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ABSTRACT

Randomized quasi-Monte Carlo (RQMC) can produce an estimator of a mean (i.e., integral) with root-
mean-square error that shrinks at a faster rate than Monte Carlo’s. While RQMC is often employed to
provide a confidence interval (CI) for the mean, this approach implicitly assumes that the RQMC estimator
obeys a central limit theorem (CLT), which has not been established for most RQMC settings. To address
this, we provide various conditions that ensure an RQMC CLT, as well as an asymptotically valid CI,
and examine the tradeoffs in our restrictions. Our sufficient conditions, depending on the regularity of
the integrand, generally require that the number of randomizations grows sufficiently fast relative to the
number of points used from the low-discrepancy sequence.

1 INTRODUCTION

Analyzing a stochastic model frequently involves computing the mean performance µ . Often, µ can be
expressed as an integral of a function h over an s-dimensional unit hypercube [0,1]s for some fixed s≥ 1.
Such integrals for s > 1 are typically analytically intractable, leading to the use of numerical methods,
including simulation. As these techniques incur error, we should give a measure of the error.

Monte Carlo (MC) estimates µ via random sampling (Asmussen and Glynn 2007). Repeatedly feeding
independent and identically distributed (i.i.d.) uniformly distributed random vectors on [0,1]s into integrand
h produces i.i.d. outputs, which are averaged to yield the MC estimator. The method affords simple error
estimation through a confidence interval (CI). Based on a central limit theorem (CLT), a CI uses the sample
variance to provide a computable (probabilistic) measure of the MC error. But as the sample size n (i.e.,
number of evaluations of h) grows, the CI and the MC estimator’s root-mean-square error (RMSE) shrink
at a slow rate n−1/2; adding another digit of precision requires a 100-fold increase in n.

To obtain a more efficient estimator, quasi-Monte Carlo (QMC) replaces the i.i.d. uniforms driving
the MC method with n deterministic points from a low-discrepancy sequence (e.g., a lattice or digital net),
designed to more evenly fill [0,1]s than a typical random sample; see Niederreiter (1992) and Lemieux
(2009). When the integrand h has bounded Hardy-Krause variation, the Koksma-Hlawka inequality (e.g.,
Section 2.2 of Niederreiter 1992) shows that the QMC error decreases as O(n−1(lnn)s) as n→ ∞, better
than the rate at which MC’s RMSE shrinks. While theoretically useful, the Koksma-Hlawka inequality has
limited practical value as its bound is not easily computed and is often quite loose.

Randomized QMC (RQMC) suggests a way to obtain a computable error bound: randomize the QMC
points r ≥ 2 i.i.d. times and build a CI from the sample variance of the resulting r i.i.d. estimators; e.g.,
see Tuffin (2004), Section 6.2 of Lemieux (2009), and L’Ecuyer (2018). For a given (large) computation
budget of n integrand evaluations, we specify the number m of points used from each randomized sequence
so that mr ≈ n. To choose such an allocation (m,r), a common rule of thumb recommends taking r small
(e.g., 10≤ r ≤ 30) so that m is correspondingly large to benefit from QMC’s superior convergence rate.
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The RQMC CI’s validity implicitly assumes that the RQMC estimator obeys a Gaussian CLT. When
m→∞ and r is fixed, Loh (2003) establishes a CLT that covers only a computationally prohibitive form of
RQMC, limiting its practical use. But more generally, a Gaussian limit is not guaranteed; e.g., randomly
shifting a lattice leads to non-normal limits (as m→ ∞ for fixed r) (L’Ecuyer et al. 2010). Thus, while
intuitively appealing, the CI lacks rigorous theoretical justification for most RQMC methods.

Our paper addresses these shortcomings. We provide sufficient conditions on both h and (m,r) that
ensure the RQMC estimator obeys a CLT, as well as an asymptotically valid CI (AVCI). We focus on the
setting where both m,r→∞ since a Gaussian limit may not hold for fixed r. We will show tradeoffs in our
restrictions on h and (m,r): more stringent limitations on h lead to looser constraints on (m,r). But in all
cases, the RQMC RMSE shrinks faster than for the corresponding MC estimator with sample size n = mr.

The rest of the paper unfolds as follows. Section 2 builds our study’s basic framework. We present
general conditions that yield a CLT and AVCI in Sections 3 and 4, respectively. Section 5 provides simpler
sufficient conditions for a CLT or AVCI, and gives graphical comparisons of the alternative restrictions.
Concluding remarks are in Section 6. All formal proofs appear in Nakayama and Tuffin (2021).

2 NOTATION AND FRAMEWORK

For an integrand h : [0,1]s→ℜ on the unit hypercube of fixed dimension s≥ 1, the goal is to compute

µ =
∫
[0,1]s

h(u)du = E[h(U)],

where random vector U ∼U [0,1]s with U [0,1]s denoting a uniform distribution on [0,1]s, ∼ means “is
distributed as”, and E represents the expectation operator. We can think of h as a (complicated) simulation
program that transforms s i.i.d. 1-dimensional uniform random numbers into observations from specified
input distributions, which are then used to produce an output of the random performance of a stochastic
system, so µ is its mean. We next explain how to apply MC, QMC, and RQMC to estimate µ .

