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Abstract

Great improvement has been made in the field of expressive audiovisual Text-

to-Speech synthesis (EAVTTS) thanks to deep learning techniques. However,

generating realistic speech is still an open issue and researchers in this area

have been focusing lately on controlling the speech variability. In this paper, we

use different neural architectures to synthesize emotional speech. We study the

application of unsupervised learning techniques for emotional speech modeling

as well as methods for restructuring emotions representation to make it con-

tinuous and more flexible. This manipulation of the emotional representation

should allow us to generate new styles of speech by mixing emotions. We first

present our expressive audiovisual corpus. We validate the emotional content of

this corpus with three perceptual experiments using acoustic only, visual only

and audiovisual stimuli. After that, we analyze the performance of a fully con-

nected neural network in learning characteristics specific to different emotions

for the phone duration aspect and the acoustic and visual modalities. We also

study the contribution of a joint and separate training of the acoustic and visual

modalities in the quality of the generated synthetic speech. In the second part

of this paper, we use a conditional variational auto-encoder (CVAE) architec-

ture to learn a latent representation of emotions. We applied this method in

an unsupervised manner to generate features of expressive speech. We used a
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probabilistic metric to compute the overlapping degree between emotions latent

clusters to choose the best parameters for the CVAE. By manipulating the latent

vectors, we were able to generate nuances of a given emotion and to generate

new emotions that do not exist in our database. For these new emotions, we

obtain a coherent articulation. We conducted four perceptual experiments to

evaluate our findings.

Keywords: Expressive audiovisual speech synthesis, conditional variational

auto-encoder, Expressive talking avatar, emotion, facial expression, deep

learning, bidirectional long short-term memory (BLSTM).

1. Introduction

Automatic animation of expressive virtual talking heads, or audiovisual

speech synthesis, is constantly gaining attention due to its important impact

on human machine interaction and its benefits to the fields of health and educa-

tion for instance [1, 2, 3, 4, 5, 6, 7]. Expressiveness in speech synthesis systems5

has an added value where the interaction is more natural [8, 9]. Acoustic and

visual parametric speech synthesis has improved in recent years, particularly in

terms of intelligibility [10, 11]. This improvement happened thanks to statis-

tical parametric techniques ranging from HMMs (Hidden Markov Models) to

neural networks [12, 13]. In particular, Recurrent Neural Networks have proven10

to be very adaptable to text-to-speech thanks to their capability of taking into

account the past and future information of a sequence [14, 11, 15]. These meth-

ods also followed the same evolution for the audiovisual speech synthesis (3D or

photo-realistic domain) [11, 16].

Recently, end-to-end systems for acoustic speech synthesis emerged ([17],15

[18]). Those systems give state of the art synthesis results. Nevertheless, they

need a large amount of data to be trained. This kind of corpus is difficult to

find for expressive speech, especially in the case of audiovisual speech synthe-

sis. One way to overcome this limitation is by taking advantage of the neutral

data available and to link it with the emotional data. For instance, Li et al.20
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[19] used recurrent network (DBLSTM) to generate audiovisual animation from

audio by simply retraining the model with emotion-specific data. Their exper-

iments showed that using neutral corpus can improve the performance of the

synthesis of expressive talking avatar animations. In the same way, the net-

work input can be augmented using emotion code [20]. Zhang et al. [21] used25

shared hidden layers across multiple emotions, while the output layers are emo-

tion dependent and contains characteristics specific to each emotion. However,

those methods can model only emotion categories present in the training set.

Furthermore, emotion labels are not always available, and when available they

are not completely reliable due to eventual errors of the annotators. Moreover,30

when emotions are grossly put into very large classes, the notion of nuances

disappears and the natural variability in human speech will be lost.

On the other hand, the categorical emotion theory postulates that the affect

system consists of six basic universal emotions (happiness, surprise, fear, sad-

ness, anger, and disgust)[22]. But, the diversity of the human emotions can gen-35

erate many complex and subtle affective states such as disapproval, depression

and contempt that cannot be covered by these basic emotion categories. Fur-

thermore, some research confirms that affective states are not isolated entities,

but they are rather systematically connected [23, 24, 25]. Hence, dimensional

models regard affective experience as a continuum of non-extreme and highly40

interconnected states, similar to the spectrum of color [26, 27].

To be able to model emotions in a way that emulates the complexity of the

human emotional system, our key insight is to learn, in an unsupervised manner,

a latent representation of emotions that is independent of the textual content.

This latent representation can be reshaped and manipulated to generate new45

emotions and speech styles, the same way we can mix primary colors to obtain

a wide range of colors. In this work, we consider various aspects of speech.

We use different neural networks to model speech phone duration, the acoustic

and the visual modalities. after that, we focus more particularly on modeling

emotions.50

We start by studying the evolution of the quality of the synthesized speech
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when training the acoustic and visual modalities separately then jointly. Then

we make a cross validation to investigate the ability of the fully-connected ar-

chitecture to learn characteristics that are specific to each emotion. This step

is crucial to establish a baseline that will help us decide which parameters and55

neural layer type are better for the training of an EAVTTS system. Also, our

aim was to ensure that our corpus was appropriate for the speech synthesis task.

As it is detailed in the following sections, our main contributions are the

original application of CVAE to an audiovisual corpus and the usage of CVAE

on this problem. We show in particular that CVAE can perform emotions60

interpolation using a large labeled corpus. This architecture learns a latent

representation of the emotional space and we propose a method to find the value

of a disentanglement coefficient (β parameter). We explain our procedure to

reshape the learned latent space to make it malleable and easily manipulable to

create new speech styles. Although CVAE has already been shown to be useful65

in interpolating speaking rate and pitch variation in an audio-only domain (see

(Habib et al. 2020) [28]), it has not been shown that emotional interpolation

could be done in practice, probably because there is no large corpus with emotion

labels, as in our work. We finally present the result of the perceptive evaluation

we made to validate our approach.70

2. Related work

The first works in DNNs-based acoustic speech synthesis appeared in 2013

and used FeedForward DNNs to model the mapping between linguistic and

acoustic features [12, 29, 30, 31]. Later, other studies worked on adding expres-

siveness to the synthesized voice [32, 20, 33, 34]. Regarding audiovisual speech,75

some works used DNNs to model emotion categories such as [35] and [16] who

used FeedForward DNNs to synthesize expressive audiovisual speech. The two

systems obtained satisfactory subjective results and showed that the quality of

the results of DNN-based synthesis systems significantly exceeds that of HMMs

systems.80
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Li et al. [19] used a recurrent network and compared several BLSTM archi-

tectures to adapt a model trained on a large neutral corpus with a small quantity

of expressive data. The five proposed systems generate expressive visual ani-

mations from audio files. The results of objective and subjective experiments

showed that using neutral corpus can improve the performance of an expressive85

talking avatar generation.

Some researches have been made to compare a joint and separate training

of acoustic and visual models. Schabus et al. [36] trained an HMMs system

for audiovisual speech modeling. This study showed that the joined modeling

offers better synchronization between acoustic and visual modalities and that90

the quality of the predicted acoustic parameters does not undergo degradation

compared to the acoustic model trained separately. In a similar study carried

out on audiovisual data from a camera, Filntisis et al. [16] pointed out that there

is no significant difference between the two DNNs models (joint and separate)

regarding the realism results of the synthetic video. However, the acoustic95

results of the separate model were significantly more appreciated than those

of the joint model, based on perceptual tests. In this study, our goal is to

quantify the contribution of the quality when using a joint model, with objective

measures. We note that, in this work, the visual information is 3D visual data

acquired using a motion-capture system.100

Different from the method cited above, which is able to generate only a

specific number of emotion classes, some studies worked on modeling degrees

and mixture of emotions. In the work of Hofer et al. [37], a unit selection system

was considered to generate nuances of emotions using an annotated database

with emotion degrees. In the rule-based emotional voice conversion system,105

Xue et al. [38] proposed a voice conversion system for emotional speech which

utilized two-dimensional (valence and arousal) space to represent emotions in

order to control their degrees. The conversion is done by modifying the acoustic

features of neutral speech to create the different types of emotional speech.

