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ABSTRACT

Motivated by the problem of designing large packet radio networks,
we show that the Kautz and de Bruijn digraphs with in- and outdegree
d have arc-chromatic index 2d. In order to do this, we introduce the
concept of even 1-factorizations. An even 1-factor of a digraph is a
spanning subgraph consisting of vertex disjoint loops and even cycles;
an even 1-factorization is a partition of the arcs into even 1-factors.
We prove that if a digraph admits an even 1-factorization, then so
does its line digraph. (In fact, we show that the line digraph admits
an even 1-factorization even under a weaker assumption discussed
below.) As a consequence, we derive the above property of the Kautz
and de Bruijn digraphs relevant to packet radio networks. ® 1993 John
Wiley & Sons, Inc.

1. INTRODUCTION

One method of designing large packet radio networks [8] requires the
construction of large digraphs with a given diameter and arc-chromatic index.
To describe this method briefly: the vertices correspond to the users of the
network and the arcs to radio channels. The diameter constraint enforces



small transmission delay. An arc-coloring with few colors makes it possible
to have all transmissions take place in few time slots (a user may be involved
in at most one transmission in any one time slot, but all transmissions
corresponding to a color class of arcs may take place simultaneously). For
more details on this model, as well as some general results, see [8,4].

There is a very similar problem with well-established literature, namely the
problem of constructing large digraphs, and graphs, with given diameter and
maximum degree [1,2,3,7]. The two best constructions known for general
digraphs are the Kautz and de Bruijn digraphs mentioned in the title.
We prove in this article that the Kautz and de Bruijn digraphs with in-
and outdegree d have the smallest possible arc-chromatic index, namely
2d. Consequently, they are also of prime interest as large digraphs with
given diameter and arc-chromatic index; they substantially improve the
bounds given in [8] for packet radio networks. Other constructions of packet
radio networks arising from digraphs and graphs with given diameter and
maximum degree are given in [4].

Let G be a digraph (possibly containing loops). The length (number of
arcs) of a shortest directed path from a vertex u to a vertex v of G is
called the distance from u to v. (If there is no such path, the distance is
considered infinite.) The diameter of a digraph G is the maximum distance
over all pairs of vertices u and v of G. The outdegree of a vertex v in the
digraph G is the number of arcs vw in G, and is denoted by d*(v). The
indegree d~(v) is defined analogously. An arc-coloring of G is a mapping
assigning colors to the arcs of G in such a way that two distinct arcs having
a common vertex obtain different colors. The arc-chromatic index of G is
the minimum number of colors that make an arc-coloring of G possible.
A k-factor of a digraph G is a spanning subgraph F of G in which the
indegree and outdegree of each vertex is k. It is easy to see that a 1-factor
of G consists of vertex disjoint directed cycles of G. An even I -factor of G
is a 1-factor of G in which all cycles other than loops (i.e., cycles with one
arc) have an even number of arcs. Suppose F is a 2-factor of G and m is a
function that assigns to each pair (e, v), where e is an arc of F and v is a
vertex of e, a value m(e,v) € {0, 1} in such a way that m(e, v) # m(f,v)
if both e and f begin at v or both e and S end at v. We shall call m the
marking function and the value m(e, v) the mark of e at v. Note that we do
not require that m(e, v) = m(e,u) for e = uw, i.., the marks of one arc
may be different at the two ends. We shall treat the marks as elements of
the additive group Z;; this will permit us to add the marks and remain in the
group. The marking function m induces two partitions of the arc set of F into
closed directed walks as follows: In the first partition, denoted by P(F,m,0),
a closed walk is obtained by starting at some unused arc, and after an arc
€ = uv continuing with the unique arc f = vw with m(e,v) = m(f,v),
until the starting arc is encountered again. In the second partition, denoted
by P(F,m,1), a closed walk is obtained in the same way except that after

= uv we take the unique arc f = vw with m(e,v) # m(f,v). We say

that F' is an even 2-factor of G if there exists a function m as above, such
that all closed walks of both partitions P(F, m, i) (i = 0, 1), other than loops,
have an even number of arcs. We say that G has an even I -factorization if the
arcs of G can be partitioned into even 1-factors, and an even 2-factorization
if the arcs of G can be partitioned into even 2-factors. The relevance of even
1-factorizations to arc-coloring is made explicit in the following observation:

Proposition 1. If G has an even 1-factorization with d even 1-factors, then
G has an arc-coloring with 2d colors.