2.1 Monte Carlo

With MC, we generate n i.i.d. copies U1,U2, . . . ,Un of U ∼U [0,1]s, and compute µ̂MC
n = ∑

n
i=1 h(Ui)/n as

the MC estimator of µ . Let ψ2 ≡Var[h(U)], with Var[·] the variance operator, and assume that 0 < ψ2 < ∞.
The MC estimator is unbiased (i.e., E[µ̂MC

n ] = µ), as are all the estimators of µ that we consider, so

RMSE
[
µ̂

MC
n
]
=

ψ√
n
. (1)

The MC estimator obeys a Gaussian CLT
√

n[µ̂MC
n − µ]/ψ ⇒ N (0,1) as n→ ∞ (Billingsley 1995,

Theorem 27.1), where ⇒ denotes convergence in distribution, and N (a,b2) is a normal random variable
with mean a and variance b2. Let ψ̂2

n = ∑i=1[h(Ui)− µ̂MC
n ]2/(n− 1) be the sample variance of the i.i.d.

h(Ui). For a desired confidence level 0 < γ < 1, we can exploit the CLT to construct an approximate γ-level
CI for µ as IMC

n,γ ≡ [µ̂MC
n ±zγ ψ̂n/

√
n], where the critical point zγ satisfies Φ(zγ) = 1−(1−γ)/2 and Φ is the

N (0,1) cumulative distribution function (CDF). Providing a probabilistic measure of the MC estimator’s
error, IMC

n,γ is an AVCI in the sense that limn→∞ P(µ ∈ IMC
n,γ ) = γ (Asmussen and Glynn 2007, p. 71).

2.2 Quasi-Monte Carlo

QMC replaces MC’s i.i.d. uniforms with carefully placed deterministic points from a low-discrepancy
sequence Ξ = (ξi)i≥1, such as a digital net (e.g., a Sobol’ sequence) or lattice; see, e.g., Chapters 3–5 of
Niederreiter (1992). Using the first n points from Ξ leads to QMC approximating µ by µ̂Q

n = ∑
n
i=1 h(ξi)/n.

We can bound the error |µ̂Q
n −µ| via the Koksma-Hlawka inequality (Niederreiter 1992, Section 2.2):

|µ̂Q
n −µ| ≤VHK(h)D∗n(Ξ) (2)
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for all n > 1, where D∗n(Ξ) is the star-discrepancy of the first n points in Ξ, and VHK(h) is the Hardy-Krause
variation of the integrand h. In (2), VHK(h)≥ 0 quantifies the “roughness” of h, and D∗n(Ξ)∈ [0,1] measures
the “nonuniformity” of Ξ. Low-discrepancy sequences often have

D∗n(Ξ) = O(n−1(lnn)s), as n→ ∞, (3)

where f (n) = O(g(n)) (resp., f (n) = Θ(g(n))) as n→ ∞ for functions f and g means that there exist
positive constants a0, a1, and n0 such that | f (n)| ≤ a1|g(n)| (resp., a0|g(n)| ≤ | f (n)| ≤ a1|g(n)|) for all
n ≥ n0. Thus, if VHK(h) < ∞, (2) and (3) imply that the QMC error shrinks as O(n−1(lnn)s) as n→ ∞,
better than the Θ(n−1/2) rate at which MC’s RMSE decreases. While theoretically useful, the bound in
(2) has limited practical value as it is not easily computed and is often quite loose. There are other related
error bounds (e.g., Hickernell 1998; Hickernell 2018; Lemieux 2006; Niederreiter 1992), but all suffer
from the same issues.

2.3 Randomized Quasi-Monte Carlo

RQMC applies i.i.d. randomizations of the QMC sequence Ξ to produce i.i.d. estimators of µ , and builds an
approximate CI via their sample variance. A randomization creates from Ξ another sequence Ξ′ ≡ (U ′i )i≥1
that retains the low-discrepancy properties of Ξ. Each U ′i ∼U [0,1]s, but the points in Ξ′ are dependent.
RQMC employs such a randomization r≥ 1 i.i.d. times, and for each j = 1, . . . ,r, let Ξ′j ≡ (U ′i, j)i≥1 be the
jth randomized sequence. Given a computation budget of n integrand evaluations, we specify the number
m of points to use from each Ξ′j so that mr ≈ n, leading to the RQMC estimator of µ as

µ̂
RQ
m,r =

1
r

r

∑
j=1

X j, where X j =
1
m

m

∑
i=1

h(U ′i, j). (4)

The X j, j = 1, . . . ,r, are i.i.d., and let σ̂2
m,r = ∑

r
j=1(X j− µ̂RQ

m,r )
2/(r−1) be their sample variance when r≥ 2.

