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Abstract: The Kalray MPPA3 Coolidge many-core processor is one of the few off-the-shelf
high-performance processors amenable to full-fledged static timing analysis. And yet, even on
this processor, providing tight execution time upper bounds may prove difficult. In this paper,
we consider the sub-problem of bounding the timing overhead due to memory access interferences
inside one MPPA3 shared memory compute cluster. This includes interferences between computing
cores and interferences between the instruction and data accesses of a given core. We start with
a detailed analysis of the MPPA3 compute cluster, with emphasis on three key components: the
Prefetch Buffer (PFB), which performs speculative instruction loads, the fixed-priority (FP) arbiter
between instruction and data accesses of a core, whose behavior is highly dependent (in the worst
case) on interferences from other cores, and the SAP (bursty Round Robin) arbiters guarding
access to memory banks. We provide a full-fledged interference analysis covering both levels. This
analysis is rooted in a novel modeling of memory access patterns, which describes their worst-
case and best-case burstiness, a key factor influencing the MPPA3 arbitration. We evaluate our
interference model on multiple applications, ranging from real-life avionics code specified in SCADE
to linear algebra code. We also suggests methods for reducing execution time and improving
analysis precision by means of code generation.
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Analyse d’interférences mémoires sur les clusters de calcul
du pluri-cceurs Kalray MPPA3

Résumé : Le pluri-coeurs Kalray MPPA3 Coolidge est un des seuls processeurs haute-
performance sur étagére a permettre le calcul de bornes statiques (non-probabilistes) sur le
temps d’exécution. Mais méme sur ce processeur le calcul de bornes serrées est difficile. Dans
cet article, nous traitons le sous-probléme du calcul de bornes supérieures sur les interférences
dues aux accés concurrents aux bancs de mémoire partagée. De plus, notre analyse se concentre
sur un seul cluster de calcul de I'architecture-cible, et s’intéresse seulement aux interférences
entre coeurs de calcul du cluster et aux interférences entre accés instruction et données d’un
seul coeur. Nous commengns par une analyse détaillée du cluster de calcul MPPA3, mettant
Paccent sur trois composants-clefs: le tampon de préchargement anticipé (Prefetch Buffer, ou
PFB) qui réalise des préchargements de code spéculatifs, 'arbitre a priorité fixe (FP) entre les
accés au code et aux données d’'un méme cceur de calcul, dont le comportement est dépendant
(au pire cas) des interférences d’autres coeurs, et les arbitres SAP (Round Robin avec support
pour les rafales) qui controlent accés aux bancs de mémoire partagée. Nous développons une
analyse d’interférences compléte par rapport au domaine choisi. Notre analyse est fondée sur une
nouvelle modélisation des motifs d’accés & la mémoire, qui permet la représentation du groupage
des accés en rafales (dans le pire et dans le meilleur des cas). Ce facteur a une influence trés
forte sur ’arbitrage MPPA. Nous évaluons notre approche d’analyse d’interférences sur plusieurs
applications allant de taches avioniques appartenant & une application de production spécifiée en
SCADE, et jusqu’a du code d’algébre linéaire représentatif pour les applications de type “jumeau
numérique” ou “machine learning”. Nous suggérons aussi des méthodes permettant de réduire le
temps d’exécution et d’améliorer la précision de ’analyse par des choix de génération de code.

Mots-clés :  Temps réel, Analyse de temps d’exécution, Analyse d’interférences, Pluri-coeur,
Kalray
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1 Introduction

The world of embedded computing is rapidly changing. The classical embedded control system,
with its (relatively) low computational requirements is progressively extended to include AI/ML
components or model predictive controﬂ with high computational needs (and tight real-time
requirements). Implementing such systems requires methods and tools belonging to not one, but
two major scientific and engineering fields:

e Real-Time Embedded (RT/E) computing, for the aspects related to safety and predictabil-
ity.
e High-Performance Computing (HPC), for the aspects related to performance and efficiency.

The Kalray MPPA family of many-core processorsﬂ is one of the most promising results of
this on-going synergy between RT/E and HPC computing. It has been developed as a hard-
ware solution meant to provide support for both raw performance needs and predictability. Raw
performance is attained by means of massive parallelisrrEI and carefully designed memory sys-
tem, on-chip interconnect, and I/O interfaces. Attaining predictability usually requires both
transparency—access to the processor specifications to allow analysis—and avoiding as much as
possible mechanisms that are known to reduce the precision of analysis [3], such as out-of-order
pipelines, speculation, non-LRU caches... Kalray does both [6] [10].

However, even this level of hardware support for predictability does not make timing analysis
easy. While the in-order VLIW pipeline of each MPPA3 processing code is amenable to very
precise timing analysis, two fundamental issues remain:

e Attaining both performance and predictability is difficult on any multi- and many-core pro-
cessor [4], as performance requires some degree of resource sharingﬂ whereas predictability
is traditionally attained through time/space isolation mechanisms meant to eliminate in-
terferences [2], or at least significantly reduce and bound them

e The quest for raw performance means that, even though Kalray MPPA processors are the
best for predictability among production HPC-capable processors, it still features hard-
ware components that make analysis difficult and reduce its precision. On the MPPA3,
these components perform speculative memory fetches, L1 fized-priority (FP) arbitmtiorﬂ
between code and data memory requests of a given processor core, bursty L2 and L3 arbi-
tration with bounded (not fized) burst size between memory requests coming from different
cores/clusters, or (more classically) they access DDR memory whose refresh operations
must be considered during timing analysis.

The first topic is covered in ongoing work which has already produced a few interesting com-
promises [16, 6 [7]. Our goal, in this paper, is to focus on the second topic, and more
precisely on the issues related to executing parallel code on a single compute cluster of the
MPPAS3 processor.

Our contribution is threefold:

1Digital twins in the control loop.

2w . kalrayinc.com

3Large numbers of efficient computing pipelines and specialized accelerators.

4For instance, allowing two or more processors to access the same memory bank concurrently.

5We shall not consider in this paper mixed-critical solutions where the predictability of high-performance
parts of an application is attained by means of monitoring and scheduling.

6Which is dependent on the behavior of lower levels of the memory hierarchy.

RR n°® 9404
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e We conduct an analysis of the Kalray MPPA3 compute cluster, focusing on the memory
subsystem and on the three components that pose static analysis problems (prefetch buffer,
L1 arbiter and L2 arbiter). We identify worst-case interference patterns which result in
better interference bounds than over-approximations of previous work. In doing so, we
determine the importance of memory access burstiness in the definition of these patterns,
and we also identify methods to reduce interferences by construction.

e We introduce a formal model allowing the representation and worst-case reasoning on
bursty memory access pattern specifications. On this base we develop novel algorithms
allowing to derive worst-case upper bounds on the memory access interferences at both
L1 level (between instruction and data requests of the same core) and L2 level (between
requests coming from different cores).

e We evaluate our model and algorithms on multiple applications: a classical embedded
control application (a real-life avionics software specified in SCADE), a few applications of
the TACLE WCET testbench []], and a linear algebra code (matrix multiplication) which
is representative for high-performance AI/ML code.