Henter et al. [39] and Zhu et al. [34] succeeded in creating nuances of emotions110

without using emotion degree annotations, nevertheless, this work still relies on
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emotion labels as input.

In the second part of this paper, we address the problem of synthesiz-

ing expressive speech without relying on emotion labels, in contrast with the

described methods above. Specifically, we explore the application of Varia-115

tional Auto-Encoders (VAE) to Text-To-Expressive Audiovisual Speech Synthe-

sis (TTEAVSS) and show the possibilities offered by the VAE that makes the

blending between emotions possible. VAE was successfully used for extracting

speakers specific characteristics from audio [40], in acoustic expressive speech

synthesis [41, 42], for music generation [43] and to vary the prosody in speech120

synthesis [44]. The originality of this work is that it considers a Variational

Auto-Encoder (VAE) for expressive text to audio-visual speech synthesis.

To improve the latent representation of emotions captured by VAE, we can

introduce a parameter for weighting error terms in the loss function of the

network [45, 46]. We explain this parameter in detail in the following sections.125

We can notice that in the work of Higgins et al. [45] this parameter was set with a

visual inspection of the results, and a metric was proposed to calculate objective

scores of dimension disentanglement. Wang et al. [47] used a β-VAE to obtain

semantically significant and well clustered latent representations, and [48] used

it for geologic image interpretation. However, in these studies, the choice of β130

was not justified. In the work of Alemi et al. [49] on image classification, the β

parameter was chosen based on classification scores of the considered database.

On their work on music synthesis and sounds interpolation, Roche et al. [50]

experimented four values of β, claiming that the values have to be chosen wisely

in order to find the best trade-off between the disentanglement of the latent135

dimensions and the reconstruction accuracy. However, the smallest value of β

was selected (β = 10e−6) and it is not clear if an even smaller value could have

been used. In our work, we present a procedure to choose the appropriate β

parameter for expressive speech synthesis and emotions interpolation.
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3. Data140

In the context of EAVTTS, the quality of the data used in training the mod-

els is correlated with the quality of the generated synthetic speech. Therefore,

it is important to ensure that the emotions in the corpus are well perceived

by humans. In addition, training a synthesis model requires a database of

substantial size, containing at least a few hours of speech [51]. Existing expres-145

sive databases often only contain the acoustic modality (SynPaFlex, AlloSat,

PAVOQUE, etc.). For audiovisual databases, for the most part, the visual

modality is represented by 2D video recordings (GEMEP, CVSP-EAV, eNTER-

FACE’05, MSP-IMPROV, VAM-Video, SAVEE, MODALITY, etc.). Although

they are easy and less expensive to record, in these recordings information about150

the depth of the scene is lost. As a result, certain speech-related gestures, such

as the protrusion of the lips, cannot be tracked with precision. Fortunately, a

few expressive audiovisual databases containing 3D data exist. For example,

the AV-LASYN [52] database which contains a synchronous corpus of audio

data and 3D facial marker trajectories, however, this database contains only155

one emotion and is dedicated to the audiovisual synthesis of laugh only. The

IEMOCAP [53] database contains audiovisual sequences recorded with motion

capture systems. This database contains recordings of ten actors and several

emotions: neutral state, anger, joy, excitement, sadness, frustration, fear, sur-

prise, etc. However, each speaker only recorded 30 minutes of scripted speech160

(all emotions combined) which is insufficient to train speech synthesis systems.

In addition, the number of sentences per emotion is not balanced (neutral 28%,

frustration 24%, excitement 17%, sadness 15%, anger 7%, joy 7%, surprise 2%

, disgust 1%, the others ¡ 1%) which does not allow comparison of the perfor-

mance of synthesis systems for the different classes of emotions. The Biwi 3D165

[54] database offers audiovisual recordings in the form of 3D scan sequences and

audio. This corpus is very interesting because it provides complete information

on the deformation of the entire face (and not just a selection of points), but

it is also small (1109 sentences in total, 14 speakers, around 80 sentences per
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speaker) and cannot be used in a synthesis process.170

For all the reasons mentioned above, we decided to record our own corpus.

In this work, we use the corpus presented in Dahmani et al. [55]. It was acted

by a semi-professional actress expressing six emotions, in addition to the neutral

state. Two thousand sentences were recorded for the neutral state (4 hours of

speech). From these 2000 sentences, a subset of 500 sentences was selected for175

each of the six basic emotions: joy, sadness, anger, surprise, fear and disgust

(between 55 min and 1h 53min of speech for each emotion). The linguistic

content is identical for all the emotions. The sentences in this corpus have been

considered in such a way that they offer a good phonetic coverage. The neutral

corpus covers 92% of the French diphones and the sub-corpus of 500 sentences180

covers 52% of them.

3.1. Corpus validation

After defining the textual content of the corpus, it is important to ensure

that the expressed emotions are well perceived and to assess the quality of the

expressiveness of the corpus itself, before tackling the synthesis process. Actu-185

ally, a corpus, containing wrong expressions or that is not sufficiently expressive,

can impact the result quality of the synthesis. We performed three perceptual

experiments to assess the quality of the expressive audiovisual corpus related to

the visual and acoustic modalities.

3.1.1. Stimuli190

In these experiments we use video sequences that we recorded in parallel

with the 3D visual data. We chose 10 sentences with the most neutral linguistic

content and we extracted the corresponding audiovisual sequences for each emo-

tion. Three types of stimuli were presented to the participants for each emotion:

1) acoustic stimuli, 2) visual stimuli and 3) audiovisual stimuli.195

3.1.2. Participants

The perceptual experiences counted more than thirty participants for each

modality: 1) 34 participants (20 men and 14 women) for the acoustic modality,
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2) 31 participants (20 men and 11 women) for the visual modality and 3) 35

participants ( 23 men and 12 women) for the audiovisual tests. The participants200

were not native French, but they were living in France during that period of time.

Some participants took part in two or three experiments, in this case they had

to respect the following order: 1) audio only, 2) visual only then 3) audiovisual

experiment. For each experiment, each participant heard/saw 70 stimuli (10 for

each emotion and for the neutral state). For the three experiments, the stimuli205

were presented in a random order to every participant.

3.1.3. Method

We have set up a web application in which participants can log in to per-

form the perceptual tests. A series of stimuli were presented one by one and

participants had to choose from a list of seven choices (neutral, joy, surprise,210

fear, anger, sadness and disgust) the emotion expressed in the stimuli according

to them. Participants had to select an answer and validate it to be able to see

the next stimuli. They had the opportunity to replay the stimuli as many times

as they wanted. They carried out the test with acoustic stimuli only then visual

stimuli only before being able to participate in the audiovisual test.215

3.1.4. Results

After collecting the results from all the participants, we computed the sta-

tistical significance levels using the p-values from the t-test and we corrected

them using Holm Bonferoni method [56]. For each experiment, we used a de-

gree of freedom equal to the number of participants minus one. We considered220

an alpha equal to 5% and a chance level of 14%. The results are presented in

Tables 1, 2 and 3. We added an asterix symbol (*) to the statistically significant

recognition rates and (-) for non-significant recognition rates.