We then arrive at a possible γ-level CI IRQ
m,r,γ ≡ [µ̂RQ

m,r ± zγ σ̂m,r] for µ .
The literature includes several methods to construct Ξ′, including scrambled digital nets (Owen 1995;

Owen 1997) and digital shifts (L’Ecuyer 2018). To simplify the discussion, we describe only one approach:
random shifts (Cranley and Patterson 1976). Here, randomization j generates a single U j ∼U [0,1]s and
adds it (modulo 1) to each point in Ξ, so the ith point in the jth randomized sequence Ξ′j is U ′i, j = 〈U j +ξi〉,
where 〈x〉 is the modulo-1 operator applied to each coordinate of x ∈ℜs. The U j across randomizations
j = 1,2, . . . ,r, are independent. It is easy to show that each U ′i, j ∼U [0,1]s, so µ̂RQ

m,r and each X j are unbiased
estimators of µ . But for each randomization j, the sequence Ξ′j has dependent points because they all
share the same uniform U j.

With random shifts, each randomized sequence Ξ′j satisfies (Tuffin 1997, Theorem 2)

D∗m(Ξ
′
j)≤ 4sD∗m(Ξ). (5)

Thus, if VHK(h)< ∞, the estimator X j in (4) from a single randomization of m points satisfies RMSE[X j] =

O(m−1(logm)s) as m→ ∞, an improvement over the Θ(m−1/2) rate in (1) for MC using the same number
m of integrand evaluations. Even faster convergence rates can be achieved for special classes of functions
and specific sequences Ξ called lattice rules (Tuffin 1998; L’Ecuyer and Lemieux 2000).

Although intuitively appealing, the CI IRQ
m,r,γ in general lacks theoretical justification, as it implicitly

relies on µ̂RQ
m,r obeying a Gaussian CLT. For m→∞ with r≥ 1 fixed, Loh (2003) establishes an RQMC CLT

that covers solely the case of fully nested scrambling of a digital net, which is computationally prohibitive,
limiting its adoption by practitioners. For random shifts of a lattice, the RQMC estimator µ̂RQ

m,r may not
obey a Gaussian CLT as m→ ∞ for fixed r ≥ 1, as shown by L’Ecuyer et al. (2010). Indeed, they prove
that for r = 1, the limiting error distribution has simple non-Gaussian forms for dimension s = 1, and s > 1
generally leads to non-Gaussian limits with no such easy characterizations, so the same holds for any fixed
r ≥ 1. Thus, we see the need for general Gaussian CLTs for RQMC, which is our aim.
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2.4 Assumptions and Preliminary Results

We want to study the asymptotic behavior of the RQMC estimator in (4) as the computation budget n for
the number of integrand evaluations grows large. To do this, we take the number m ≡ mn ≥ 1 of points
from the randomized sequence and the number r≡ rn ≥ 1 of randomizations to be functions of n satisfying
Assumption 1.A mnrn ≤ n for each n≥ 1, with mn→ ∞, rn→ ∞, and mnrn/n→ 1 as n→ ∞.

Under Assumption 1.A, the RQMC estimator in (4) becomes

µ̂
RQ
mn,rn

=
1
rn

rn

∑
j=1

Xn, j, where Xn, j =
1

mn

mn

∑
i=1

h(U ′i, j), (6)

so Xn, j averages h on the first mn points of the jth randomized sequence. Our goal is to provide conditions
on h and (mn,rn) that yield (as n→ ∞) a Gaussian CLT (Section 3) or AVCI (Section 4). Other papers
(e.g., Glynn 1987; Damerdji 1994) adopt frameworks akin to Assumption 1.A to study MC methods for
analyzing steady-state behavior via multiple replications or batching.

Assumption 1.A requires rn→∞ because otherwise, the limiting error distribution may not be Gaussian,
as noted at the end of Section 2.3. We simplify the discussion by further having mn→∞ in Assumption 1.A,
but this is not necessary; Nakayama and Tuffin (2021) also analyze the special case that mn ≡ m0 for a
fixed m0 ≥ 1. Section 5 will adopt the following specialization of Assumption 1.A.
Assumption 1.B mn = nc and rn = n1−c with c ∈ (0,1).

We should define, e.g., mn = bncc and rn = bn1−cc (b·c is the floor function) so that mn and rn are
integers, but for simplicity, we ignore this technicality. Section 5 will determine constraints on h and
c ∈ (0,1) that secure a CLT or AVCI, and in each case, the optimal such c that minimizes the rate at which
RMSE[µ̂RQ

mn,rn
] shrinks as n→ ∞. Also, we will examine the tradeoffs in the conditions on h and c.