Our work was guided by two main objectives: precision and scalability. To attain precision, we
consider in great detail the properties of the hardware. To attain scalability, we have systemati-
cally avoided HW state exploration approaches, relying instead on static over-approximations.

Outline The remainder of the paper is organized as follows: In Section [2| we review previous
work. Section [3| presents in detail the MPPA3 architecture, with focus on the compute clusters.
In Section [4] we set the basis for the definition of the interference model by formally defining
the architecture and application model and by setting the general timing analysis paradigm
we follow. Sections [f] and [6] defined our methods for L1, respectively L2 interference analysis.
Section [7] covers experimental evaluation, Section 8] discusses methods for reducing interferences,
and Section [ concludes.

2 Related Work

Our work is closely related to the large corpus of previous results on the timing analysis of
parallel code running on multi-cores, regardless of whether analysis is considered as an end in
itself [IT, [13], or if it is seen as part of a larger ressource allocation process meant to provide
hard guarantees on the real-time behavior of the resulting code [15] [6, [16, 12, 17, [7]

One main difference between our approach and the ones cites above is that we do not consider
the full-fledged timing analysis problem. Instead, given that multiple integrative approaches
exist (cited above), we only focus on providing upper bounds on L1 and L2 memory access
interferences.

In doing this, we follow a multicore response time analysis[d] approach where, as detailed
in Section the worst-case respose time (WCRT) of a task is computed as a sum between a
worst-case execution time (WCET) assuming no interferences plus separate terms corresponding
to the various interference sources (in our case, L1 and L2 interferences). In particular, we
assume that WCET analysis does not even consider the state of the L1 arbiter (where data and
instruction memory accesses of the same PE interfere). Theoretically, considering the state of
this arbiter during WCET analysis could significantly improve analysis precision. However, the
presence of speculation and the dependence of L1 arbitration on the behavior of lower levels of
the memory hierarchy means that the state space to explore is very large, leading to tractability
issues which we wanted to avoid.

Inria
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Much of the previous work cited above has (also) been has targeted at the Kalray MPPA plat-
form, and in particular its MPPA2 version (codenamed Bostan). Our paper paper considers the
hardware innovations brought by the Kalray MPPA3 platform—speculative prefetch and bursty
arbitration—which have only been considered in [I0]. By comparison, we provide significantly
tighter bounds on the L1 interference analysis and the first correct L2 interference analysis, both
based on a novel modeling of burstiness which we introduce.

3 The Kalray MPPA3 many-core processor

The third generation of Kalray many-core processors (codenamed Coolige) integrates 80 Process-
ing Elements (PEs) running at 1200 MHz, distributed over 5 identical Compute Clusters (CCs).
CCs are interconnected through a dual Network on Chip (NoC) and through an Advanced eX-
tensible Interface (AXI). The AXI network also connects the CCs to two DDR controllers (each
guarding access to 4GB of RAM each), and to a PCle controller. The NoC also connects the
CCs to two 100G Ethernet controllers.

In this paper, we focus our study on a single CC. Thus, we do not consider in our analysis
the NoC and the AXI interconnect.

PEy..PE15 Cluster 1/0
! o
[ 4{5 4%30
VLIW S| &
PFB = M| %
pipeline S é@ ||~
Pl =ll OO
wl|| %X 2| ©
s || Ds | A<l <l 2]z
Vi (T
Local interconnect
T $ T
[ @) T.) 8 T) <]
AMB= 58 5§ 22| |2
16x256kB 5 < 5|8 &
SMEMg-SMEM 5 Secure zone

Figure 1: MPPA3 Compute Cluster

3.1 Compute Cluster

The overall organization of a CC is depicted in Fig. [I} It consists of two interconnected zones:
a secure one and a non-secure one. The secure zone contains a Resource Management (RM)
processor, a 256 KB secure memory bank and a dedicated cryptographic accelerator. The non-
secure zone contains:

e 16 identical processing elements (PEs)
e 16 identical shared Static RAM banks of 256 KB each, totaling 4 MB of shared local
memory (SMEM)

RR n°® 9404
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e Two Direct Memory Access (DMA) interfaces allowing receiving (Rx) and transmitting
(Tx) data over the NoC

e An AXI channel interface consisting in two components, one initiator for receiving requests
from outside the CC, and one target issuing requests to the other CCs and 1/0 devices.

e A second cryptographic accelerator and a Debug Support Unit (DSU).
e A real-time clock is associated with each PE, and clocks in the same cluster are synchronous.

In this paper, we focus on the interaction between the 16 PEs and the 16 SMEM banks of the
non-secure zone, which is critical in attaining performance.

3.2 Processing element (PE)

As pictured in Fig. |1|and Fig. left), each PE consists of a 64-bit 6-issue Very Long Instruction
Word (VLIW) pipeline alimented by one prefetch buffer (PFB). The PFB is connected to the L1
instruction cache and the pipeline is directly connected to the L1 data cache. Instruction and
data requests towards the memory are multiplexed using a fixed priority (FP) arbiter that gives
priority to data requests (either read or write).

The VLIW pipeline issues bundles formed of one or more instructions. Each instruction
is formed of 1 to 3 32-bit words, called syllables, and a bundle can contain 1 to 8 syllablesm
The VLIW pipeline is timing compositional [5], meaning that execution is monotonic: shorter
functional unit durations and faster responses from memory result in shorter execution time.

3.2.1 Prefetch bufer (PFB)

While the VLIW pipeline is timing compositional, the pipeline is alimented by a prefetch buffer
which performs speculative prefetching. It has 4 lines of 4 syllables each, and it always attempts
to keep the lines filled with code. It does so by requesting instructions from the instruction cache
(one PFB line at a time) each time the PFB contains free lines.

When execution reaches and takes a jump operation—unconditional jump, conditional jump,
call, or hardware loop end—the PFB is flushed and the prefetch process starts from scratch.

Speculation means that the number of memory requests issued by the PFB to the cache (and
thus to the memory) may vary, even for the same code executed on the same data. Indeed,
faster instruction loads from memory due to reduced interferences from other cores may result
in the PFB issuing more requests before a jump. In turn, this may result in a longer overall
execution—a timing anomaly [14].