We can see that the recognition rates are significant for all the emotions for

the three experiments. This means that the emotions are as well carried by the225

acoustic modality as by visual one. We can notice some confusion between some

emotions.
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Table 1: The confusion matrices of the recognition rate of the 7 emotions with the acoustic

stimuli. The columns represent the distribution of the answers given by the participants.

Perceived emotion

Anger Disgust Fear Joy Neutral Sadness Surprise

P
ro

d
u
c
e
d

e
m
o
ti
o
n

Anger 73.24(*) 8.82(-) 3.82(-) 5.00(-) 3.24(-) 2.35(-) 3.53(-)

Disgust 4.41(-) 48.82(*) 8.53(-) 3.82(-) 17.35(-) 13.53(-) 3.53(-)

Fear 10.00(-) 10.59(-) 34.12(*) 1.47(-) 16.76(-) 22.35(-) 4.71(-)

Joy 15.59(-) 3.53(-) 5.00(-) 50.00(*) 7.35(-) 2.65(-) 15.88(-)

Neutral 0.29(-) 1.76(-) 2.06(-) 2.94(-) 81.18(*) 8.53(-) 3.24(-)

Sadness 1.76(-) 2.65(-) 13.24(-) 1.18(-) 2.94(-) 77.06(*) 1.18(-)

Surprise 9.71(-) 2.06(-) 3.53(-) 9.71(-) 3.53(-) 2.06(-) 69.41(*)

Table 2: The confusion matrices of the recognition rate of the 7 emotions with the visual

stimuli. The columns represent the distribution of the answers given by the participants.

Perceived emotion

Anger Disgust Fear Joy Neutral Sadness Surprise

P
ro

d
u
c
e
d

e
m
o
ti
o
n

Anger 80.00(*) 4.84(-) 6.13(-) 0.65(-) 1.94(-) 1.29(-) 5.16(-)

Disgust 1.94(-) 75.48(*) 1.61(-) 2.58(-) 1.94(-) 15.81(-) 0.65(-)

Fear 13.87(-) 1.94(-) 63.55(*) 0.00(-) 0.65(-) 0.32(-) 19.68(-)

Joy 0.32(-) 0.32(-) 0.32(-) 91.61(*) 0.65(-) 0.00(-) 6.77(-)

Neutral 0.00(-) 0.00(-) 1.29(-) 1.29(-) 94.19(*) 1.61(-) 1.61(-)

Sadness 0.32(-) 0.97(-) 8.39(-) 2.90(-) 28.71(-) 56.45(*) 2.26(-)

Surprise 19.68(-) 0.65(-) 7.74(-) 0.32(-) 1.61(-) 1.61(-) 68.39(*)

For the acoustic modality, fear sounded like sadness 22% of the time, while

joy sounded like surprise and anger 15% of the time. For the visual modal-

ity, sadness is much more confused with neutral (2.94% confusion for acoustic230

modality vs 28.71% of confusion for visual modality), which indicated that sad-

ness is more carried by the acoustic modality. Conversely, the other emotions

all were better perceived with the visual modality, especially fear which be-

came completely distinguishable from neutral and sadness, and joy from anger

and surprise. Nevertheless, new confusions appeared between surprise, fear and235

anger. After statistically analyzing the rate of those confusions, we found that

they are all statistically not significant.
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Table 3: The confusion matrices of the recognition rate of the 7 emotions with the audiovi-

sual stimuli. The columns represent the distribution of the answers given by the participants.

Perceived emotion

Anger Disgust Fear Joy Neutral Sadness Surprise

P
ro

d
u
c
e
d

e
m
o
ti
o
n

Anger 92.57(*) 2.00(-) 2.29(-) 0.00(-) 0.57(-) 0.29(-) 2.29(-)

Disgust 1.14(-) 89.43(*) 2.00(-) 0.29(-) 1.71(-) 3.43(-) 2.00(-)

Fear 5.43(-) 3.43(-) 73.43(*) 0.29(-) 1.71(-) 3.43(-) 12.29(-)

Joy 0.29(-) 0.57(-) 0.00(-) 95.14(*) 1.14(-) 0.00(-) 2.86(-)

Neutral 0.00(-) 0.00(-) 0.57(-) 0.00(-) 97.43(*) 2.00(-) 0.00(-)

Sadness 0.57(-) 2.00(-) 4.86(-) 0.57(-) 1.14(-) 90.86(*) 0.00(-)

Surprise 3.71(-) 0.86(-) 4.00(-) 0.86(-) 1.43(-) 0.29(-) 88.86(*)

Regarding the audiovisual test, the recognition rates are very high (over

73%) for all emotions and confirm that the acoustic and visual modalities are

complementary. These results show that the majority of participants validate240

the performance of the actress and confirm the good quality of the expressive

corpus produced. From these findings we can consider using this corpus for the

purpose of expressive audiovisual speech synthesis.

3.2. Data formatting for neural network training

The textual, acoustic and visual data were automatically and phonetically245

aligned. The linguistic parameters (current phoneme, its previous and follow-

ing phonemes) represent the input vector for training the three main models:

duration, acoustic and visual. The duration of each phoneme is expressed in

number of frames considering a rate of 5ms for each frame. For the acoustic

parameters, we used the WORLD Vocoder [57] to extract 60 MFCC coefficients250

(Mel-Frequency Cepstral Coefficients), 5 BAP parameters (Band-Aperiodicity),

the fundamental frequency with a logarithmic scale (log F0) and their dynamic

parameters (∆ and ∆∆) as well as a binary parameter for the voiced/unvoiced

nature of the sound in each frame. These parameters were extracted from the

audio files every 5 ms. They represent the output of the DNN which will be255

trained to generate acoustic parameters from the linguistic parameters. For the

visual modality, we are focusing on the animation of the lower part of the face
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for now. Of all the available data in the corpus, we select the sensors that cover

the region related to speech articulation (lips, cheeks, jaw and chin). Similarly,

the rate is 5ms for each frame. We have divided the corpus into three subsets:260

(1) the training set containing 80% of the data, (2) the validation set and (3)

the test set, containing 10% of the data each.

4. Audio-Visual Speech synthesis by classical fully-connected archi-

tecture

In this section we used a fully-connected architecture with two BLSTM layers265

to train the three models: acoustic, visual and duration.

4.1. Joint vs. separate modeling

In this experiment, we study the possible contribution of joint training of

acoustic and visual modalities on the quality of audiovisual synthesis. We in-

clude the six categories of emotions in the learning process. The output vector270

for the joint model is the result of the concatenation of the acoustic and visual

parameters.

Table 4 shows the results obtained with the two models. We note that the

joint training of the two modalities degrades all the objective measures, whether

it is for the acoustic or visual modality. By performing informal listening tests275

we found that the acoustic results of the joint model are more distorted with

a slightly muffled sound, but for the visual results we didn’t notice a humanly

perceptible difference.