For a randomized sequence Ξ′ constructed from scrambling or a digital shift of a digital net, or for a
randomly shifted lattice rule, the randomization preserves the partitioning structure of the original sequence
Ξ: a randomly shifted lattice is still a lattice, and scrambling or digitally shifting a digital net retains the
original sequence’s finer-grain properties (Owen 1995; Owen 1997; L’Ecuyer 2018). Moreover, these Ξ′

obey similar discrepancy bounds as Ξ. Specifically, consider any low-discrepancy sequence Ξ for which (3)
holds, so there exists some constant 0 < w0 < ∞ such that D∗m(Ξ)≤ w0m−1(lnm)s for all m > 1. Then its
random shift Ξ′ satisfies D∗m(Ξ

′)≤ w′0m−1(lnm)s with w′0 = 4sw0 by (5), and scrambling or digital shifting
digital nets yields analogous bounds. Thus, all of these randomizations fulfill the following assumption,
which we use to analyze RQMC estimators when VHK(h)< ∞.
Assumption 2 For the RQMC method used, there exists a constant 0 < w′0 < ∞ such that each randomized
sequence Ξ′ satisfies D∗m(Ξ

′)≤ w′0m−1(lnm)s for all m > 1, where w′0 depends on the RQMC method but
not on the randomization’s realization (e.g., of U ∼U [0,1]s in a random shift).

We often will further impose one of the following conditions on the integrand h. The conditions are
presented in order of decreasing strength (see Proposition 1 below), and Section 5 will show that this leads
to corresponding tradeoffs in our conditions on (mn,rn) to ensure a CLT or AVCI.
Assumption 3.A The integrand h is of bounded Hardy-Krause variation, i.e., VHK(h)< ∞.
Assumption 3.B The integrand h is bounded; i.e., |h(u)| ≤ t0 for all u ∈ [0,1]s for some constant t0 < ∞.
Assumption 3.C There exists b > 0 such that E

[
|h(U)−µ|2+b

]
< ∞, where U ∼U [0,1]s.

Limiting the roughness of h over [0,1]s, Assumption 3.A imposes substantial restrictions; it does not
hold, e.g., in dimension s≥ 2 when h is an indicator function (so µ is a probability) with discontinuities
not lining up with the coordinate axes (Owen and Rudolf 2020). In contrast, Assumption 3.C constrains
the heaviness of the tails of the distribution of h(U).
Proposition 1 Assumption 3.A is strictly stronger than Assumption 3.B, itself strictly stronger than
Assumption 3.C.
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Using different conditions on h, we next derive two bounds on absolute central moments of the estimator
Xn,1 in (6) from a single randomization. The first lemma, for VHK(h)< ∞ (Assumption 3.A), follows from
Theorem 2 of Tuffin (1997); the second applies Minkowski’s inequality (Billingsley 1995, eq. (5.40)) when
Assumption 3.C holds for 2+b replaced by q≥ 1.
Lemma 1 Under Assumptions 1.A, 2, and 3.A, for any q > 0 and for all n such that mn > 1,

ηn,q ≡ E [|Xn,1−µ|q]≤ E
[
(VHK(h)D∗mn

(Ξ′))q]≤ (w′0VHK(h)(lnmn)
s

mn

)q

< ∞. (7)

Lemma 2 Under Assumption 1.A, for any q ≥ 1, if E[|h(U)− µ|q] < ∞ for U ∼ U [0,1]s, then ηn,q ≤
E[|h(U)−µ|q] for every n.

For a single randomization of m points, RQMC typically has σm ≡ (Var[∑m
i=1 h(U ′i,1)/m])1/2 = O(m−α)

as m→ ∞ with α > 1/2 (e.g., see (7) when VHK(h) < ∞). This improves on MC’s RMSE convergence
rate, which satisfies RMSE[µ̂MC

m ] =
√

Var[µ̂MC
m ] = ψm−1/2 by (1). Assume the following limit exists:

α∗ =− lim
m→∞

ln(σm)

ln(m)
, (8)

so α∗ is the constant such that σm decreases, as m→∞, at a rate (ignoring leading coefficients and lower-order
terms) strictly faster than m−α∗+ε and strictly slower than m−α∗−ε for every ε > 0; i.e., σm = o(m−α∗+ε) and
σm = ω(m−α∗−ε) as m→ ∞ for any ε > 0, where f (m) = o(g(m)) as m→ ∞ means that f (m)/g(m)→ 0
as m→ ∞, and f (m) = ω(g(m)) as m→ ∞ means that f (m)/g(m)→ ∞ as n→ ∞. By (7),

α∗ ≥ 1 when VHK(h)< ∞, (9)

as in Assumption 3.A, and more generally, as is typical of RQMC, we assume that

α∗ >
1
2
. (10)

The value of α∗ depends on the particular integrand h and the RQMC method applied, but not on how
(mn,rn) or c are specified in Assumptions 1.A and 1.B.

For any randomized sequence Ξ′ = (U ′i )i≥1, let Em(Ξ
′) = 1

m ∑
m
i=1 h(U ′i )−µ be the error of the estimator

based on the first m points. Then define its exponential rate as

α(Ξ′) =− lim
m→∞

ln(|Em(Ξ
′)|)

ln(m)
, (11)

assuming the limit always exists, and define the worst-case rate among all randomizations as

α
′ = inf

Ξ′
α(Ξ′). (12)

Thus, for any randomized sequence Ξ′, we see that |Em(Ξ
′)| = o(m−α+ε) and |Em(Ξ

′)| = ω(m−α−ε) as
m→ ∞ for each ε > 0, and α ′ ≤ α∗ always holds.
Assumption 4 The convergence rate exponent α ′ of the worst-case error among all randomizations is the
same as the standard deviation rate exponent α∗; i.e., α ′ = α∗.

