vs
DKL(qβ‖p) (x axis).

Figure 3: Theoretical (plain line) and experimental (dashed line) estimates of
Eqβ fh and DKL(qβ‖p) vs β for f(x) = h(` = 4|x).

A first remark is that the closed form values of Eqβf and DKL(qβ‖p) can
be estimated using samples from p. Specifically, expectations under qβ can be
reframed as expectations under p:

Z(β) =

∫
X
p(x)eβf(x)dx = Ep

[
eβf
]

(29)

Eqβf =

∫
X
f(x)

p(x)eβf(x)

Z(β)
dx =

Ep
[
feβf

]
Ep [eβf ]

(30)

DKL(qβ‖p) = βEqβ [f ]− logZ(β) =
Ep
[
feβf

]
Ep [eβf ]

− logEp
[
eβf
]

(31)

Eqs. 30-31 enable to estimate the closed form values of Eqβf and DKL(qβ‖p)
vs β, using samples drawn after p. The comparison of these estimates with
the actual Eq̂βf and DKL(q̂β‖p) indicates how well BTGM is dealing with the
considered criterion.

In the considered example, one wants to compare both criteria fh and flog h,
respectively defined as fh(x) = p(`|x) and flog h(x) = logp(`|x). The discrepancy
between the theoretical estimate and the actual estimate is displayed on Fig.
3 for fh (respectively Fig. 4 for flog h). The same optimization procedure was
used in both cases, targeting the class ` = 4.

For small values of β, with criterion fh, Fig. 3 shows that the empirical
Eqβ fh does not much increase, while qβ remains close to p (DKL(qβ‖p) stays
close to 0). In other words, the bias seems ineffective. Quite the contrary, for
large values of β, the empirical DKL(qβ‖p) increases significantly faster than the
theoretical estimate; BTGM overshoots and focuses too much the support of
distribution qβ . In comparison, a much smaller gap between the theoretical and
empirical estimates is observed with criterion flog.h (Fig. 4).

These observations are in agreement with the analysis proposed in section
4.2: fh only provides useful gradients in the boundary of the targeted class.
Accordingly, the process finds itself in one out of two stable states: doing nothing
(qβ = p); or restricting the support of qβ to that of the targeted class. BTGM
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(a) Eqβ flog h (y axis) vs β
(x axis).

(b) DKL(qβ‖p) (y axis) vs
β (x axis).

(c) Eqβ flog h (y axis) vs
DKL(qβ‖p) (x axis).

Figure 4: Theoretical (plain line) and experimental (dashed line) estimates of
Eqβ flog h and DKL(qβ‖p) vs β for f(x) = log h(` = 4|x).

abruptly switches from the first to the second stable state (Fig. 3.b), offering
little control through β. When setting f(x) = log p(`|x)) instead, f(x) is less
and less often saturated, enabling its gradient to provide smooth information.
This information enables the user to finely control the bias through β, making
the support of qβ to gracefully tend toward the support of the targeted class.

D Generality of the approach: a proof of concept
on MNIST

The claim is that BTGM can be applied using any differentiable criterion (with
exploitable gradient, see Appendix C. above). Three criteria are illustrated on
Figs. 5, 6 and 7, respectively biasing the generative process toward a certain
class, figures with more white pixels, or less white pixels.

The fine-grained control of the bias is illustrated on Fig. 5 on MNIST,
with target class ` = 4, using a GAN model p. The Pareto front depicting the
bi-criteria optimization trade-off (Eqβf vs DKL(qβ‖ p) for β ranging from 0 to
2.5) is displayed on Fig. 5a, and the biased generated samples, where each row
from top to bottom displays the samples generated with increasing values of β,
are displayed on Fig. 5b. Indeed, class 4 is more prevalent as β increases; class
9 is the last one to disappear, as being the most similar to the 4 one; for the
highest values of β, only digits in class 4 are generated, yielding the same result
as a conditional generative model, as expected.

A similar interpretation can be made for the two other examples on Figs. 6
and 7.