Note that each point where execution reaches a jump operation may be subject to speculative
loading of at most 4 PFB lines of code that may not be executed. This means that effects can
accumulate in time, but also that this effect is bounded. We shall always, in our analyses, assume
a worst case where the PFB manages to fill in the PFB lines before each jump that is taken. This
results in at most 4 requests to the instruction cache and 2 requests to memory, each of which is
potentially subject to interferences. However, it is important to note that only the last of these
two speculative memory requests may delay pipeline execution and thus increase execution time.
This is because the last request is issued just before the PFB is flushed in response to the jump
being taken, and thus delays the load of the first bundle after the jump.

Due to speculative prefetching, the precision of the analysis will be reduced for code featuring
many jump instructions that are taken. To avoid creating fine-grain branching, the Kalray3

7Grouping instruction into bundles is subject to complex functional constraints. For instance, two memory
operations cannot be part of the same bundle.

Inria



Bounding memory access interferences 7

instruction set (KIS) provides a few predicated operations [9], such as conditional move operations
or conditional load/store operations. These operations take as input a predicate register, and
the operation is executed only if the predicate is non-zero. This allows conditional execution
without branching, and thus without the associated PFB-related imprecision.

3.2.2 L1 caches and memory request sizes

Both L1 caches are 4-way set-associative with Least Recently Used (LRU) replacement policy, a
64 byte (16 syllables) cache line and 16 Kbytes total size.

The data cache is write-through, with a no-write-allocate write policy. This means that write
operations are forwarded synchronously to the memory and to the cache itself. If the data is in
cache, the cache state is updated. If not, the cache state remains unchanged.

The bus between caches and memory is 256 bits wide (32 bytes, 8 syllables). Each memory
request can transport at most this amount of data, and thus is issued in exactly 1 clock cycleﬂ
This means that loading a cache line from memory requires 2 read requests issued without a gap
between them (collated).

Write requests can only be issued for data (by the Load/Store unit of the pipeline). A write
request only takes 1 cycle, and corresponds to exactly one store operation of the program. In
particular, store requests are not grouped to reduce the number of memory accesses, meaning
that an SB or SW operation (store byte/word) operation will only use 8, respectively 32 bits
of the 256 bits of the memory bus width. The KIS provides store operations all the way from
from byte size to octuple word size (256 bits) and the compiler attempts to group smaller store
operations into larger onesﬂ However, for typical software (like those in our test bench), the
reduction obtained by automated grouping is not significant, so that large numbers of write
requests will be issued to memory. This also means that aggressive program optimization, which
reduces the number of memory accesses by working as much as possible in the processor registers,
is key in reducing interferences.

After a read request resulting in a miss, the PFB or pipeline cannot issue a new (read or
write) request to memory until the missing cache line is retrieved from memory.

Cache coherency between PE caches can be enabled, but as our study is mainly concerned
with predictability, and given that cache coherency makes timing analysis more difficult, we
assume that cache coherency is disabled.

3.3 Local cluster memory (SMEM) and local interconnect

Each CC contains 4Mbytes of Static RAM accessible to all PESB This Shared MEMory (SMEM)
is partitioned into 16 banks of 256Kbytes each, which we denote SM EMy — SM EM;s.
The SMEM can be used under 3 configurations:

Banked mode This is the classical memory space organization, where each SMEM bank is
assigned a contiguous physical address range. This mode allows maximum control over how
data and code are allocated to specific banks, allowing the enforcement of space isolation
rules that may significantly (or totally) reduce interferences between cores.

8The mechanism of the previous-version Kalray 2, where packets containing multiple flits allow transporting
more data than the bus width is not used. Instead, the bus is significantly wider, and burstiness support is added
to the arbitration.

9Stardard library routines, such as memcpy can also be (manually) optimized, which results in significant gains
in programs that use them, such as code generated from Lustre/SCADE.

10Tn addition, it also has a secure 256Kbytes bank, only accessible to the RM PE.

RR n°® 9404



8 Khatib, Potop-Butucaru, Baufreton

Interleaved mode Consecutive physical memory locations are assigned in consecutive (modulo
16) memory banks. Under uncontrolled memory access patterns, this has a load balancing
effect, usually reducing average-case interferences. However, space isolation approaches be-
come virtually impossible, which largely complicates worst-case static interference analysis.

L2 cache mode All or part of the local memory can be configured as L2 cache. Non-partitioned
shared caches are a difficult topic in timing analysis, because their states are difficult to
predict, making this approach incompatible with our objective of timing predictability.

For the remainder of the paper, we shall assume that the SMEM is configured in banked mode.
The local interconnect of the CC ensures that:

e Accesses from two different PEs to two different SMEM banks do not interfere with each
other.

e In the absence of interferences, the memory access time does not depend on the PE issuing
a request and the target SMEM bank (uniform memory access model).

In the absence of interferences, the memory pipeline latencyiEI is of 23 cycles.

3.4 Memory access arbitration

The structure of the memory system of the MPPA3 processor is pictured in Fig. We can
distinguish 3 arbitration levels:

L1 arbitration happens inside a PE between the data and instruction requests going towards
the memory. It is done by a single fixed priority (FP) arbiter.

L2 arbitration happens inside a CC. The access to each SMEM bank and to the AXI target is
guarded by one arbiter with SAP policy (detailed below). These arbiters receive requests
from the PEs and from the other components of the CC (RM, DSU, accelerators...).

L3 arbitration happens inside the AXI interconnect. One AXI arbiter with DRR policy guards
access to each of the two DDR memory controller and to each of the CCs.

Note that, through AXI, a PE of one cluster can access not only the external DDR memory, but
also the SRAM of other CCs.

L1 arbitration is of fixed priority (FP) type, with priority being given to data accesses. L2
arbitration follows a modified, configurable Round Robin policy called Smart Arbitration Policy
(SAP). Under SAP, when a source of requests (such as a PE) is granted access, (n+ 1) successive
requests will be accepted if they come in successive cycles starting on the cycle where access is
granted. Here, n is a per-CC configuration parameter that takes a value in the range 1..7.

For space reasons, we focus our analysis on the intra-cluster L1 and L2 arbitration and on
the interaction between PEs and SRAM banks of memory, assuming that other components
(grayed in Fig. ??) do not contribute to the interferences. This amounts to assuming that
software organization and synchronization ensures the absence of interferences from these sources.
Extending our analysis to include the L3/AXI level and interferences from the other sources is
ongoing work.

HTime duration between a cache issuing a memory read request upto the point where the memory respose
arrives back to the cache.

Inria
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Local interconnect CC, AXI interconnect Local interconnect CC,

Local External

Memory DDR
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Figure 2: Memory system of the MPPA3 processor

4 Interference analysis method overview

In this section, we first formalize the application and architecture model, and then define the
general timing analysis paradigm we follow.