Corollary 1 in Section 5.1 will later show that when Assumption 4 holds, the RQMC estimator µ̂RQ
mn,rn

will obey a CLT for (mn,rn) = (nc,n1−c) for any c ∈ (0,1) (Assumption 1.B). However, establishing
Assumption 4 in practice may be difficult, so much of our paper focuses on providing other more verifiable
sufficient conditions that secure a CLT.
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For a given total number n of integrand evaluations, RQMC papers often suggest choosing mn as large
as possible to gain from the fast convergence rate of QMC. But as noted at the end of Section 2.3, we still
should specify rn big enough to ensure a Gaussian CLT. Under Assumptions 1.B, 2 and 3.A, (7) implies

RMSE[µ̂RQ
mn,rn

]≤
[w′0VHK(h)(lnmn)

s/mn]√
rn

= Θ

(
(c lnn)s

n(1+c)/2

)
,

so larger c leads to faster convergence. While c = 1 minimizes the RMSE bound, a Gaussian CLT may
not be guaranteed, as noted earlier at the end of Section 2.3.

3 GENERAL CONDITIONS FOR A CENTRAL LIMIT THEOREM

We next study limiting properties of µ̂RQ
mn,rn

in (6) as n→ ∞. The estimator averages Xn,1,Xn,2, . . . ,Xn,rn ,
but their distribution changes with n, complicating the asymptotic analysis. To develop a theoretical
framework for handling this under Assumption 1.A, note that (Xn, j)n=1,2,...; j=1,2,...,rn forms a triangular
array (Billingsley 1995, p. 359), also called a double array. In a triangular array, the rn variables within
a row n are independent, but there may be dependence across rows. While the general formulation allows
for the CDFs of the rn variables within a row n to differ, RQMC actually has

Xn,1,Xn,2, . . . ,Xn,rn are i.i.d., each with some distribution Fn, (13)

where Fn may change with n, as occurs in (6). To preclude trivialities, we impose another assumption,
without which the exact result is eventually always returned by the RQMC estimator.
Assumption 5 σ2

mn
≡ Var[Xn,1]> 0 for all sufficiently large n.

The Lindeberg and Lyapounov CLTs (Billingsley 1995, Theorems 27.2 and 27.3) apply for the RQMC
structure in (13). To set them up, write the variance of the sum of the rn random variables in (13)
as s2

n ≡ rnσ2
mn

. Denote the CDF of Xn, j − µ by Gn, which does not depend on j by (13). Note that
σ2

mn
=
∫

y∈ℜ
y2 dGn(y), and let τ2

n (t) =
∫
|y|>tsn

y2 dGn(y) for t > 0. Then the RQMC estimator in (6) satisfies
the following.
Theorem 1 If Assumptions 1.A and 5 hold and also the Lindeberg condition

τ2
n (t)
σ2

mn

→ 0, as n→ ∞, ∀t > 0, (14)

then the RQMC estimator in (6) satisfies the CLT

µ̂RQ
mn,rn
−µ

σmn/
√

rn
⇒N (0,1), as n→ ∞. (15)

Also, (14) holds if, for some b > 0, E
[
|Xn,1−µ|2+b

]
< ∞ for each n and the Lyapounov condition holds:

E
[
|Xn,1−µ|2+b

]
rb/2

n σ
2+b
mn

→ 0, as n→ ∞. (16)

The Lindeberg condition (14) constrains the tail behavior of Gn. In the general setting of independent
but not identically distributed Xn, j, 1≤ j ≤ rn, the analogous version of (14) (Billingsley 1995, eq. (27.8))
ensures that the contribution of any single Xn, j to their sum’s variance s2

n is negligible for large n. We can
show (Billingsley 1995, p. 361) that (14) is even necessary for the CLT (15) when (13) holds. Imposing
restrictions on moments rather than tail properties, the Lyapounov condition (16) can sometimes be easier
to apply than the Lindeberg condition (14). Section 5.1 will obtain sufficient conditions for (14) or (16)
under Assumption 1.B to secure Theorem 1 for each of our Assumptions 3.A–3.C on the integrand h.
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4 ASYMPTOTICALLY VALID CONFIDENCE INTERVAL

To build a CI from the CLT (15), suppose that rn ≥ 2, which Assumption 1.A ensures for all n large enough.
As Xn, j, j = 1,2, . . . ,rn, are i.i.d. by (13), their sample variance σ̂2

mn,rn
= ∑

rn
j=1

(
Xn, j− µ̂RQ

mn,rn

)2
/(rn− 1)

provides an unbiased estimator of σ2
mn

= Var[Xn,1]. For a given desired confidence level γ ∈ (0,1), we get

IRQ
mn,rn,γ ≡

[
µ̂

RQ
mn,rn
± zγ σ̂mn,rn/

√
rn
]

(17)

as the RQMC CI for µ . The next result imposes conditions guaranteeing that IRQ
mn,rn,γ is an AVCI in the

sense that (20) below holds.
Theorem 2 Suppose that Assumptions 1.A and 5 hold. Also, suppose that E