Proof. Each even 1-factor consists of even directed cycles and loops.
Using two colours, we can color each even cycle alternating the colors, and
each loop with one of the two colors. J

2. LINE DIGRAPHS AND EVEN FACTORIZATIONS

The line digraph of G, denoted by L(G), has as its vertices the arcs of G;
there is an arc in L(G) from e to f just if e = uv and f = vw. Note that
a loop e = uu in G becomes a loop ee in L(G).

Theorem 2. If G has an even 1-factorization with d even 1-factors, then
its line digraph L(G) also has an even 1-factorization with d even 1-factors.

Proof. Let Fy,F,,...,F;_; be an even 1-factorization of G. Thus every
arc e of G belongs to a unique even 1-factor F;. To denote this fact we
say that e is labeled by i, and write I(e) = i. We shall treat the labels
i =0,1,...,d — 1 as elements of the additive group Z, of integers modulo
d; this will allow us to perform addition of the labels and remain in the
group. Note that for each i = 0,1,...,d — 1, and every vertex v of G,
there is a unique arc uv, and a unique arc vw of G, labeled by i. To define
an even 1-factorization of L(G), we first extend the labeling I: E(G) — Z,
to a labeling I: E(L(G)) — Z, by I(ef) = I(e) + I(f), and then let H; be
the subgraph of L(G) formed by all arcs labeled i, for i = 0, 1,...,d — 1.
We claim that Hy, Hj,...,H,_; is an even 1-factorization of L(G). Since
each arc of L(G) has a unique label, it remains to verify that every H; is
an even 1-factor.

For each vertex e = uv of L(G) and each label i there is a unique vertex f
of L(G) such that I(ef) = i because the equation /(e) + x = i has a unique
solution in the group Z,, and because there is at v a unique arc f = vw of
G with label I(f) = x. By a symmetric argument there is a unique vertex
f of L(G) such that I(fe) = i. Therefore each H; is a-1-factor.

It remains to show that each directed cycle (other than a loop) of every
H; is even. Let ey, e5,.. ., ep be the vertices of a directed cycle in some H;,
fori =0,1,...,d — 1. Thus all labels l(ejej+1) are i, for j = 1,2,...,p



(with subscript addition modulo p). It follows that in G we have the
equations I(e;) + I(ej+1) = I(ej41) + I(ejss), for j = 1,2,..., p. Hence

the labels of the edges e; in G alternate, i.e., I(e;) = I(e3) = --- = g and
l(e;) = I(es) = ---=b. If a # b, then necessarily p must be even. On
the other hand, if a = b, then ey, e, ..., e, are the edges of a cycle in F,,

and hence p is even by assumption. J

Theorem 3. If G Has an even 2-factorization with d even 2-factors, then
its line digraph L(G) has an even 1-factorization with 2d even 1-factors.

Proof. Let Fo,F,,...,F,-; be an even 2-factorization of G. As above,
we label the arcs of G by Z,, with I(e) = i whenever e belongs to F;. Let
m; be the marking function associated with the 2-factor F;. We let m(e,v)
equal to m;(e, v) with i = I(e); in this way, marks are defined for all incident
vertex-arc pairs. We again extend the labeling ! of the arcs of G to a labeling
of the arcs of L(G). Suppose ¢ = uv and f = vw. We define the label
I(ef) to be the ordered pair (A, u) € Z; X Z,, where A = I(e) + I(f) and
p = m(e,v) + m(f,v). We let H, , be the subgraph of L(G) formed by
all arcs labeled (A, u), for A € Z; and u € Z,. We claim that the Ho, wy
form an even 1-factorization of L(G). As above, it is enough to verify that
each H, , is an even 1-factor.