4.1 Application and architecture model

We assume the application code we analyze uses 1 < P < 16 processing elements and 1 < B < 16
memory banks out of those provided by the CC. We label the PEs we use pg — pp_1, and we
label the memory banks by — bp_1. Note that py and by do not necessarily correspond to the
PEy or SMEMj. Indeed, in common configurations of the MPPA3 cluster, the first 2 of the 16
banks of the CC are used by system software, so that by cannot correspond to them.

We assume that pg...pp_1 and bg...bg_1 are fully dedicated to the execution of the appli-
cation code we analyze. In particular, no accesses from other sources (other PEs or other I/O
devices) target by ...bp_1 in the analysis timeframe, and the pg...pp_1 only execute code of
the aplication under analysis which only access memory banks bg...bp_1.

The application under analysis consists in a set of non-preemptive tasks t; 0 < i < (T —1).
We assume the allocation of tasks to PEs is fixed. We denote with p(t) the execution PE of task
t.

To focus on the low-level arbitration aspects that interest us, we assume that the potential
interference matrix is provided. More precisely, for every two tasks ¢; and t; with ¢ # j a
Boolean overlap(t;, t;) determines whether the two tasks can overlap in time, and thus interfere.
Various methods have been proposed in the literature for determining whether two tasks can
overlap/interfere, for both dependent/DAG task models and time-triggered task models.

We assume tasks do not perform uncached data memory reads. Thus, the execution of a task
will result in only 3 types of memory accesses: cached instruction memory reads, cached data
memory reads, and uncached data memory writes.

To facilitate presentation, we assume that the execution of each task starts with an empty
pipeline and empty caches. This state can be attained using barrier instructions.

RR n°® 9404
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4.2 Response time analysis

We assume that for each task ¢ one can compute WCET (t) which is a safe upper bound on the
execution duration of ¢ in isolation (without L2 interferences from other tasks) while assuming
that the PE executing ¢ has not one access to memory (subject to FP arbitration) but two
(separate for code and data), and also assuming that code and data are placed on separate
memory banks, so that no L1 or L2 interferences exist between code and data traffic generated
by t.

Note that WCET (t), as defined here, is not a true upper bound for the actual execution of
code on a MPPA3 PE, even assuming execution in isolation.

On the MPPA2 platform, L1 interferences were considered as part of the WCET value.
However, two innovations of the MPPA3—the introduction of the speculative prefetch buffer
(PFB) and the fact that L1 arbitration depends on L2 interferencesiEF significantly decouple
pipeline execution from the L1 arbitration, which explains our choice to separate them. Note,
however, that the analysis producing WC ET'(t) must still consider PFB-related and cache-related
contributions.

We denote with WCRT (t) an upper bound on the execution of task ¢, which also takes into
account the L1 and L2 interferences. Under a multicore response time analysis|d] approach, we
consider different interference sources (L1 and L2) as separate factors, which gives the following
formula for the response time of a task:

WCRT(t) = WCET(t) + inter fL1(t) + inter f L2(t)

where inter fL1(t) is an upper bound on the L1 interferences on the execution of ¢ (a time
overhead expressed in clock cycles) and inter f L2(t) is an upper bound on the L2 interferences
on t by tasks ¢ that may overlap in time with ¢ (overlap(t,t') = true). We assume that
overlap(t,t') = false for all task ¢ with p(t') = p(¢).

One important point here is that WCET(t), inter f L1(t), and inter f L2(t) are independently
computed. For instance, inter fL1(t) and interfL2(t) may correspond to different execution
scenarios.

5 L1 Interference Analysis

5.1 Worst-case single interference cost

Recall that the L1 arbiter is of fixed priority type (FP), giving priority to data traffic. The
main problem related to the use of FP arbitration is the potential for starvation for the lower-
priority traffic—a request may be indefinitely denied because high-priority request come without
interruption.

In the MPPA3 PE, an instruction request (issued by the instruction cache) can be delayed
by multiple data requests [10]. However, this delay is boundedﬂ an instruction request blocked
at the level of the L1 arbiter blocks the instruction cache, and thus does not allow the load of
new instructions by the PFB. Even assuming all instructions in flight in the pipeline and in the
PFB are memory accesses, when these instructions are all completed the instruction request will
pass L1 arbitration.

12During an execution in isolation, two memory accesses generated by non-consecutive bundles cannot traverse
the L1 arbiter in successive cycles. However, when the memory pipeline is blocked at L2 level by requests from
other processors, the L1 arbiter can be blocked itself, allowing new requests can “catch up” with the ones blocked
at L1 level.

13 A phenomenon known as bounded starvation.

Inria



Bounding memory access interferences 11

To determine the worst case scenario, recall that a load operation resulting in a data cache
miss will block the data cache until a response is received from the memory. Thus, an instruction
request can always pass just after a read request sent by the data cache to the memory.

The PFB can store up to 16 bundles formed of one load or store instruction each, and the
pipeline can contain 4 in-flight store operations. Then, the maximum delay L1 arbitration can
inflict to a instruction request happens when the pipeline and PFB contain a sequence of 19
store operations followed by one load operation resulting in a data cache miss. As each store
operation takes one cycle at the L1 arbiter level and each cached load operation takes 2 cycles,
the maximal total delay is d = 21 cycles.

5.2 Worst-case number of interferences

Every instruction read issued by the instruction cache is potentially subject to an interference.
However, determining the number of such operations is not straightforward in the presence of the
speculative PFB. To up-bound the number of accesses, we can make the worst-case assumption
that before each jumﬂ that is taken the PFB has the time to fill up. Given that the PFB size
equals that of 2 cache lines (but with potentially unaligned accesses) this makes for at most 2
instruction cache requests corresponding to speculative loads that are not used.

However, among these two unused speculative loads only the last one may delay execution—
the previous one is completed before the jump instruction is performed.

Existing static analysis tools such as aiTE or OTAWA[I] already can determine, in addition
to the task WCET, an upper bound on the number of read requests issued by an LRU instruction
cache when prefetch units are not present. Their analysis can be extended to include the worst-
case PFB request scenario detailed above, and thus to produce an upper bound on the number
of read operations issued by the instruction cache where interferences result in execution time
delays.

We denote with icache req(t) this number of requests.

5.3 L1 interferences - coarse upper bounds

Worst-case single interference cost d and the upper bound on the number of interfering instruction
cache requests icache_req(t) provide us with a first upper bound on the L1 interferences:

inter fL1°(t) = d * icache_req(t)

This first (and coarsest) upper bound has already been introduced in previous work [10].