[
(Xn,1−µ)4

]
< ∞ and that

E
[
(Xn,1−µ)4

]
rnσ4

mn

→ 0, as n→ ∞. (18)

Then
µ̂RQ

mn,rn
−µ

σ̂mn,rn/
√

rn
⇒N (0,1), as n→ ∞, (19)

and
lim
n→∞

P(µ ∈ IRQ
mn,rn,γ) = γ. (20)

As (18) is the same as (16) for b = 2, Theorem 1 implies CLT (15), which is expressed in terms of
the exact σmn . But the left side of (19) instead uses the estimator σ̂mn,rn . Theorem 2’s conditions further
ensure σ̂mn,rn/σmn ⇒ 1 as n→ ∞, so Slutsky’s theorem (Billingsley 1995, p. 340) verifies (19), securing
AVCI (20). Section 5.1 will provide sufficient conditions under Assumption 1.B that yield Theorem 2 for
two of our conditions on the integrand h (Assumptions 3.A and 3.C).

5 ANALYSIS WHEN (mn,rn) = (nc,n1−c) (ASSUMPTION 1.B)

Assumption 1.B specializes Assumption 1.A by taking (mn,rn) = (nc,n1−c) for some c ∈ (0,1). We next
will determine the values of c that imply CLT (15) through Theorem 1 or that guarantee AVCI (20) via
Theorem 2. For those c, we then find the ones leading to RMSE[µ̂RQ

mn,rn
] shrinking fastest as n→ ∞.

Under Assumption 1.B, we have that mn = nc with c ∈ (0,1), so (8) implies that

σmn = ω
(
n−cα∗−ε

)
and σmn = o

(
n−cα∗+ε

)
as n→ ∞, for all ε > 0. (21)

Taking ε > 0 arbitrarily small in (21) leads to σmn ≈Θ(n−cα∗) as n→∞. Thus, a combination of rn = n1−c

with (6) and (13) yields, for any c ∈ (0,1),

RMSE
[
µ̂

RQ
mn,rn

]
=

σmn√
rn
≈Θ

(
n−v(α∗,c)

)
as n→ ∞, where v(α∗,c)≡ c

[
α∗−

1
2

]
+

1
2
. (22)

Our assumption (10) guarantees that v(α∗,c)> 1/2 for c ∈ (0,1). Hence, the convergence rate of RQMC’s
RMSE for any c in Assumption 1.B is better than RMSE[µ̂MC

n ] = Θ(n−vMC) as n→ ∞ for MC, where

vMC ≡
1
2

(23)

by (1). For any fixed α∗ satisfying (10), v(α∗,c) strictly increases in c by (22), so RQMC’s RMSE shrinks
faster for larger c. We thus want to determine how large c can be and still ensure CLT (15) or AVCI (20).
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Section 5.1 will provide various corollaries of the CLT and AVCI theorem in Sections 3 and 4. Each
such Corollary k will result in restricting c as

c < ck(α∗) (24)

for some 0 < ck(α∗)≤ 1 depending on the particular Corollary k. As we will see, most of the ck(α∗) are
strictly decreasing in α∗. Thus, as α∗ increases, (24) further restricts the choices of c, thereby reducing
the maximum allowable number of QMC points and increasing the minimum number of randomizations
because (mn,rn) = (nc,n1−c). But by (8), larger α∗ corresponds to a better convergence rate for the estimator
based on a single randomization, so in some sense, securing a CLT or AVCI often entails hampering better
QMC performance.

Because (22) implies that larger c leads to RMSE shrinking at a faster rate, the “optimal” c that maximizes
the rate subject to the constraint (24) is c = ck(α∗)− δ for infinitesimally small δ > 0. Accordingly, an
analysis akin to the arguments applied to achieve (22) arrives at the optimal approximate rate:

RMSE[µ̂RQ
mn,rn

]≈Θ

(
n−vk(α∗)

)
as n→ ∞, (25)

where, for each Corollary k (and k′) in Section 5.1, the exponent vk(α∗) appears below in (26).
Proposition 2 Under Assumption 1.B and (10), the optimal approximate RMSE rate exponent in (25) is

vk(α∗)≡ ck(α∗)

(
α∗−

1
2

)
+

1
2
> vMC (26)

for vMC in (23), so RQMC outdoes MC. If ck(α∗) = 1 in (24), then vk(α∗) = α∗. Also, for any k and k′,

vk(α∗)> vk′(α∗) if and only if ck(α∗)> ck′(α∗). (27)

When ck(α∗) = 1, (24) becomes the weakest possible constraint satisfying Assumption 1.B. In this
case, Proposition 2 implies that vk(α∗) = α∗, so the RMSE of the multiple-randomization RQMC estimator
µ̂RQ

mn,rn
decreases at about the same rate as for a single randomization with full length m = n.

The next subsection will specialize ck(α∗) in (24) and vk(α∗) in (26) for various corollaries. Section 5.2
will compare the resulting values graphically.