For each vertex e = uv of L(G) and each label (A, u) there is a
unique vertex f of L(G) such that I(ef) = (A, u), because the equation
lle) + x=Ahas a unique solution in Z;, and because exactly one of the
two arcs of F, beginning at v, say f, satisfies m(e,v) + m(f,v) = M
By a symmetric argument there is a unique vertex f of L(G) such that
I(fe) = (A, u). Therefore each H, ,y is a 1-factor. .

Let again ey, ey, ..., €, be the vertices of a directed cycle in some Ho,
for A € Z;, u € Z,. Thus all labels l(ejej+r) are (A, u), for j = 1,2,...,p
(with subscript addition modulo p). Since all I(eje;j+;) = A, we deduce
as before that the labels of the edges e; in G alternate, ie., I(e;) =
l(ez) =---=a and l(e;) = l(es) = --- = b. If a # b, then necessarily
p must be even. Thus assume that a = b, ie., that all e; are in F,.
Writing e; = v;-,v;, we also have m(e;,v;) + m(ejs1,v;) = u (for all
J = 1,2,..., p). Therefore either all m(e;, v;)-= m(ej+1,v;) (if w = 0) or
all m(ej, v;) # m(ej+1,v;) (if w = 1). This means that €1, €,...,¢ey, is one
of the closed directed walks of the partition P(F,, Mg, i), and hence p = 1
or p is even. R

3. THE KAUTZ AND DE BRUIJN DIGRAPHS
Assume d = 2. For D = 0, we define the de Bruijn digraph B(d, D) as the

digraph whose vertices are all strings of length D over an alphabet of d
symbols, in this paper always Z;, and whose arcs are all strings of length

D + 1 over the same alphabet. The arc a1a;...apap+; starts from the
vertex ajay...ap and ends in the vertex az...apap+;. Note that B(d,0)
is the digraph with one vertex (corresponding to the empty string), and d
loops, one for each letter of the alphabet; B(d, 1) is a complete symmetric
digraph with d vertices, and a loop at each vertex.

For D = 1, the Kautz digraph K(d,D) is the digraph whose vertices
are all those strings of length D over an alphabet of d + 1 symbols, here
Z; U o, in which consecutive characters are distinct, and whose arcs are all
strings of length D + 1 over the same alphabet with the same property. The
ar¢ a1a; ... apap+ starts from the vertex a,a;, .. .ap and ends in the vertex
@ ...apap+;. Note that K(d,0) is undefined, and K(d,1) is a complete
symmetric loopless digraph on d + 1 vertices. It is easy to see (cf. [3])
that both B(d,D) and K(d,D) have diameter D and are regular of in-
and outdegree d. Furthermore, the digraph B(d,D) has dP vertices and
the digraph K(d,D) has d® + dP-! vertices.

It follows from the definitions that the following is true:

Proposition 4. For all relevant d and D,

B(d,D) = L(B(d,D - 1)),
K(d,D) = L(K(d,D — 1)). |

Corollary 5. Each B(d, D) has an even 1-factorization.

Proof. The proof proceeds by induction on D. It is obvious for D = 0,
and then it follows by using Theorem 2 and the above proposition. §

Corollary 6. Let D =2 or D = 1 and d be odd.
Then K(d,D) has an even 1-factorization.

Proof. The proof again proceeds by induction on D. However, we cannot
start at D = 0, and even for D = 1 the Kautz digraph K(d, 1) does not admit
an even 1-factorization when d is even. Indeed, it has an odd number of
vertices and no loops; thus each 1-factor must contain an odd cycle of more
than one arc. On the other hand, for D = 1 and 4 odd, we can construct
an even 1-factorization of X(d, 1) by starting with the complete undirected
graph on d + 1 vertices, which is known to have edge-chromatic index d
([6], cf. below). Since K(d, 1) is obtained from it by replacing each edge
with the two opposite arcs, we can associate with each color class of such
an edge-coloring by d colors a 1-factor of K(d,1) consisting of directed
two-cycles. Thus for d odd, and any D, we obtain an even 1-factorization
of K(d,D) via Theorem 2.