As seen on Fig. 6, biasing the generative model toward figures with more
white pixels is achieved through controlling both the class of the generated figures
(class 0 and 8) and the style of the generated numbers (with thick strokes). Quite
the contrary, biasing the generative model toward figures with less white pixels
results in generating very thin 1s.
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(a) Eqβ f (y axis) vs DKL(qβ‖p) (x
axis).

(b) Generated samples, with the
strength β of the bias increasing
from top to bottom rows.

Figure 5: Using BTGM to condition a generative model in the latent space,
with p a GAN trained on MNIST and f = log ĥ(class 4 | z), and h an inde-
pendently trained classifier on the instance space. Left: Pareto front of both
criteria. Right: generated samples, with top to bottom rows respectively corre-
sponding to β in {0.0, 0.25, 0.5, 0.75, 1.0, 1.25}, and corresponding DKL values
0.0, 0.4, 1.3, 2.2, 2.5, 2.7.

E Rejection sampling with BTGM in a real-world
application

As said, the application domain concerns smart grid management and dimen-
sioning. The latter requires key indicators (consumption peak) to be estimated
from consumption curves generated under diverse scenarii. A versatile genera-
tive model is trained with a VAE, exploiting real weekly consumption curves
aggregated over 10 households (thus with a higher variance compared to the
curves aggregated over 100 households, considered in the main paper).

The flexibility of the approach is demonstrated using several criteria.
The first criterion aims to maximize the consumption over a particular day

(here Wednesday, Fig. 8a). The goal is achieved by maximizing the weekly
consumption, with the consumption on Wednesday being only slightly higher
than the average one. The second criterion aims to maximize the difference
between the Wednesday consumption and the average weekly consumption
(intuitively, this criterion corresponds to a worst-case analysis scenario). Using
this criterion and allowing the DKL to take large values (corresponding to a
rejection sampling with probability 10−4) yields the curves illustrated on Fig.
8b. Despite the strength of the bias, BTGM still manages to generate diverse
samples; furthermore, the sample variance is comparable to that of the original
data.

The third criterion is related to the variability of the demand, with a high
impact on the required flexibility of electricity production. A relevant indicator,
referred to as MAE by abuse of the definition, is the amount of consumption
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(a) Eqβ f (y axis) vs DKL(qβ‖p) (x
axis).

(b) Generated samples, with the
strength β of the bias increasing
from top to bottom rows.

Figure 6: Using BTGM to condition a generative model in the latent space,
with p a GAN trained on MNIST and f(x) =

∑
i∈pixels xi. Left: Pareto front of

both criteria. Right: generated samples, with top to bottom rows respectively
corresponding to β in {0.0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.150}, and corresponding
DKL values 0.0, 0.3, 2.1, 3.9, 5.4, 7.4, 8.7.

(a) Eqβ f (y axis) vs DKL(qβ‖p) (x
axis).

(b) Generated samples, with the
strength β of the bias increasing
from top to bottom rows.

Figure 7: Using BTGM to condition a generative model in the latent space,
with p a GAN trained on MNIST and f(x) =

∑
i∈pixels xi. Left: Pareto front of

both criteria. Right: generated samples, with top to bottom rows respectively
corresponding to β in {0.0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.150}, and corresponding
DKL values 0.0, 0.2, 0.6, 1.1, 1.4, 1.8, 2.1.
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(a) Maximizing the consumption of
Wednesday.

(b) Maximizing the difference between the
consumption of Wednesday and the average
weekly consumption.

Figure 8: Application of BTGM in the context of energy management: generating
consumption curves biased according to: Average Wednesday consumption (8a);
Average Wednesday consumption and difference between Wednesday consumption
and average weekly consumption (8b). Blue curves represent the mean and
standard deviation of samples from the original model, and red curves that of
samples from the biased model (best seen in color).

that would need to be moved in order to make the consumption constant along
time (with same overall consumption), i.e. the L1 distance between the actual
consumption curve and the flat curve with same overall consumption. Fig.
9 displays average generated consumption curves when applying BTGM to
maximize or minimize the MAE.

The curves obtained when minimizing the MAE (Fig. 9b) can be interpreted
intuitively as: a good way to get a flat consumption curve is when the house
is empty (e.g. during holidays), since inhabited houses typically present strong
cyclical patterns across the day.