These observations join the results of [16] that showed, using perceptual

tests, that the results of the separate models are considered to be slightly more280

realistic, but that no statistically significant difference was found between the

audiovisual results of the two models. However, Filntisis et al. [16] acoustic

results of the separate model were considered significantly more realistic than

those generated by the joint model. For the visual data, no significant difference

was found between the results of the two models.285
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Table 4: Results of the acoustic and visual parameters of the test subset generated by a

model trained with acoustic and visual data separately and jointly.
Separated models Joint models (2048)

Neu Joy Sad Ang Sur Fea Dis Neu Joy Sad Ang Sur Fea Dis

Acoustic (1024) Acoustic

MCD (dB) 4.863 5.738 5.288 5.262 5.699 5.226 5.431 5.305 6.135 5.740 5.691 6.157 5.669 5.844

BAPD (dB) 0.224 0.312 0.269 0.268 0.287 0.231 0.256 0.265 0.359 0.304 0.322 0.335 0.269 0.304

F0-RMSE (Hz) 26.172 46.723 32.074 39.514 32.203 40.617 35.972 32.203 47.617 37.972 45.094 45.676 46.201 44.003

F0-Corr 0.687 0.631 0.518 0.524 0.702 0.627 0.535 0.683 0.627 0.514 0.513 0.683 0.488 0.518

V/N-V (%) 6.900 10.167 7.692 8.082 9.874 7.711 9.137 7.851 11.879 8.955 9.587 11.864 8.814 10.560

Visual (1024) Visual

RMSE (mm) 1.304 1.572 1.317 1.466 1.482 1.424 2.124 1.309 1.581 1.320 1.475 1.504 1.429 2.132

Corr 0.833 0.777 0.792 0.810 0.807 0.826 0.696 0.829 0.776 0.790 0.808 0.803 0.825 0.689

In fact, we were expecting the model with joint models to perform better

than the separate one but the results showed the contrary. One hypothesis

behind the drop in the quality of EAVTTS with the joint modeling can be

explained by the increase of the number of possible combinations of the input

vector. This has the effect of reducing the number of examples for each class290

(combination) and making the training less effective.

4.2. Cross-validation

In this experiment we use separate acoustic and visual models. We analyze

the ability of the models to learn characteristics specific to each emotion, using

a cross-validation on duration, acoustic and visual modalities. We note here295

that the pronunciation of the sentences can change from one emotion to another

(more or less pauses, suppression/addition of vowels). Pronunciation differences

related to the emotional states are not studied in this work.

For the duration model, we use the linguistic information from the test set

of a target emotion to generate the duration of all the other emotions and we300

calculate RMSE (in frames/phone) and Pearson correlation measures of all the

emotions taking the original data of the target emotion as reference. For the

acoustic and visual models, we considered the linguistic information as well as

the duration of the original data of the target emotion test set. Using this

information, we generate the acoustic and visual parameters corresponding to305

each emotion and calculate the different measurements. For visual modality we
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Table 5: Results of RMSE in frames/phone and Pearson Corr of the cross-validation on test

sub-set predictions generated by the duration model.

Duration

Neutral Joy Sadness Anger Surprise Fear Disgust

Neutral
RMSE

Corr

5.289

0.831

6.110

0.799

6.001

0.804

5.917

0.786

5.652

0.803

6.378

0.806

13.280

0.779

Joy
RMSE

Corr

7.346

0.752

7.136

0.774

7.385

0.756

7.272

0.760

7.206

0.769

7.708

0.751

14.703

0.720

Sadness
RMSE

Corr

6.886

0.770

6.881

0.765

6.606

0.777

7.118

0.755

7.176

0.754

6.926

0.770

13.856

0.747

Anger
RMSE

Corr

6.879

0.720

7.130

0.737

7.222

0.728

6.463

0.758

7.597

0.729

6.578

0.744

15.195

0.686

Surprise
RMSE

Corr

6.394

0.756

6.905

0.763

7.134

0.741

6.471

0.753

6.006

0.781

7.532

0.749

14.582

0.708

Fear
RMSE

Corr

7.573

0.767

7.468

0.758

7.287

0.766

7.760

0.756

7.789

0.763

7.174

0.781

13.578

0.753

Disgust
RMSE

Corr

13.614

0.728

15.709

0.716

13.669

0.723

15.162

0.693

14.361

0.712

13.146

0.721

9.311

0.741

compute RMSE (in millimeters) and Pearson correlation, in the case of acoustic

features we compute the mel-cepstral distortion (MCD), the band-aperiodicity

distortion (BAPD), the RMSE (F0-RMSE) and the correlation (F0-Correlation)

of the F0 as well as the percentage of error on the prediction of voiced/unvoiced310

frames.

Tables 5, 6 and 7 present the results, where the rows present the result of

each considered emotion. The results show that the three models are able to

specialize in modeling the different emotions. For the duration model, disgust

seems to be very different from the other emotions. This can be explained by315

specificity of this emotion in our corpus. In fact, this emotion was uttered by

with a remarkably slow speech rate. The duration of the corpus of disgust

(1h 53min) represents approximately twice the duration of the other emotions

(between 55min and 1h 11min). The visual results show similarities between

some emotions, in particular between sadness and the neutral state and between320

anger, fear and surprise. With regard to the acoustic model, we note that
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Table 6: Results of RMSE and Pearson Correlation of the cross-validation on test sub-set

visual trajectories generated by the visual model. Static column represents a face with a

constant neutral expression with a closed mouth.

Visual

Neutral Joy Sadness Anger Surprise Fear Disgust Static

Neutral
RMSE

Corr

1.304

0.833

2.392

0.77

1.635

0.801

2.464

0.769

1.945

0.782

2.245

0.805

2.377

0.739

2.170

—

Joy
RMSE

Corr

2.500

0.727

1.572

0.777

2.125

0.734

2.703

0.722

2.605

0.736

2.814

0.734

2.732

0.712

3.217

—

Sadness
RMSE

Corr

1.655

0.775

2.092

0.753

1.317

0.792

2.378

0.723

2.241

0.727

2.221

0.773

2.325

0.713

2.364

—

Anger
RMSE

Corr

2.604

0.732

2.564

0.735

2.439

0.714

1.466

0.810

2.100

0.783

1.688

0.774

3.124

0.716

3.308

—

Surprise
RMSE

Corr

1.984

0.750

2.537

0.744

2.271

0.723

2.046

0.785

1.482

0.807

1.980

0.771

2.614

0.727

2.817

—

Fear
RMSE

Corr

2.255

0.794

2.778

0.772

2.239

0.791

1.715

0.795

1.883

0.790

1.424

0.826

3.041

0.748

3.055

—

Disgust
RMSE

Corr

2.823

0.651

3.160

0.647

2.822

0.641

3.414

0.644

3.063

0.651

3.460

0.649

2.124

0.696

3.530

—

there is also a resemblance between the neutral state and sadness, between

joy and surprise and between fear and disgust. Moreover joy and surprise are

the emotions with the greatest difference of F0 compared to neutral and other

emotions.325

Those findings are in line with what we found in the perceptual study of the

original corpus (ref 3.1), except for the similarity between fear and disgust for

the acoustic modality in this study. Actually, when studying the recognition rate

of the original corpus, the participants rated the whole acoustic performance of

the actress which includes speech duration, but in this cross-validation study330

only the acoustic parameters are studied. As explained earlier, disgust emotion

is remarkably characterized by a slow speech rate which may play a major role

in distinguishing those two emotions in the original corpus.

This study allowed us to evaluate this baseline architecture for expressive

audiovisual synthesis system. We found that this baseline is able to learn char-335

acteristics specific to each emotion that are in line with the perceptual results
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Table 7: Results of the cross-validation of the test sub-set acoustic parameters of expressive

data generated with the acoustic model.