When d is even, we can proceed the same way, as soon as we have
constructed an even 1-factorization of K(d,2). For this purpose we use



Theorem 3. Indeed, the complete undirected graph ond + 1 vertices admits
a partition of its edge set into hamiltonian cycles [6]. This partition yields a
2-factorization of K (d, 1) as follows: We replace each undirected edge with
the two opposite arcs; thereby every hamiltonian cycle C = vg,vy,...,v,
produces a 2-factor F of K(d,1). We claim that the 2-factor F is even.
Indeed, we may define a marking function m in such a way that the two
opposite arcs obtain the same marks at the vertex vo and obtain different
marks at all other vertices, i.e., m(vvy, vo) = m(vov,vp) for v = v, and
v = vy, and m(vv;,v;) # m(v;v,v;) for i # 0 and v = v;—; and v =
vi+1. Recall that the partition P(F,m,0) consists of closed walks obtained
by following arcs that leave a vertex on the same mark as they entered it.
Thus starting with the arc vov; we pass through all the arcs v;v,, vovs, ...
until the arc v,vg; at this point we must follow with the arc vov, and
then retrace our steps through the arcs V4V4-1,...,0100. (The closed walk
ends here as the next arc would be the starting ‘arc vov;.) Thus P(F, m,0)
consists of a single closed walk, of length 2(d + 1). In the same spirit,
the partition P(F,m,1) consists of one closed walk of length four with
arcs vovy, V1V, Yoy, V4Vo, and d — 1 cycles of length two v;v;41, vi4qv;
fori = 1,2,...,d — 1. Thus'both partitions P(F,m,i) (i = 0,1) consist of
even closed walks, and we obtain an even 2-factorization of K(d, 1), and
hence by Theorem 3 an even 1-factorization of K (d,2). n

Corollary 7. Each B(d, D) with D = 1 has arc-chromatic index 2d. §

Corollary 8. Each K(d,D) with D = 2 (or D=1 and d odd) has arc
chromatic index 2d. |

In some applications it may be useful to know directly which 1-factor
contains the arc a;a,...ap4;. (This will also allow us, via Proposition 1,
to directly find the color of each arc in the corresponding arc-coloring.)
It follows by unwinding the above induction (as was also observed by L.
Goddyn, personal communication) that

Proposition 9. There is an even 1-factorization Koy By F g1 of Bld, D)
in which the arc a;a,.. .ap+) belongs to F;, where

(=3 (2) e

=o\J

Proof. For D = 0 the digraph B(d, 0) consists of the loops 0, 1,...,d —-

1 and we label each loop i by I(i) = i, i.e., we let each F; = {i}. Now we
proceed by induction: Suppose that / is a labeling of B(d, D) where

= (D
laiay...aps1) = Z(J) * @yt

Jj=0

Then we define as in the proof of Theorem 3 a labeling of B(d,D + 1) by
la1a;...aps1ap4,) = lay...apy) + las...aps). Therefore,

- (D - (D
l(alaaz""$aD+2) = Z(j) " 841 b Z(]) T Qi+

=0 Jj=0
B DZ“(D + 1)
= . - a;
= j j+1

using Pascal’s equality (D;’l) = ( ? ) £ ( jf 1). Letting F; consist of all arcs

labeled i we obtain the desired even 1-factorization of B(d, D). g

The situation is somewhat less elegant for Kautz digraphs, but a calcu-
lation is possible. In particular, we need to use “nice” decompositions of
the complete graph on d + 1 vertices, We have already remarked that for 4
odd the complete undirected graph with vertices Z; U o admits a d-edge-
coloring; one such coloring (cf. [6]) assigns to the edge ij the color i + j
when neither i nor j is ® and assigns to the edge i the color 2i. We define
a(a,a’) = a + a' if neither a nor a’ is © and a(a,®) = a(®,q) = 24a.
(Both a + a’ and 2a = a + 4 are computed in the group Z,.)