5.1 Corollaries of Theorems 1 and 2

We first provide a corollary of Theorem 1 based on Assumption 4, which imposes constraints on both the
integrand and RQMC sequence.
Corollary 1 Suppose that Assumptions 1.B, 4, and 5 hold. If c < 1≡ c1(α∗), then the Lindeberg condition
(14) and CLT (15) hold. Moreover, (25) and (26) have vk(α∗) = v1(α∗)≡ α∗.

Under Assumption 4 (the worst-case error and the standard deviation decrease at the same exponential
rate), Corollary 1 secures a CLT for (mn,rn) = (n1−ε ,nε) with ε > 0 as small as we wish. Thus, although
rn → ∞ is needed, choosing ε > 0 small allows taking a large number mn = n1−ε of points from the
low-discrepancy sequence, which enables exploiting QMC’s superior convergence rates.

As establishing Assumption 4 may be difficult in practice, we next provide other conditions that are
more readily verifiable to ensure CLT (15). We give corollaries corresponding to each of our restrictions
on the integrand h in Assumptions 3.A–3.C, which are in decreasing order of strength (Proposition 1). We
first specialize (16) of Theorem 1 to establish a CLT when VHK(h)< ∞, which enables using Lemma 1.
Corollary 2 Suppose that Assumptions 1.B, 2, 3.A (VHK(h)< ∞), and 5 hold. Also, suppose that for some
constant λ ∈ (0,1),

c <
1−λ

2α∗−1−λ
≡ c2(α∗), (28)
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where λ may be chosen arbitrarily small. Then the Lyapounov condition (16) and CLT (15) hold. Moreover,
for each α∗ ≥ 1, as in (9), c2(α∗) satisfies 0 < c2(α∗)≤ 1, and (25) and (26) have vk(α∗) = v2(α∗) with

v2(α∗)≡
2α∗−1−λα∗

2α∗−1−λ
, where

1
2
< v2(α∗)≤ 1. (29)

Corollary 2 allows taking λ ∈ (0,1) as arbitrarily small in (28) and (29), so c2(α∗)≈ 1/(2α∗−1) and
v2(α∗)≈ 1. The next corollary of Theorem 1 exploits (14) to yield a CLT when the integrand h is bounded.
Corollary 3 Suppose that Assumptions 1.B, 3.B (h is bounded), and 5 hold. If

c <
1

2α∗+1
≡ c3(α∗),

then the Lindeberg condition (14) and CLT (15) hold. Moreover, for each α∗ > 1/2, as in (10), c3(α∗)
satisfies 0 < c3(α∗)< 1/2, and (25) and (26) have vk(α∗) = v3(α∗) with

v3(α∗)≡
2α∗

2α∗+1
, where

1
2
< v3(α∗)< 1.

The following corollary of Theorem 1 imposes a moment condition on h(U) (Assumption 3.C) to apply
Lemma 2 to (16) to obtain a CLT, in contrast to requiring VHK(h)< ∞, as in Corollary 2.
Corollary 4 Suppose that Assumptions 1.B, 3.C (finite absolute central moment of order 2+b for some
b > 0), and 5 hold. If

c <
1

2α∗(1+ 2
b)+1

≡ c4(α∗,b),

then the Lyapounov condition (16) and CLT (15) hold. Moreover, for each b > 0 and α∗ > 1/2, as in (10),
c4(α∗,b) satisfies 0 < c4(α∗,b)< 1/2, and (25) and (26) have vk(α∗) = v4(α∗,b) with

v4(α∗,b)≡
2α∗(1+ 1

b)

2α∗(1+ 2
b)+1

, where
1
2
< v4(α∗,b)< 1.

For IRQ
mn,rn,γ in (17) to be AVCI (20), Theorem 2 assumes that (18) holds, which yields the CLTs in (15)

and (19). We next consider conditions that enable verifying AVCI.
Corollary 5 Suppose that Assumptions 1.B, 2, 3.A (VHK(h)< ∞), and 5 hold. If

c <
1

4α∗−3
≡ c5(α∗),

then the CLT (19) and AVCI (20) hold. Moreover, for each α∗ ≥ 1, as in (9), c5(α∗) satisfies 0 < c5(α∗)≤ 1,
and (25) and (26) have vk(α∗) = v5(α∗) with

v5(α∗)≡
3α∗−2
4α∗−3

, where
3
4
< v5(α∗)≤ 1.

While Corollary 5 requires VHK(h)< ∞, we next ensure AVCI instead through a moment condition.
Corollary 6 Suppose that Assumptions 1.B and 5 hold, as well as Assumption 3.C (finite absolute central
moment of order 2+b) for b = 2. If

c <
1

4α∗+1
≡ c6(α∗),

then the CLT (19) and AVCI (20) hold. Moreover, for each α∗ > 1/2, as in (10), c6(α∗) satisfies
0 < c6(α∗)< 1/2, and (25) and (26) have vk(α∗) = v6(α∗) with

v6(α∗)≡ c6(α∗)

(
α∗−

1
2

)
+

1
2
=

3α∗
4α∗+1

, where
1
2
< v6(α∗)<

3
4
.
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Figure 1: Plots of the upper bounds ck(α∗) in (24) of c in Assumption 1.B for different Corollaries k from
Section 5.1. The plots display the ck(α∗) as functions of b for different fixed values of α∗. The upper left
panel does not include c2(α∗) and c5(α∗) as these require VHK(h)< ∞, which then implies α∗ ≥ 1 by (9).
The plots show that stronger conditions on h correspond to loosening constraints on c.