Acoustic

Neutral Joy Sadness Anger Surprise Fear Disgust

Neutral

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

4.863

0.224

26.172

0.687

6.900

6.409

0.304

97.521

0.610

7.565

5.390

0.243

33.810

0.598

7.594

5.784

0.268

42.063

0.546

7.512

6.548

0.263

108.220

0.404

7.612

5.327

0.229

35.640

0.558

7.154

5.539

0.232

38.839

0.604

7.486

Joy

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

7.010

0.367

103.444

0.586

11.015

5.738

0.312

46.723

0.631

10.167

6.696

0.347

85.568

0.552

10.792

6.417

0.330

97.438

0.547

10.751

6.132

0.334

58.942

0.455

10.547

7.227

0.377

113.167

0.526

10.812

7.045

0.371

109.806

0.540

10.908

Sadness

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

5.688

0.271

33.943

0.503

8.107

6.442

0.301

82.658

0.476

8.246

5.288

0.269

32.074

0.518

7.692

5.825

0.284

39.353

0.496

8.167

6.642

0.284

96.357

0.284

8.258

5.660

0.271

47.107

0.509

7.984

5.817

0.271

44.815

0.514

8.023

Anger

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

6.177

0.303

43.043

0.440

8.705

6.069

0.287

89.370

0.454

8.615

5.793

0.290

41.357

0.497

8.515

5.262

0.268

39.514

0.524

8.082

6.171

0.291

97.935

0.357

8.807

6.039

0.303

44.919

0.505

8.347

6.040

0.304

43.601

0.491

8.495

Surprise

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

6.806

0.305

102.248

0.449

10.176

5.916

0.30

51.066

0.564

9.769

6.616

0.302

86.765

0.394

9.967

6.277

0.301

97.706

0.444

10.078

5.699

0.287

32.203

0.702

9.874

6.951

0.311

112.539

0.382

10.007

6.911

0.311

109.363

0.391

10.105

Fear

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

5.730

0.246

37.586

0.435

7.951

7.015

0.334

116.012

0.404

8.254

5.729

0.262

48.980

0.487

8.307

6.097

0.297

41.281

0.477

8.258

7.075

0.286

128.206

0.242

8.352

5.252

0.234

32.505

0.494

7.649

5.226

0.231

35.090

0.627

7.711

Disgust

MCD (dB)

BAPD (dB)

F0-RMSE (Hz)

F0-Corr

V/N-V (%)

5.995

0.272

38.890

0.473

9.350

7.124

0.338

117.422

0.439

9.840

5.949

0.279

46.779

0.512

9.446

6.250

0.328

42.528

0.502

9.837

7.269

0.296

132.273

0.299

9.828

5.641

0.265

36.477

0.516

9.245

5.431

0.256

35.972

0.535

9.137

16



of the original corpus. In the next section we will use the same data with an

enhanced architecture to learn a latent representation of emotions.

5. Speech synthesis approach with β-CVAE architecture

In this section, we propose a different synthesis system based on encoder-340

decoder architecture. The aim of using this architecture is to have control over

the internal representation of emotions learned by the network. Being able to

control this internal representation, also called latent representation, allow us to

access regions of the latent space that remains inaccessible with fully-connected

architecture. Also, this architecture allows us to generate new speech styles by345

mixing available emotions latent vectors. We first introduce VAE, CVAE and

β-CVAE, and then we present the architecture we use for our TTS expressive

audiovisual speech synthesis system (TTEAVSS).

5.1. Variational Auto-Encoder

The standard Auto-Encoder [58] consists of an encoder and a decoder. It350

learns a latent representation z for a set of input data x by reducing the difference

between the generated outputs x̃ of the Auto-Encoder and the inputs x. Besides

the condition of reducing the reconstruction error between x and x̃, VAE [59]

introduces an additional condition that forces the latent representation z to

follow a Gaussian distribution. The loss of the Variational Auto-Encoder is as355

follows:

Loss = RE +KL (1)

The first term RE is the reconstruction error between x and x̃, it encourages

the decoder to learn to reconstruct the data. The second term KL represents the

Kullback-Leibler divergence between the encoder’s distribution and a standard

Normal distribution with mean zero and variance one (the detailed formulas can360

be found in Kingma et al. [59]). It acts as a regularizer that forces the latent

distribution to be a normal, which has as effect to bring the latent data clusters
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closer to each other while maximizing their variance. This behavior encourages

a maximum coverage of the latent space and makes it smoother by removing

eventual dead zones which makes blending between the different latent vectors365

possible. In the scope of this work, Variational Auto-Encoder consists of two

neural networks:

1. Emotion embedding network (encoder): neural network that maps input

x to the latent representation z to approximate the intractable posterior

distribution of the input data.370

2. Generative prediction network (decoder): neural network that reconstructs

the input variable x from the latent representation z.

A new term β, as shown in equation (2), was initially introduced by Higgins

et al. [45] to encourage latent space dimensions disentanglement. It was then

used in [50] to balance regularization and reconstruction accuracy. High β values375

foster regularization at the expense of reconstruction accuracy. In this work, we

explain the procedure we used to choose the value of this parameter in section

5.4.

Loss = RE + β KL (2)

5.2. Conditional Variational Auto-Encoder

The conditional VAE (CVAE) is a variant of the VAE that is conditioned on380

an additional feature c. In this work the condition c represents the phone labels

corresponding to the input x. Anatov et al. [60] showed that conditioning a

network on a variable c makes the latent representation independent from this

variable. In the work of Skerry et al. [61], authors succeeded in transferring

prosody from one utterance to another, by isolating prosody from the other385

speech variations. To do so, they conditioned their network on linguistic content,

speaker identity and channel effects (i.e. the recording environment). In a

similar way, by adding the conditional input to the decoder network we force

the latent representation to be independent from the textual input. The network
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should learn to represent features that are not contained in the textual input.390

By doing so, we can get a latent representation containing feature relative only

to the emotional states.

5.3. β-CVAE

5.3.1. Proposed architecture

We use a CVAE to predict: (1) duration, (2) acoustic, and (3) visual data.395

Figure 1 shows the CVAE architecture for the free models. The duration model

conditioned on linguistic data cd only. The acoustic and visual models are

conditioned on the linguistic and on the duration data ca v. The implementation

details of these models are presented in the next section (Section 5.3.2).

Duration 
Decoder

Phone durations
Duration 
Encoder

𝒁𝒅

Visual
Encoder

𝒁𝒗Visual features Visual features

Acoustic
Decoder

Acoustic
Encoder

𝒁𝒂

Phone durations
𝒄𝒂_𝒗

Acoustic features Acoustic features

Linguistic features

Linguistic features

Phone durations

A

B

C

Phone durations

Visual
Decoder

𝒄𝒂_𝒗

Linguistic features𝒄𝒅

Figure 1: The CVAE architecture of the three models. A: The duration model conditioned

on linguistic data cd only. B and C: CVAE architecture of the acoustic and visual models

respectively, they are conditioned on the linguistic and on the duration data ca v.
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We also trained a CVAE with audiovisual data to analyze its latent space. It400

uses ca v as a condition. The role of the encoder is to extract a compressed latent

representation of the input data. In fact, the encoder performs a dimensionality

reduction task similar to a PCA. However, in the case of DNNs based encoder,

this task is performed in a non-linear way. As we saw above, the encoder is

able to encode the information contained in the input data while ignoring the405

variations contained in the condition c. The figure 2 shows the evolution of

the training error of the β-CVAE with visual data. We show the result of a

configuration where we use the emotion labels as input data, and in the second

case without using them.

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

With labels Without labels

Validation error when training with and without 
emotion labels

Epoch
number

MSE error
(mm²)

Figure 2: The impact of removing emotion labels on the training process of the visual model.

