Skip to Main content Skip to Navigation
Conference papers

Analog IFoF/mmWave 5G Optical Fronthaul Architecture for Hot-Spots Using Multi-channel OFDM-Based WDM Signals

Abstract : An analog Intermediate-Frequency-over-Fiber (IFoF) – based fronthaul 5G architecture for high traffic hot-spot environments is presented. The proposed optical fronthaul link utilizes Photonic Integrated Circuit (PIC) Wavelength Division Multiplexing (WDM) Externally Modulated Laser (EML) - based optical transmitters at a centralized Base Band Unit (BBU) and Reconfigurable Optical Add-Drop Multiplexers (ROADMs) at the Remote Radio Head (RRH) side located in the hot-spot area. By employing two WDM links, where each wavelength carries six 0.5 Gbaud IF bands of Orthogonal Frequency Division Multiplexing (OFDM) with 16 – QAM Sub-Carrier (SC) modulation, a total data rate of 96 Gb/s was achieved. Error Vector Magnitude (EVM) measurements were carried out, exhibiting acceptable performance below the EVM FEC limit of 12.5%. A power budget study was also performed, suggesting up to 9.5 km fiber lengths between the BBU and the hot-spot network. The proposed architecture complies with the high capacity and low latency requirements of the 5G vision, thus may be an efficient solution for 5G fronthauling of heavy traffic hot-spot areas.
Complete list of metadata

https://hal.inria.fr/hal-03200670
Contributor : Hal Ifip <>
Submitted on : Friday, April 16, 2021 - 5:07:15 PM
Last modification on : Friday, April 16, 2021 - 5:38:26 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2023-01-01

Please log in to resquest access to the document

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Charoula Mitsolidou, Christos Vagionas, Agapi Mesodiakaki, Pavlos Maniotis, George Kalfas, et al.. Analog IFoF/mmWave 5G Optical Fronthaul Architecture for Hot-Spots Using Multi-channel OFDM-Based WDM Signals. 23th International IFIP Conference on Optical Network Design and Modeling (ONDM), May 2019, Athens, Greece. pp.504-515, ⟨10.1007/978-3-030-38085-4_43⟩. ⟨hal-03200670⟩

Share

Metrics

Record views

20