We denote with w(t) an upper bound on the number of data write requests issued during
the execution of ¢ and with r(¢) an upper bound on the number of data cache misses during
the execution of ¢[T Recall, from Section that each write request takes 1 cycle on the L1
arbiter and each data cache miss results in two collated read requests taking 2 cycles on the L1
arbiter. Then, the L1 interferences associated with ¢ are bounded by w(t) + 2 x r(¢), and we can
refine the previous bound into:

inter fL1Y(t) = min(w(t) + 2 * r(t),inter fL1°(t))

4 Unconditional jump, conditional jump, or hardware loop iteration.
5yww.absint . com/ait/
16Both w(t) and 7(t) can be computed using existing WCET analysis tools.
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5.4 Burstiness and refined upper bound

In the the definition of interfL1°(t) and interfL1'(t), the icache req(t) term is difficult to
optimize, as prefetching decorrelates instruction reading from pipeline execution. However, sys-
tematically considering the penalty of d is an obvious over-approximation, as the worst-case
scenario to which it corresponds, while feasible, is difficult to attain.

To understand how this penalty can be reduced, we need to go back to the presentation of
Section[5.1] and understand how the sequence of data accesses that delays an instruction requests
at L1 level is formed. The first remark is that such a sequence, or burst, of data accesses (with
no free cycle between them) is formed of between 0 and 20 write requests followed by zero or
two collated read requests (but never more than 21 requests total).

In every execution trace ¢ of ¢, we can count these bursts and classify them by size. The
result is a function ey : {1,...,21} — N giving for each burst size ¢ the number e4(¢) of bursts
of that size. We denote with By; the set of such burst descriptions.

If e4 € Bg; is known, then an upper bound on the L1 interferences of trace ¢ is given by:

1 k41
inter fL1%(t, e4) = Z k x min <e¢(k:), [icache_req(t) - Z e¢(l)1>

k=21 =21

This formula amounts to assuming that the larger bursts are causing interferences before smaller
ones.

To allow moving from a per-trace formula to a trace-independent formula, we first introduce
a partial order relation on By;. If e!,e? € By, we say that e? dominates e', denoted e? > e! if
for every 21 > k > 1 we have:

21 21
D ixe(i) =) ixel(i)
i=k 1=k

This amounts to e? taking at least as many cycles at the L1 arbiter as e', and e? having these
cycles grouped into greater bursts. The set By, endowed with the < partial order, is a lattice.
We shall denote with V the lower upper bound operator of this lattice.

Under these definitions, e? > e! implies inter fL12(t,e?) > inter fL1%(t,e!), and therefore a
trace-independent upper bound on the L1 interferences is provided by:

inter fL13(t) = inter f L12(t, \/ ey)
¢ trace of t

We denote e(t) =V 1uce of ¢ €4» and call it the L1 burst characterization of ¢. In fact any burst
characterization of By that is greater than e(t) will provide a safe upper bound for inter f L1(t).

Before moving on, we introduce two more notations. If x € By we shall allow its represen-
tation as (i1 — x(41);...;4m — (iym)), where 21 > iy > ... > i, > 1 are the indices where
x(4;) # 0. For instance, (5 — 2;1 — 5) defines a burst description composed of 2 bursts of size 5
and 5 bursts of size 1. By extension, () is the empty burst description containing no burst. On
Bo; we introduce the addition operation +, which is defined pointwise: (a + b)(¢) = a(i) 4 b(4)
for 1 <4 <21.

5.5 Tight over-approximation of e(t)

Our final objective at L1 level is to provide a method for computing a tight over-approximation
of e(t). To do so, we start by noting that, when the instruction cache isuses a read request
towards the memory (at the request of the PFB):
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e It can only be delayed by memory access instructions already in the pipeline and PFB that
actually result in data memory requests (going beyond the data cache). All data write
operations in the pipeline and PFB fall in this case, but only data read operations resulting
in a miss must be considered. Furthermore, when a read is considered, it terminates the
sequence of memory accesses that delays (the instruction request can pass after the data
read request, as explained above).

e If the instruction read request towards memory occurs immediately after a branch state-
ment that is taken (and which is accompanied by a PFB flush) and if the target instruction
of the branch is not in the instruction cachem then only the memory access instructions
preceding the branch may delay the instruction read request.

For simplicity, and in order to focus on the arbitration-related issues, we shall assume that
the control flow of our tasks does not involve loops (that it is a directed acyclic graph - DAG),
and that it has a single input point and a single exit point.

The objective of our analysis is to determine, for each bundle p of task ¢, an L1 burst
characterization of ¢, assuming that its execution ends in p. We denote this characterization
e(t,p). Then, we can set e(t) = e(t, pend), where penq is the exit bundle of ¢.

The definition of e(¢,p) is inductive and has four cases. The first case is when p is the first
bundle of trace t. Then, we can set:

O if p contains no memory access
e(t,p) =< (1 —1) if p contains a store instruction
(2—1) if p contains a load instruction that may generate a cache miss

The second case is when bundle p contains no memory access instruction that may result
in a request being sent to memory. This means no store instruction and no load instruction that
may result in a data cache miSSE In this case, we start by denoting src(p) the non-void set of
bundles that can directly give control to p (either in sequence or through branching instructions).
Then, we can set:

e(t,p) = \/ e(t,p/)

p’Esrc(p)
The third case is when p contains a store instruction. In this case, we start by identifying
all the sequences of bundles py, ... p1p ending in p and having the following properties:
e pi...p1p can be part of a valid execution trace.

e The bundles px_1 ...p1p can all be together in flight in the pipeline and the PFB.

e The sequence contains at most one load instruction that will certainly result in a data cache
missE If present, this load instruction cannot be followed by other store instructions.

We denote this set of bundle sequences with P(p). Given that pipeline and PFB can contain only
4 bundles and 16 syllables, this set is finite (and usually small). This set contains all the sequences
of bundles whose memory accesses can be grouped in a burst ending in the write of bundle p, and
which can delay a memory request of the instruction cache. Considering w = py ...p1p € P(p),

7"Which can be determined through a Must cache analysis.
18 As determined by a Must cache analysis.
19 As determined by a May cache analysis.
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we shall denote with size(k) the size of the maximal associated burst that can be generated by
bundles pi_1 ...p1p. Then, we can set:

e(t,p) = \/ (e(t,pr) + (size(pr—1...p1p) = 1))
pk---P1PEP(p)

This formula amounts to exploring all possible decompositions of the potential memory accesses
into bursts.

The fourth case is when p contains a load instruction that may result in a data cache miss.
When the cache miss happens, the only burst ending in the read access contains the read itself.
Thus, we can set:

e(t,p)=( \/ et,p)+(2—1)

p’ €sre(p)

Note the reuse of the reasoning of the second case, and the addition of the burst of size 2, which
corresponds to the two collated memory requests due to the data cache miss.