We can see that the network reaches a comparable error value after a certain410

number of epochs (37 epochs) for the two configurations. Although, training

the network with emotion labels makes the learning process more stable. We

found similar behavior for acoustic and duration models as well. Those findings

are very interesting because they allow us to train the models without providing

the explicit information about the emotion categories (labels). We can therefore415

adopt this unsupervised learning approach to overcome the problem related

to annotations. In this work, emotion labels are used only to obtain more

explainable graphical plots and to enable data analysis, nevertheless, they are
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not used during the training step it-self. In the next sections, we will present the

details of the configuration and the results we obtained with this architecture.420

5.3.2. Implementation details

We used Merlin TTS system [62] as a basic toolkit for acoustic speech syn-

thesis. We augmented Merlin with a visual synthesis module and a CVAE

architecture. In this work we use an asymmetrical CVAE (where the encoder

and the decoder have different layers number and size). Since the decoder is425

not only decompressing the encoder output (latent vector), but, it computes

a more complex non-linear prediction task, we use a deeper network for the

decoder part. No dropout or specific regularization was used to train the three

models. The encoder and decoder neural networks were trained jointly. For all

the models we used a 50 nodes dense layer with linear activation function for430

the latent variables. Different architectures and β values were independently

chosen for each model. Just below, we describe the final used architecture (and

β value). In Section 5.4, we will explain how we have chosen β parameter.

Duration. - This model learns to predict the duration of the phones. One435

input parameter was given to the network corresponding to the length of the

phone (number of frames). We concatenate this parameter with phone labels to

feed the encoder. A single BLSTM layer of 1024 nodes was used as an encoder.

The decoder has a single layer of 256 nodes with ’TANH’ as activation function

followed by a linear output layer. A learning rate of 5 × 10e−4 was used, with440

β = 2 × 10e−5.

Acoustic. - We extract the acoustic features presented in Section 3.2 and con-

catenate them with phone labels to feed the encoder. The encoder is a single

layer BLSTM network of size 1024. The decoder has two BLSTM layers of 1500445

nodes followed by a linear output layer. A learning rate of 10e−4 was used, with
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β = 5 × 10e−3.

Visual. - This module learns to predict 3D (x,y,z) sensors trajectories from

phone labels. We give an input of size 132 (44 sensors with x, y and z co-450

ordinates) to the encoder with the phone labels. The encoder is a single layer

BLSTM network of size 1024. The decoder has two BLSTM layers of 1024 nodes

and a linear output layer. We used a learning rate of 5 × 10e−5 and β = 0.1.

Audiovisual. - This module learns to predict audiovisual features from phone455

labels. We concatenate the acoustic and visual and linguistic features to con-

struct the input of the encoder. The encoder is a single layer BLSTM network

of size 1500. The decoder had two BLSTM layers of 2048 nodes and a linear

output layer. We used a learning rate of 10e−4 and β = 0.

460

5.4. Choice of β based on clusters overlapping optimization

As discussed in Section 5.1, the choice of the parameter β is crucial to obtain

a well-structured latent space. A very small β parameter does not allow the

clusters of emotions to be close enough to be able to interpolate existing latent

vectors. However, a very large value of β will result in a very large overlap465

of clusters, and prevent the network from learning to reconstruct the data of

different emotions correctly. Figure 3 shows the impact of increasing the value

of β on the quality of the reconstruction of visual data.

In this section, we propose a procedure to choose the β value for expressive

audiovisual speech synthesis. The main goal is to obtain a set of clusters suf-470

ficiently close, with a slight overlapping as presented in figure 4 to manage to

mix emotions or building different degrees of emotion.

In fact, the different dimensionality reduction and projection techniques are

not reliable to judge objectively the state of the latent space. When using

different techniques (principal component analysis (PCA), t-SNE, U-map) the475
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Figure 3: The impact of the gradual introduction of the regularization term (see equation 2)

on the quality of the reconstruction of the visual data from the validation set.

results of the projections are different. Moreover, using the same projection

technique, the choice of the parameters (number of neighbors of each vector,

learning rate, epochs number,...) is crucial and has a significant impact on the

structure of the projection of the resulted clusters. Furthermore, when using the

PCA technique, for the acoustic modality for instance, the variance that can be480

seen on a 3D plot corresponds only to 22.9% of the total of the variation. Thus,

it is imperative to use a numerical quantification technique of the overlap rate

which takes into account all the dimensions of the latent space. The projections

can be then used only as visual aid/accompaniment of the numerical results

which will allow them to be interpreted.485

Inspired by the ecology domain, we suggest the use of the probabilistic

method of Swanson et al. [64] used actively in ecology, and mainly used to

compute the degree of overlapping between species niches and evaluate coex-

isting and competitive species [65, 66, 67]. This method provides directional

estimates of overlap between niches and produces unique projections of mul-490

tivariate data. Although three-dimensional data were used in this article, the

authors explain that the method has no constraints on the number of dimensions

considered.

In this work, we want to use this method to compute and quantify the
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Figure 4: t-SNE plot [63] of the seven clusters of the latent representations formed by data

distribution corresponding to the six emotions and the neutral state. The closest points in the

higher dimensional space (latent variables size is 50) are the closest in the projection 2D space.

The regularization term pushes data samples to gather around zero meanwhile maximizing

their variance. The data samples were clustered differently depending on the nature of data

(A: duration, B: acoustic and C: visual).

degree of overlapping between the emotions clusters independently from the495

projection technique chosen for the visualization. This method computes the

intervals of overlapping between the clusters distribution in high dimensions.

The overlapping is defined as the probability that an individual from species A

to be found in the region specific to species B. In the original work, this method

was applied to 3D data. In our work, we apply it to 50-dimensional data (the500

size of the latent vectors). This method requires a single hyperparameter which

is the desired confidence interval of the overlapping, we used the value of 95%

in this work. We start with a value of β = 0 and we increase it gradually until

our clusters start overlapping. We stop the procedure when the overlapping

metrics show that there is no isolated clusters or subgroup of clusters. To505

compute the overlapping metric, Swanson’s method needs to know the cluster

label of each latent vector. In this work we gave the real cluster labels to enable

future analysis of the similarity between emotions (considering that more similar

emotions will tend to overlap the most). However, when the cluster labels are

not known, which is the case of unsupervised learning, it is possible to use the510

t-SNE plots to identify distant clusters and to give them arbitrary names. In
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fact, the final aim of using the Swanson method is not to study the overlapping

between specific emotions, but it is to bring distant latent vectors closer to cover

dead zones in the latent space and make it smoother.

The Figures 5, 6, 7 and 8 show the distribution of the probabilistic emo-515

tion overlapping metric of the different models and represent the probability of

emotions displayed in columns overlapping onto those displayed in rows. The

distribution means and 95% credible intervals are displayed with continuous and

dashed lines respectively.

For visual data, we see in Figure 5 that with β = 0.05, the latent clusters520

are not overlapping, which indicates that there may be discontinuities in the

latent space. These discontinuities, or dead zones, compromise the possibility of

interpolation between the clusters. To fix that, we increase the value of β to push

the clusters to be closer. We can see that with β = 0.1 the clusters are sufficiently

close to start overlapping slightly. We can also see that no emotion clusters or525

subgroup of clusters are isolated and that the different emotion clusters tend to

gather around neutral latent cluster.

Concerning acoustic data (Figure 6), a smaller value (β = 5 × 10e−3) was

enough to obtain sufficient overlapping, especially for the surprise latent cluster

that seems to be only connected with joy latent cluster.530

When analyzing duration latent space (Figure 7), we could have kept β =

0, but disgust emotion was isolated from all other emotion clusters, thus, we

introduced small β values (1×10e−5 and β = 2×10e−5) until the disgust cluster

started overlapping.

In the case of audiovisual data (Figure 8), the clusters are already overlap-535

ping with β = 0, in this case, there is no need to increase its value. Those

results are coherent with what we got with the fully-connected architecture.

Actually, for the audiovisual model, the high-overlapping degree between the

latent clusters without introducing the regularization term (β = 0), explain the

poor performance of the jointly trained model that we noticed in the previous540

section.