Proposition 10. LetD = 1, and d be odd. There is an even 1-factorization
Fo,F1,...,F4_1 of K(d,D) in which the arc aja;...ap,, belongs to F;
where

D-1

; D -1

L= Z( : ) ¢ a(aj+1,aj+2)-
j=0 J

Proof. 'We again proceed by induction using the labeling in the proof
of Theorem 3. For D = 1, the graph K(d, 1) is the complete symmetric
digraph on Z; U . We let l(aa") = a(a,a’). Then all arcs labeled i form
an even 1-factor consisting of (d + 1)/2 cycles of length two, because of
the property of the above coloring of the complete undirected graph. The
remainder of the proof is the same as in the preceding Proposition. J

When d is even, we need a nice partition of the edges of the com-
plete undirected graph with vertices Z4 U ® into d/2 hamiltonian cycles
€C15C55+:4; Cyss The following folklore partition cf. [6], will be used (here
the subscripts are modulo d/2): The edge i belongs to C;; the edge ij (with
neither 7 nor j equal to ) belongs to Cy;.+ jy2)- To obtain from this partition
an even 2-factorization of K(d,1) we must replace in every cycle each
undirected edge by two opposite arcs and we must also specify the marking
functions my, m,, ..., my,. We shall use the marking functions explained in
the proof of Corollary 6, where in each hamiltonian cycle C, we let the



vertex o be the vertex v, distinguished in the definition of m;. Specifically,
each m, (i, ®) = m(io, ), and each other ms(ij, j) # mg(ji, j). Now we
transform the even 2-factor of K(d, 1) into an even 1-factor of K(d,2) as
explained in the proof of Theorem 3 except we use the label 2A + y instead
of (A, u). This means that our labels are in the group Z, instead of Zyp X Z,.
Put V = Z, U . We define the auxiliary functions y: V X V > Z4p and
B:V XV XV Z,;by y(a,a) = [(@ + a')/2] if neither a nor a’ is o
and y(a,) = y(®,a) = a, and Bla,a’,a") = 2(y(a,a’) + v(a',a")) +
8, where 8 is 0 if a’ # ® and g # g ora’=oand a = @’ and is 1
otherwise. Now we obtain (by induction, as above) the following formula:

Proposition 11. LetD > 2, and d be even. There is an even 1-factorization
Fo,Fy,...,Fy; of K(d,D) in which the arc @143 ...ap+; belongs to F;
where .

D-2
. D -2
1= z ( : )'ﬂ(aj+1,aj+2,aj+3)- |

4. CONCLUSIONS

Theorem 2 can be used with other digraphs as well. In particular, J. Bond
[5] has recently given an even 1-factorization of the graph with 50 vertices
from [7], regular of in- and outdegree 2, and diameter 5; using Theorem 2
it follows that for each D = 5 there exists a graph of diameter D, with
25 - 2P=% vertices, regular of in- and outdegree 2, admitting an even 1-
factorization (and hence of arc-chromatic index 4). This is the largest known
family of digraphs with arc-chromatic index 4 and diameter D (better than
the Kautz or de Bruijn digraphs).

Recall that a digraph with many vertices but small arc-chromatic index
and small diameter may be useful for packet radio networks. In [8,4], one
studies the largest number nc(f, D) of vertices of a digraph with diameter D
and arc-chromatic index f. We can thus interpret our results (Corollary 6 and
the above remark) as lower bounds on the function nc(f,D) (for D =2
and D = 5, respectively): .

nc(2q,D) = gP + P!
nc(4,D) = 25 . 2P—4,

These are the best known bounds on nc(f, D) for even [

Finally we remark that the underlying graphs of the Kautz and de Bruijn
digraphs, known as the Kautz and de Bruijn graphs, obtain, in the coloring
implied by Corollaries 8 and 7, an edge coloring with A (the maximum
degree) colors. Such graphs are called of class I [6].

Corollary 12. The Kautz graphs (other than the even complete graph) and
the de Bruijn graphs are of class 1.
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