6 L2 Interference Analysis

Recall from Section [3.4] that L2 arbitration is performed using a modified Round Robin policy
called SAP. The policy, which is configurable at CC level by a constant 1 < n < 7, will allow each
PE, when it is granted access, to pass at most n + 1 requests, if they arrive in successive cycles.
Therefore, burstiness is again key in analyzing arbitration. However, several key differences with
respect to L1 arbitration require an extension to our modeling apparatus:

e Instruction and data traffic have already been mixed at L1 level (we need to consider both).

e Interferences happen at bank level, meaning that from the traffic produced by a specific
PE we need to extract the component concerning a specific bank. Identifying bursts is not
straightforward in this context.

e At L1 level, a worst-case analysis of the greatest bursts was sufficient. At L2 level, the
worst case will be given by the greatest bursts produced by one core interfering with the
smallest bursts produced by another.

For this reason, we start by extending our burst modeling apparatus.

6.1 Burstiness modeling, part 2

While at L1 level we were only interested in bursts of at most 21 data memory requests, we must
consider here two different kinds of bursts:

e Bursts of successive memory requests of unbounded size issued by one PE to one memory
bank. We denote the set of such burst descriptions Bm@

e Bursts of size at most n + 1 accepted by the SAP arbiter from one PE. We denote this set
IBnJrl

20T arge bursts of this type can easily be generated in practice by long sequences of store instructions pre-loaded
in the cache (e.g. as part of a loop).
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The second type of burst descriptions are obtained by fragmenting the potentially unbounded
bursts issued by the PE according to the SAP policy. This operation is performed using function
fragn : Boo — B, y1 defined by:

> i<k<oo b(k) ifl<i<n4+1
fragn(b)() { k mod (n+1)=1i ' '
Di<kcoob(k) x (k div (n+1))) ifi=n+1

Given that the B, ;1 burst descriptions can thus be obtained from B, descriptions, we shall
assume that each task is only characterized in the B., domain. Such characterizations must
produced by static analysis methods similar to those of Section [5.5

For each task t and for each memory bank b accessed by t we need to consider not one, but
two burst descriptions:

e When determining how much ¢ can delay another task ¢’ through interferences happening
on bank b, then we need a burst description denoted coarse(t,b) that is greater, in the <
partial order of Section than the burst description of any execution trace (as explained
in Section of ¢ in the system including ¢ and ¢'.

e When determining how much ¢ can be delayed by ¢’ through interferences happening on
bank b, then we need a burst description denoted fine(t,b) which is also greater than the
burst description of any other execution trace, but in a different order, defined below.

The new order between burst descriptions is denoted < and defined as follows: If e', e? € B
then we write e! < e2 if for every 1 < k < oo we have:

k
E Z><€
i=1

This amounts to e? taking at least as many cycles to pass arbitration, but having these cycles
grouped into smaller bursts. The set B, endowed with the < partial order, is a lattice. We
shall denote with U the greatest lower bound operator of this lattice. Note that, given that By,
is naturally included in B, for any positive integer M, the < order and the U operator are also
defined on Bj,.

Intuitively, the worst-case interference scenario involves the largest possible number of (small)
packets of the side that is delayed (burst description maximal in the sense of <) and the greatest
packets on the side that delays (burst description maximal in the sense of <).

HM»

6.2 L2 interferences

Under these definitions, assuming that two tasks ¢; and ¢o are executed on different processors
and that overlap(ty,te) = true, we can compute an upper bound on the overhead that ¢o can add
to the execution time of ¢; due to interferences on bank b, which we denote inter f L2(t1,tq,b).
To do so, we assume that coarse(ta, b) and fine(t1, b) are provided and that ¢ = frag, (coarse(ta, b))
and f = frag,(fine(t1,b)). We will also denote with sum(f) = Z"H (k) the number of bursts
(of any size) in f. Then:

1 kt1
inter fL2(t1, t,b) = Z kxmin | c(k),max | 0, sum(f) — Z c(4) (1)
k=n+1 j=n+1

Intuitively, for each burst in f, incrementally, we assume delaying by the largest remaining burst
of c.
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Starting from this basic brick involving only two tasks on a single SMEM bank, we can first
determine an upper bound on the overhead that ¢ can add to the execution time of t; on any
bank:

15
inter fL2(t1,t9) = Z inter fL2(tq, to, b)
k=0

Then, we can build a first over-approximation of the delay incurred by one task due to L2
interferences:

inter fL2°(t) = Z inter fL2(t, 1)

overlap(t,t’)=true

Of course, this last bound can usually be significantly improved. For instance, using the
notations used in the definition of inter fL2(tq,t2,b), interferences coming from all the tasks
executing on one core cannot comprise more than sum(f) bursts (whereas by summing the indi-
vidual contributions inter f L2(t,t) of all tasks ¢’ running on a core this bound can be overflowed).
To avoid this source of over-approximation, we can consider all interferences from one core p at
once, and set:

Cpy = Z fragn(coarse(t’, b)) (2)
overlap(t,t')=true
p(t")=p
1 k+1
inter fL2(t,p,b) = Z k*min | cpp(k), mazx | 0, sum(f) — Z cp.b(J) (3)
k=n+1 j=n+1
15
inter fL2' (1) = Z ZinterfLZ(t,p, bi) (4)
p#p(t) k=0

Similarly, considering more elaborate task models (e.g. DAGs) or time/space isolation prop-
erties (discussed in Section [8)) should allow further reducing interferences.

7 Experimental results

In this section, we evaluate our interference analysis methods on a number of applications chosen
for their representativity. One particular point of this evaluation is that no static analysis
tools, such as WCET analysis tools, exist yet for the Kalray MPPA3 processor (only for its
predecessor MPPA2). For this reason, we have had to derive the input of our algorithms (the
burst descriptions) from mere execution traces of the applications. The process, detailed below,
uses simplified versions of the method in Section [5.5] The result is not meant to be safe, but
simply to give a quantitative evaluation of our interference analysis method that is as realistic
as possible.

7.1 The testbench

We have applied our analysis methods on 7 tasks taken from 4 applications. The basic character-
istics of these applications are summarized in Table[I}] To obtain these figures, the applications
have been compiled under maximum optimization (gcc -03) and have been executed once (in a
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single configuration) to obtain an execution traceE] The figures in the four columns correspond

to:

e ReadIC - Number of instruction cache misses. Each of them results in two collated requests
from the instruction cache to the memory.

e ReadDC - Number of data cache misses. Each if them results in two collated requests from
the data cache to the memory.

e Write - Data writes, each resulting in a single request to the memory.

e Execution time - total execution time in isolation.

All applications feature a fully static memory allocation (no use of malloc).