5.2 Graphical Comparisons of the ck(α∗) and the vk(α∗)

For the Corollaries k = 2,3, . . . ,6 in Section 5.1, we next plot their upper bounds ck(α∗) for c as functions
of b (from Assumption 3.C) in Figure 1 for various fixed values of α∗ > 1/2, as assumed in (10). (Our
discussions omit k = 1 as its Assumption 4 may be difficult to verify in practice; note nevertheless that
c1(α∗)≥ ck(α∗) and v1(α∗) = α∗ ≥ vk(α∗) ∀k≥ 2.) Figure 2’s left panel graphs the ck(α∗) as functions of
α∗ instead, where larger α∗ corresponds to better RQMC performance on a single randomization by (8),
and the right panel does the same for the optimal approximate RMSE rate exponents vk(α∗) of (25). The
plots for Corollary k = 2 set λ = 0.01. The figures also show c∗ = 1 as Assumption 1.B requires c ∈ (0,1).
The right panel of Figure 2 further includes v∗ = 1 for reference.

Recall that Corollaries k = 2 and 5 require Assumption 3.A (VHK(h)<∞), k = 3 imposes Assumption 3.B
(bounded h), and k = 4 and 6 employ Assumption 3.C (order-(2+b) absolute central moment of h(U) is
finite). Proposition 1 gives a strict ordering of those assumptions’ strengths. Figures 1 and 2 show the
following properties, which Nakayama and Tuffin (2021) also establish analytically:

• c2(α∗)> c3(α∗)> c4(α∗,b) for each b > 0 and α∗ > 1/2 (c2(α∗) being valid only when α∗ ≥ 1),
showing that stricter conditions on integrand h permit larger values of c ensuring CLT (15).

• c5(α∗)> c6(α∗) for each b > 0 and α∗ > 1/2 , so a stronger condition on h corresponds to a larger
range of values of c that yield AVCI (20).

• c4(α∗,b) converges to c3(α∗) as b increases, which agrees with the principle that having a finite
absolute central moment of order 2+b as b→ ∞ is “close” to meaning a bounded integrand.
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Figure 2: Plots of the upper bounds ck(α∗) of c (left panel) and the negative exponent vk(α∗) of the
optimal rate at which the estimator RMSE decreases (right panel) as functions of α∗. Functions for k = 2
and 5 require VHK(h)< ∞, so they are shown for only α∗ ≥ 1 because of (9). Each ck(α∗) decreases in α∗,
and most vk(α∗) increase in α∗, so better QMC behavior usually yields better RQMC performance.

• c4(α∗,b) grows as b increases (i.e., more absolute central moments are finite), so additional effort
can be put on the QMC part (i.e., mn = nc can be larger) when using the moment conditions of
Corollary 4 to establish a CLT.

• c5(α∗)≤ c2(α∗) and c6(α∗)< c3(α∗), so securing AVCI (20) often (but not always) restricts c more
than what guarantees a CLT.

The vk(α∗) share the same properties and orderings as the ck(α∗) by (27).
In the left panel of Figure 2, the upper bounds ck(α∗) on c decrease as α∗ grows, so ensuring CLT

(15) or AVCI (20) for larger α∗ requires putting more effort on the MC part (i.e., rn = n1−c grows as c
decreases) and correspondingly less on the QMC (i.e., mn = nc shrinks as c gets smaller). By (26), the
tradeoff could potentially harm the rate exponent vk(α∗) governing how quickly the RQMC estimator’s
optimal RMSE decreases, but this does not occur for most k. The one exception is v5(α∗) for the AVCI
Corollary 5 when VHK(h)< ∞, which we explain by examining the corresponding c5(α∗) in the left panel
of Figure 2. While c5(α∗) starts off at α∗ = 1 very high, it quickly drops off, so mn must decrease rapidly as
α∗ grows to secure AVCI when VHK(h)< ∞, leading to less benefit from the QMC. Even so, we have that
v5(α∗)> v6(α∗) for all α∗, so the optimal rate exponent when establishing AVCI is better for VHK(h)< ∞

than through the moment condition of Corollary 6.

6 CONCLUDING REMARKS

We presented conditions that ensure the RQMC estimator of a mean µ obeys a Gaussian CLT or guarantee
AVCI. We also examined the tradeoffs in the restrictions. While our paper gave sufficient conditions, we
are currently looking into relaxing the requirements. Other current work includes devising procedures to
estimate the upper bounds ck(α∗) in (24) and Section 5.1, which will allow practitioners to apply our
theoretical results. We are further investigating analogous theory for biased estimators, as for quantiles.
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