HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Attention for Image Registration (AiR): an unsupervised Transformer approach

Abstract : Image registration as an important basis in signal processing task often encounter the problem of stability and efficiency. Non-learning registration approaches rely on the optimization of the similarity metrics between the fix- and moving images. Yet, those approaches are usually costly in both time and space complexity. The problem can be worse when the size of the image is large or the deformations between the images are severe. Recently, deep learning, or precisely saying, the convolutional neural network (CNN) based image registration methods have been widely investigated in the research community and show promising effectiveness to overcome the weakness of non-learning based methods. To explore the advanced learning approaches in image registration problem for solving practical issues, we present in this paper a method of introducing attention mechanism in deformable image registration problem. The proposed approach is based on learning the deformation field with a Transformer framework that does not rely on the CNN but can be efficiently trained on GPGPU devices also. Our method learns an artificially generated deformation map and be tested on a MINST dataset.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Contributor : Zihao Wang Connect in order to contact the contributor
Submitted on : Thursday, May 6, 2021 - 4:28:40 PM
Last modification on : Monday, February 14, 2022 - 10:41:54 AM


Files produced by the author(s)


  • HAL Id : hal-03202230, version 3



Zihao Wang, Hervé Delingette. Attention for Image Registration (AiR): an unsupervised Transformer approach. 2021. ⟨hal-03202230v3⟩



Record views


Files downloads