Application L Memory access profile Execution tim
ps%urce Task description ReadlC yRea D pr (cycles)
Industrial taskl 733 446 2920 20479
avionics engine task2 703 306 2247 16481
control (SCADE- || task3 451 277 1511 11374
generated) task4 395 183 1353 9797
TACLE bench[§] Anagram function 84 588 84591 || 726069
Pattern Matching (PM) 180 296 210890 || 4233766
Linear algebra/ML | Matrix multiplication || 5 384 32768 || 251987
(matmul)

Table 1: Application and task characteristics

Four of the seven tasks are extracted from a large, real-life avionics engine control applica-
tion. Following the industrial process, the application is specified in SCADE and automatically
translated into C. We have worked directly on the generated C code. As the figures in Table
show, these tasks are control-dominated, with many more instruction memory reads than data
memory reads. This is typical for SCADE-generated code of embedded control applications.

The linear algebra code (a 32x32x32 floating point matrix multiplication) is the exact oppo-
site: the number of instruction memory reads is far smaller than data memory reads. This is

typical for high-performance code in both AT/ML and model-predictive control.

The two remaining applications have been selected from the TACLe WCET benchmark suite
[8] for their intermediate memory access profile.

7.2 Extraction of burst descriptions

As explained above, in the absence of static analysis tools, the input data needed by our interfer-
ence analysis is extracted from execution traces. Code is executed in the cycle-accurate MPPA3
processor simulator provided by Kalray. The resulting execution trace is then passed through an
LRU cache simulator we developed. This pass determines which data load instructions result in
data cache misses (an thus in data memory read requests). It also determines an upper bound
on the number of instruction memory requests. This information is annotated in the traces.

2IMaximum optimization greatly reduces the number of memory access operations, thus reducing the absolute

numbers of interferences.

interference as a percentage of execution time.
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From the annotated trace of each task ¢ we extract replacements for the following pieces of
data used in the formulas of Sections [5.4] and

e e°(t) is a replacement for e(t), needed in the computation of the L1 interferences (and
originally computed in Section [5.5]).

e ¢(t,b) is a replacement for frag,(coarse(t,b)), needed in the computation of L2 interfer-
ences, in equations [T and

e s(t,b) is a replacement for sum(frag,(fine(t,b))), needed in the computation of L2 inter-
ferences, in equations [I] and [3]

The computation of the values needed at L2 level is only performed for n = 1. Without
taking into account tight inter-processor synchronizations to synchronize bursts coming from the
different PEs (which are not considered by the algorithms we define and are difficult to enforce)
we expect interference upper bounds to worsen when n increases, as frag,(coarse(t,b)) will
increase faster than frag,(fine(t,b)).

Computation of e*(t) It is performed using a modified version of the recurrence relations of
Section [5.5} The modifications are the following:

e Whenever the original recurrence equations consider a supremum over multiple possible
histories, we only consider those compatible with our execution trace:

— The set sre(p) used in cases 2 and 4 contains exactly one element.

— The set P(p) used in case 3 only contains subsequences of bundles of the trace ending
in the current bundle.

e Instead of May or Must data cache analysis results, we use exact cache states.

Computation of ¢(¢,b) It is performed by counting the number m of memory requests to
bank b, and then dividing them into a minimum number of bursts:

(t,b) = (n+1—=mdiv (n+1)) if mmod (n+1) =0
ano) = (n+1—=mdiv (n+1);mmod (n+1) — 1) otherwise

Computation of s(t,b) This over-approximation is less brutal. We start by identifying the
number 4 of instruction read requests towards bank b. Each of these are considered as a single
burst of size 2. Then, we identify the bursts of data accesses (sequences of data accesses that
reach bank b in successive cycles). These are individually cut into a minimal number of bursts
of size at most n + 1 and counted into s(t, b).

7.3 Results

7.4 L1 interferences

The result of applying L1 interference analysis is provided in Fig.[3] The graph at left compares
our best analysis (interfL13) to the interfL1' analysis. The figures are provided both as
absolute values and our analysis as a percentage of inter fL1'. The table at right evaluates
inter fL13 as a percentage of the task execution time.

We use inter fL1' as a baseline instead of the inter fL1° analysis introduced in previous
work [10] for several reasons: First of all, inter f L1° is by construction less tight than inter fL11.
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Second, in the case of avionics tasks the pessimism of inter fL19 is too significant, and easily
corrected. For instance, inter fL1'(taskl) = 3812, whereas inter fL1°(task1) = 15393, or 75%
of the execution time of taskl. The final reason is that using inter fL1° as a baseline would have
downplayed the importance of the application profiles identified below.

5000

interfL1! mm—
4500 - interflL13 m—
—
g 4000 100% B
é 3500 | B Task L1 interference Exec. time
S taskl 18.62% 20472
Q__ 3000 [ B
33 0% task2 17.34% 16481
29 2500 1 task3 18.15% 11373
;8 2000 | 100% 0% | task4 17.56% 9788
s 100% matmul 1.38% 10 "% 251987
@ 1500 - 7 anagram 1.15% 10 °% 726280
& 1000 f 45% g pm 4.70 % 10~ *% 4233766
> 500 | .
0 31%

task;  task, tasks3  tasks Anagram PM Matmul

Applications

Figure 3: L1 interference analysis results. At left, precision improvement (inter fL1' in blue vs.
inter fL1% in red). At right, inter fL1® as a percentage of execution time.

One immediately notices two very different application profiles: the control-dominated tasks
of the avionics application vs. all the other tasks. In the first case, worst-case interferences as
a percentage of WCET are very large, and our method provides no reduction in interference
upper bound. To understand the reason for this, recall that interferences are due to instruction
requests which are delayed by bursts of data requests. Our analysis determines that bursts
of data requests are significantly smaller than the worst case d. This significantly reduces the
interference upper bound when the number of bursts is smaller than the number of instruction
requests (as is the case in tasks matmul, anagram, and PM, with reductions of 50%-70%). But
this is not the case in the avionics tasks. For such control-dominated code the best method for
reducing interferences is to reduce the number of data memory accesses (and in particular data
writes, as explained in Section. An important aspect to remember here is that L1 interference
cost is incurred only once per task (meaning that the figures are likely acceptable in practice).

7.5 L2 interferences

To evaluate L2 interferences, we have considered scenarios where one task is delayed through
interferences by exactly one other task (including a copy if itself). This makes for a total of 49
cases. In each of them, we have considered two configurations corresponding to different memory
allocation choices.

C1 Global data accessed by both tasks is placed on the same memory bank, but the stack
and code of the two tasks are placed on different banks. This case is representative of a
configuration where interferences are only due to shared variables and to accesses to system
routines, such as memcpy, which can be accessed by both tasks.