For the other models, we can notice a similarity between the results of the
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Figure 5: Distribution of the probabilistic emotion overlapping metric for visual modality.

The matrix of overlapping distributions are presented for two values of β, 0.05 and 0.1.
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Figure 6: Distribution of the probabilistic emotion overlapping metric for acoustic modality.

cross-validation tables and the overlapping metric results. Actually, for visual

data, Table 6 and Figure 5 report both similarities between sadness and neutral,

between fear and anger and between surprise and fear. For acoustic data Table545

7 and Figure 6 show both similarities between fear and disgust, between neutral

and sadness and between surprise and joy. Concerning duration data, Figure 7

confirms that duration for all emotions are very similar, only disgust emotion

stands out with a very low speech rate. Thus, disgust latent cluster is barely

overlapping with the other emotion clusters.550

Our method allows choosing one of the best β values among those selected.

Unfortunately, we cannot formally guarantee that it is optimal. Indeed, even if

we have run several training for several β values, the very long duration of each

training does not allow trying an exhaustive list of β values (for information,

about 1 week of computation is needed for 1 model and 1 β value - without555

optimizing the code). However, we conducted a perceptual experiment for our

”best” value of β but it is extremely difficult to multiply this type of experiment
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Figure 7: Distribution of the probabilistic emotion overlapping metric for the duration model.
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Figure 8: Distribution of the probabilistic emotion overlapping metric for the audiovisual

model.
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for several values of β. It should be noted that it is clear that the choice of an

optimal β requires further investigation.

6. Synthesis: speech generating process560

As shown in Figure 9, at the synthesis phase, the encoders are not used.

Only the decoder part is useful at this stage. We choose a vector zd from the

duration latent space, and we give it to the duration decoder along with the

phone labels to predict their duration. We recall that for training we didn’t use

the emotion label. The clusters were built automatically. In the synthesis stage,565

and in order to choose zd from a cluster, we just need to know few true labels

in each cluster. Afterwards, we can choose any zd of this cluster. That means

that we do not need to use a fully labeled corpus, just few labels of the corpus

need to be known. zd is for us, the centroid of the cluster (more explanation can

be found in section 7). We choose za/zv from the acoustic-visual latent space570

and with the predicted duration and the phone labels the acoustic-visual data

are predicted by the acoustic-visual decoder. The acoustic and visual generated

data are synchronized since they are based on the same phone duration. The

visual data trajectories are decomposed into blendshape weights to animate a

3D character. The upper part of the avatar’s face was intentionally blurred to575

avoid any bias caused by its static state (the upper part is not animated in this

work) and to help the participants to focus only on the lower part.

7. Evaluation

To evaluate our system, we conducted four perceptual experiments to vali-

date different results of the CVAE. For each experiment, the generated duration,580

the acoustic and the visual data were used to create audiovisual animations of

a 3D avatar. Since we animate only the lower part of the avatar’s face, we

deliberately blurred the upper part of its face to eliminate any unintentional

bias caused by its lack of expressiveness. For the four experiments, and for
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Figure 9: The architecture of the audiovisual animation system at synthesis phase. Phone

labels and zd are given to the duration decoder to predict phones duration. Phone labels,

duration as well as za and zv from acoustic and visual latent spaces are passed to the acoustic

and visual decoders respectively to generate synchronized audiovisual animation.

each speech aspect (duration, acoustic and visual) we choose the average z vec-585

tor of each emotion cluster (ref. Figure 4) to be the representation of the six

emotions and the neutral state. We copy-synthesized the original audio files

with the same vocoder (WORLD [57]) used for generating synthetic audio files.

This is to eliminate bias due to the quality drop caused by the vocoder. After

collecting the results from all the participants, we computed the statistical sig-590

nificance levels using the p-values from the t-test and we corrected them using

Holm Bonferoni method [56].

7.1. Generating basic emotions

In this first experiment, we evaluated the ability of our system to generate

recognizable emotions. To do that, we choose the centroid of each emotion’s595

cluster to generate duration, acoustic and visual features of speech. We pre-

sented to 12 participants 10 generated synthetic animations and 10 animations

created from original data for each emotion in a random order (total of 140

animations). The participants were asked to choose the emotion corresponding

to the animation from a list of seven choices. The results are shown in Table 8600

and 9. We added an (*) symbol to statistically significant recognition rates and

(-) for non-significant recognition rates in Tables 8 and 9.

The results of this experiment confirm that the synthetic audiovisual ani-

mations were highly recognizable for almost all the emotions with more than
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Table 8: Confusion matrix for the original animations for the six emotions and the neutral

state. The values represent the percentages of the correct recognition answers.

Perceived emotion

Anger Disgust Fear Joy Neutral Sadness Surprise

E
m
o
ti
o
n

p
ro

d
u
c
e
d

Anger 97.50(*) 0.00(-) 0.00(-) 0.00(-) 0.00(-) 0.00(-) 2.50(-)

Disgust 0.83(-) 67.50(*) 8.33(-) 0.00(-) 0.83(-) 22.50(-) 0.00(-)

Fear 15.00(-) 5.00(-) 42.50(*) 0.00(-) 12.50(-) 22.50(-) 2.50(-)

Joy 18.33(-) 0.00(-) 0.00(-) 69.17(*) 1.67(-) 0.83(-) 10.00(-)

Neutral 0.00(-) 0.00(-) 4.17(-) 12.50(-) 77.50(*) 4.17(-) 1.67(-)

Sadness 2.50(-) 0.00(-) 32.50(-) 5.00(-) 0.83(-) 57.50(*) 1.67(-)

Surprise 16.67(-) 0.00(-) 0.83(-) 10.00(-) 0.00(-) 0.00(-) 72.50(*)

Table 9: Confusion matrix for the synthetic animations for the six emotions and the neutral

state. The values represent the percentages of the correct recognition answers.

Perceived emotion

Anger Disgust Fear Joy Neutral Sadness Surprise

E
m
o
ti
o
n

p
ro

d
u
c
e
d

Anger 71.67(*) 15.83(-) 5.00(-) 0.00(-) 5.00(-) 0.83(-) 1.67(-)

Disgust 1.67(-) 83.33(*) 1.67(-) 0.00(-) 3.33(-) 10.00(-) 0.00(-)

Fear 8.33(-) 11.67(-) 11.67(-) 0.83(-) 42.50(-) 20.83(-) 4.17(-)

Joy 5.00(-) 0.00(-) 3.33(-) 71.67(*) 5.00(-) 4.17(-) 10.83(-)

Neutral 0.00(-) 0.00(-) 1.67(-) 0.83(-) 92.50(*) 5.00(-) 0.00(-)

Sadness 5.00(-) 7.50(-) 15.00(-) 0.00(-) 45.00(-) 26.67(-) 0.83(-)

Surprise 5.00(-) 0.00(-) 4.17(-) 9.17(-) 8.33(-) 0.00(-) 73.33(*)

71% of the recognition rate. Sadness and fear were the hardest to recognize,605

even for the original animations. This result was expected, since the upper part

of the face is crucial for recognizing these emotions [68], [69]. Some synthetic

emotions were better recognized than the original ones (disgust, joy and slightly

surprise). We think this is due to the use of the same latent vector z for all the

animations of a given emotion.610

The participants were able to detect the pattern related to the chosen z

and identify more easily the synthetic emotions. It also shows that the latent

representation has well captured the specificity of emotions. Recall here, that

no label of emotion was used in the learning phase. The emotion label was just
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used to identify the targeted cluster in the synthesis phase.615

We can also notice the same confusion tendencies between original and syn-

thetic emotions. Confusion was detected between fear and sadness, between

joy and surprise, also fear and sadness were seen as neutral state which explain

their low recognition rate.