When maximizing the MAE (Fig. 9a), the interpretation of the obtained
curves is equally straightforward: BTGM takes advantage of the natural vari-
ability of the data to significantly increase the height of the consumption peaks,
while only slightly increasing the average consumption, thereby yielding a high
variance of the daily consumption.

F Adversarially refining a generative model using
BTGM: Discussion

A possible usage of BTGM is to focus an overly general generative model
(with support covering the data support) along an adversarial scheme, using
a discriminator trained to distinguish between the actual and the generated
samples as criterion f .

Experiments are conducted to examine the feasibility of this 2-step generative
modelling approach, with p a VAE trained on MNIST and g a classifier trained
to discriminate the actual and the generated data (with accuracy 0.99), using its
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(a) Maximizing the L1 distance to mean
consumption.

(b) Minimizing the L1 distance to mean
consumption.

Figure 9: Application of BTGM in the context of energy management: generating
consumption curves biased to maximize (9a) and minimize (9b) the L1 distance
between the consumption and its average. Blue curves represent the mean and
standard deviation of samples from the original model, and red curves that of
samples from the biased model (best seen in color).

pre-activation output as f . BTGM is applied on the VAE’s latent space, and
results are displayed on Fig. 10.

With same methodology as in Appendix C, the optimization process is
assessed by comparing the theoretical and the empirical estimates of Eqβ f and
DKL(qβ‖p).

The optimization fails: for β ≥ 0.5, the DKL stagnates, that is, BTGM
cannot push qβ farther away from p. For β < 0.5, BTGM does not manage to
increase Eqβ f as expected from the theoretical estimate.

This change of behavior around β = .5 is analyzed in relation with the
distribution of f gradients wrt to p (Fig. 11), involving most gradient norms
in a reasonable range ([0; 10]), while some gradients do explode with a norm
as large as 230. This suggests that the optimization landscape includes large
smooth regions with some very sharp regions (cliffs).

It is noted that at the change point (β ≈ .5), DKL ≈ 4, that is, qβ is focused
on approximately 2% of the support of p. Our interpretation is that, at this
point the process meets the high gradient norm region and remains stuck.

The fact that BTGM cannot thus refine p using the adversarial criterion is
eventually blamed on two factors. Firstly, the discriminator seems sufficiently
powerful to characterize the support of the true data as a set of isolated regions
separated by high cliffs. Secondly, the generative model search space (based
on Normalizing Flows; specifically, 6 Inverse AutoRegressive flows layers, each
consisting of 4 fully-connected layers) seems not flexible enough to comply with
the discriminator, and to approximate a mixture. Eventually, BTGM is unable
to modify the structure of p as desired in the small β region (with Eqβ f about
twice smaller than the theoretical estimate); and totally unable to modify it for
β > .5). How to remedy both limitations is left for future work.

27



(a) Eqβ f (y axis) vs β (x axis). (b) DKL(qβ‖p) (y axis) vs β (x
axis).

(c) Eqβ f (y axis) vs DKL(qβ‖p) (x
axis).

(d) Generated samples, with the
strength β of the bias increasing
from top to bottom rows.

Figure 10: BTGM: adversarial refinement of p (VAE trained on MNIST) along
criterion f , with f a discriminator. As in Appendix C, Blue line are the theoretical
curves, and orange dots are the empirical values. 10a, 10b: Evolution of Eqβ f
and DKL(qβ‖p) with β . 10c: Pareto front of both criteria. 10d: generated
samples with a clear mode dropping phenomenon, with top to bottom rows
respectively corresponding to β in {0.0, 0.125, 0.250, 0.375, 0.5, 0.625, 0.750} and
corresponding DKL values 0.0, 0.6, 1.4, 2.4, 2.9, 3.6, 3.7.
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Figure 11: Distribution of the norm of the gradient of the objective f (pre-
activation output of the discriminator) wrt to the latent variable. The histogram
is truncated at a norm of 20 for legibility, but around 1% of the gradients have
a higher norm, going up to 230.
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