C2 Accesses of the delayed task to global data, stack, and code can all be subject to interferences
from accesses of the delayer task to global variables (but not code and stack). This case
is meant to represent configurations where each processor is assigned one memory bank
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which contains its stack, the code of tasks executing on it, and part of the shared data. In
this case, interferences come under the form of reads and writes of the shared variables.
We consider in this case, too, interferences due to the access to system routines.

The results of the analysis in these two cases are provided in Figures [2| and

Delayed task Delayer task Delayed'task
taskl task2 task3 | task4 | matmul| anagram PM exec. time

taskl 1.79 0.76 1.09 0.64 0.37 0.47 0.41 20472

task2 1.04 0.94 0.94 0.80 0.15 0.29 0.20 16481

task3 2.03 1.37 1.97 1.16 0.14 0.33 0.21 11373

task4 1.43 1.39 1.33 1.34 0.18 0.40 0.26 9788

matmul 0.01 0.005 | 0.003 | 0.003 13.30 | 5.50 26.31 251987

anagram 0.008 | 0.005 | 0.004 | 0.004 | 3.07 1.91 3.07 726280

PM 0.001 0.0005 | 0.0004 | 0.0004 | 0.79 0.32 4.69 4233766

Table 2: L2 analysis results in configuration C1. Figures are in % of execution time of the delayed
task (which is provided for reference).

Delayed task Delayer task Delayed.task
taskl task2 task3 task4 matmul| anagram PM exec. time

taskl 1.79 0.76 1.09 0.64 10.28 10.39 10.32 20472

task2 1.12 0.94 0.94 0.80 11.30 11.44 11.35 16481

task3 2.24 1.37 1.97 1.16 11.04 11.23 11.11 11373

task4 1.64 1.39 1.33 1.34 10.72 10.95 10.80 9788

matmul 0.015 0.005 0.003 0.003 13.30 5.50 26.31 251987

anagram 0.008 0.005 0.004 0.004 3.11 1.91 3.11 726280

PM 0.001 0.0005 | 0.0004 | 0.0004 | 0.79 0.32 4.69 4233766

Table 3: L2 analysis results in configuration C2

The most important remark is that for all but the most memory-intensive applications (mat-
mul and PM) L2 interferences remain low (under 2%) when remaining in the same application
class. This allows considering realistic situations where multiple interference sources must be
considered for each task (but the number of interferences is kept under control through the
mapping [7]).

In the second scenario, we can see that tasks generating large numbers of accesses to shared
data (matmul, anagram, PM) can disproportionately delay smaller tasks if code and stack ac-
cesses are considered. This suggests that mapping of such tasks must be performed with care,
drastically limiting interferences by means of time/space isolation, as discussed in the next sec-
tion.

However, isolation may pose a problem for HPC code like that of matmul (which has the
largest interference figures) because such applications often involve parallelized loop nests in-
volving multiple processors accessing the same data. More work is needed to determine how the
implementation of such applications can be performed in a way that reconciles performance and
predictability.
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8 Reducing interferences by code transformations

Interference analysis improvements are still possible, but significant interference reductions can
be attained by transforming the application code.

8.1 Increasing memory bandwidth usage

Note in Table [1| that the number of write operations dwarfs the number of reads (both instruc-
tion and data), by a ratio of up to 440 times (for PM). This is of course a by-product of the
write-through cache policy, but it is also exacerbated by the systematic under-use of the local in-
terconnect width during write operations. To understand how serious an issue this is, we provide
in Table [ a classification of the write operations issued by two tasks according to the amount
of the data that is stored. While each write operation can transport up to 32 bytes, 3488 of the
memory accesses of task PM only transport 1 byte. Overall, PM uses only 15% of the bandwidth
provided by its 210890 write operations, while taskl goes up to 27% due to the use of larger data

types.

Task Store size (bytes) Bandwidth
1 2 4 8 16 | 32 | usage (%)
PM 3488 | 120 | 155034 | 51989 | 136 | 123 15%
taskl 2 0 1641 196 1061 | 20 27%

Table 4: Number of store operations by store size in two applications

These figures suggest that in the PM task the number of memory write accesses could be
divided by up to 6.5, and for taskl by 3. However, these are theoretical upper bounds, and we
wanted to have a more realistic evaluation of potential gains. For a (very partial) result, we
considered a simple optimization of the memcpy library routine. Calls to memcpy are generated
by gcc to encode the copy of large C struct objects (in the wrappers calling SCADE-generated
code). The stock implementation of memcpy on MPPA3 uses 16-byte load and store instructions
instead of the full-bandwidth 32-byte instructions. By simply optimizing the memcpy routine to
use full-bandwidth memory accesses, we reduce interferences as pictured in Fig. [d] Considering
the store operation profiles of Table 4] we can determine that most of the 16-byte stores of taskl
will be replaced with 32-byte stores, leading to a reduction of up to 530 memory accesses, or
16% (which is well approached by the 13% reduction in the taskl interferences of Fig. [)).
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Figure 4: L1 interference reduction after memcpy optimization

Beyond manual code rewriting (as done for memcpy), increasing memory bandwidth use (and
thus reducing the number of memory requests and the interferences) can only be done using
non-trivial compiler support@

8.2 Time/space isolation

Various isolation properties [2] can be used to reduce or completely eliminate L2 interferences.
In turn, this also helps L1 analysis, by reducing the variability of the FP arbitratioﬂ

However, isolation has its cost [2], which can be unacceptable, especially in the case of
parallelized HPC code (AI/ML, digital twin models, etc.). More research is therefore needed
in this direction to determine the acceptable compromises.

9 Conclusion

This paper brings two main contributions. The first is a precise analysis of the properties of
three novel architectural innovations of the MPPA3 architecture: the speculative PFB, the FP
L1 arbiters, and the SAP L2 arbiters. This analysis both emphasizes the importance of memory
access burstiness and allows defining methods to reduce interferences by construction. The second
contribution is a formal model allowing the representation and worst-case reasoning on bursty
memory access pattern specifications. This model supports the definition of novel algorithms for
L1 and L2 memory access interference analysis, which provide better results than previous ones.
We evaluate our model and algorithms on multiple applications.

Our analysis and results suggest that, to allow the safe and efficient mapping of high-
performance applications, three complementary research directions should be followed in the
future:

22The current MPPA3 port of gcc is limited in this respect.

23For instance, absence of L2 interferences means that store requests are never grouped into larger bursts due
to waiting at the level of the FP arbiter. This reduces L1 interference analysis complexity and potentially reduces
L1 interferences.
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e The design of static analysis methods capable to extract the information required by our
interference analysis, as well as improving our interference analysis methods.

e The introduction of application restructuring methods to increase memory bandwidth us-
age.

e The definition of parallelization methods allowing to enforce time/space isolation properties
that reduce interferences without penalizing performance.
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