7.2. Assessing generated speech quality620

In this experiment, we evaluated the ability of our system to generate coher-

ent articulatory sounds and gestures. To do that, we used the 140 animations

generated in the previous experiment. Using a web application, we presented

to 19 French-speaking participants, the 140 animations in a random order. For

each animation we asked the participants to note the degree of correspondence625

between the sounds pronounced and the movements of the lips of the avatar.

The participants were asked to put the cursor on the adequate position on a

slider containing the following coherence degrees: 1) never (0%), 2) rarely (25%),

3) moderately (50%), 4) often (75%) and 5) all the time (100%).

Table 10: The degree of coherence between the pronounced sounds and the movements of the

avatar’s lips for original and synthetic animations considering a scale of 0% (never) to 100%

(all the time).

Anger Disgust Fear Joy Neutral Sadness Surprise

Original 72.53% 72.76% 77.53% 68.03% 75.44% 72.67% 69.67%

Synthetic 76.57% 71.04% 73.11% 69.86% 78.69% 74.86% 72.60%

The results of this experiment are presented in the tables 10. We present630

the results for each emotion of the original and the synthetic animations. Those

results show that the original and the synthetic animations contain coherent

sounds and lip movements. Moreover, using a t-test to compare the results of

the two groups of animation (original and synthetic), we found that there is

no significant difference between them and this is for all the different emotions.635

Those findings confirm the quality of the articulation of the synthetic samples

generated with our method and confirm that, besides expressing correctly the
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different emotions, our system is able to generate coherent sounds and lip move-

ments in an expressive context.

7.3. Generating nuances of emotions640

The aim of this second experiment was to evaluate the ability of our system to

generate nuances of a given emotion. We used a latent vector z corresponding

to a linear combination between the centroid of the neutral cluster and the

centroid of the other six emotions. We generate nuances at 33% and 67% of

each emotion. We presented a set of animations from the same emotion with645

different emotion degrees, two by two, to 10 participants and we asked them to

choose the animation that was the most expressive, according to them. For the

six emotions we generated 5 examples, each example results in 7 comparisons

(total of 210 comparisons). The results are presented in Table 11, we added (-)

symbol to statistically non-significant scores.650

Table 11: Percentages of correct answers when comparing emotion nuances two by two. The

emotion degrees compared are 100% neutral (represented by 0), 33%, 67% and 100% and the

original animation of a given emotion.

0/33 0/67 0/100 33/67 33/100 67/100 100/original

Anger 82 94 90 94 96 88 82

Disgust 52 (-) 80 82 92 86 70 86

Fear 58 (-) 56 (-) 80 66 72 80 88

Joy 74 92 96 90 90 90 91

Sadness 56 (-) 70 88 74 76 86 95

Surprise 78 92 92 90 94 86 98

Average 66 80 88 84 85 83 90

For this experiment, on average, the nuances order was well respected (66%

for 0/33 and >80% for the other comparisons). The high scores of compar-

isons between neutral and the different nuances (0/33, 0/67, 0/100), show that

the emotions are mainly well perceived and easily detectable, especially for the

0/100 comparison. The subtle nuance (33%) compared with neutral is under655

70% mainly due to fear, sadness and disgust low scores. Concerning the com-

parison of the generated nuances between them (33/67, 33/100 and 67/100),
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the scores (>80%) show that the graduation of the emotions is successfully rep-

resented by our linear combination of latent vectors. The participants were able

to perceive the difference between the different emotion nuances and correctly660

identify the less/more expressive animation. Those results are very interesting,

since they prove that we succeeded in restructuring the latent space and making

it continuous. Actually, the vectors used to generate the different nuances do not

correspond to any previously seen real data. They are in fact newly generated

vectors and the nuances of emotions that we generated by linear combination665

are completely invented. On the other hand, the original animations were seen

as more expressive than synthetic ones (at 100%). This result can be explained

by the fact that by putting the two animations side by side, the imperfections of

the synthetic data become obvious and easily identifiable. Especially since some

fine details of the voice are lost during the learning process (trembling, cracking670

of the voice). Also the original animations have a richer prosody, containing

more variability within the same sentence, while our duration model seems to

average the duration of the phonemes and results in a more monotonous speech.

7.4. Generating blended emotions

In this third experiment we evaluated the ability of our system to generate675

mixtures of emotions by blending emotions together. We showed animations

of original and synthetic data at 100% of emotion degree and animations cor-

responding to blended emotions (50% of emotion1 and 50% of emotion2) in a

random order to 12 participants. We asked the participants to estimate the

contribution of the blended emotions on a slider having emotion1 and emotion2680

as extremities. We generated 5 examples for 4 blending scenarios. Each sce-

nario contains 5 animations (for a total of 100 animations). The results of this

experiment are shown in Figure 10.

The results of this experiment show that our system succeeded in creating

blended emotions that were correctly perceived as intermediate emotions in the685

four considered blending scenarios. The choice of the four combinations of these

emotions was based on the Plutchick wheel of emotions [70] to obtain coherent
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originial e1 e1x100 e1x50 + e2x50 e2x100 original e2

50% e1 + 50 % e2 e2

Sad Disgusted

Sad Surprised

Afraid Surprised

e1

Figure 10: The generated blended emotion (in green) was perceived as an intermediate emotion

between e1 and e2 for the four blending scenarios.

combinations (for instance anger and disgust results in contempt). As we said

in the previous experiment, the vectors that we created by linearly combining

latent vectors do not correspond to any real data in our corpus. This is the690

strong aspect of the VAE as a generative model, since it is able to generate a

coherent output from fictive/invented latent vectors. Moreover, we point out

that even the linearly combined vectors (the centroids) are themselves non-

existent in the original corpus. This result validates again the continuity of the

reconstructed latent space. Regarding the original animations, we can see that695

they were mainly perceived as closer to the emotion definition that the synthetic

ones at 100%. The only exception is disgust, since the synthetic animations were

seen as more disgusted than the original ones. Those results confirm our findings

in the first experiment (7.1 Generating basic emotions).

8. Conclusion700

In this paper, we studied different neural architecture for Text To Expressive

Audio-Visual Speech Synthesis. We first validated the emotional content of

our audiovisual corpus with three perceptual experiments. In the first part of

this paper, we used a fully connected architecture to study the ability of the

network to learn characteristics specific to each emotion. The results of the705

cross-validation confirm that the baseline architecture is able to learn emotion-

specific features that are in line with the recognition rates of the original corpus.
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We also found that a joint training of acoustic and visual data degrades the

performance of the model. This result is in line with what can be found in the

literature.710

In the second part of this paper, we applied CVAE to Text To Expres-

sive Audio-Visual Speech Synthesis. We explored the CVAE architecture for

generating duration, acoustic and visual aspects of speech without using emo-

tion labels. Inspired by the ecology field, we applied a probabilistic method

to compute the overlapping degree between the emotions high dimensional la-715

tent clusters. This probabilistic metric allowed us to successfully choose the

β parameter of the CVAE. The results of our system were validated by four

perceptual experiments that confirmed the capacity of our system to generate

recognizable emotions with a coherent articulation. More than that, the gener-

ative nature of the CVAE allowed us to generate well-detected nuances of the720

six emotions and to blend different emotions together. Those results show that

we succeeded in well structuring the latent space of the CVAE and making it

completely malleable. The latent space became particularly robust, since we

were able to generate coherent outputs from new vectors that were created with

linearly interpolating real latent vectors.725
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