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This manual specifies the algorithms required to reproduce the protocols

presented in our paper. Please refer to the paper for their full description

and the notations used. Our goal is to make these algorithms as generic

and universal as possible in order to help others reproduce our results or

evaluate the physical realism of other simulators, albeit following a certain

number of rules. The reader should be aware that some of our tests are very

demanding. Hence, depending on the simulator used, false negative results

can be obtained if one does not carefully setup the simulation for reproducing

the experiment. In this manual we thus give the general rules to be followed

for evaluating a model correctly (these are provided as algorithms), and at

the same time we attempt to give all the tips we have applied to our own

benchmarking study in order to avoid false negatives as much as possible.

If you build a new evaluation study using one of our tests, please keep in

mind to document precisely all the important parameters (spatial resolution,

time step, tolerance, etc.), as well as the various tips used: this is part of the

protocol.
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1 GENERAL REMARKS

1.1 Dimensionless vs dimensional inputs
The protocols described in the main paper compare the results of

the simulation to dimensionless scaling laws. This allows to check

the physical accuracy of codes whether they take dimensionless or
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dimensional input parameters. In addition, for dimensional codes,

the dimensionless tests also allow to check how sensitive these codes

are to the scale of the inputs. In theory, regardless of the scale, input

parameters producing the same dimensionless parameters (e.g. Γ, 𝜙)
should produce the same dimensionless output. However, different

parameter scales might not have the same numerical conditioning

and the accuracy may start to degrade outside a certain range.

Our tests can be used to quantify this phenomenon by sampling

the input parameters over a large space that redundantly covers the

testing range of the dimensionless parameters.

As an example, we provide such a redundant algorithm in Sec-

tion 2.4 for the Cantilever test where the Γ space is sampled by

varying several dimensional parameters. Otherwise, the default al-

gorithms, described in Sections 2.4, 3.1, 4.1 and 5.1 do not test this

dimensionless property and provide a protocol with specific input

parameters. We recommend the user take the redundant version at

least for the Cantilever test, to make sure that her tested code is

not subject to scaling issues.

1.2 Notes for dynamical codes
The Stick-Slip experiment is likely to require small time steps to

handle contact properly. For all other protocols, as only the static

equilibrium matters, the calibration of dynamical parameters can

be chosen to minimize the computing time without introducing any

drift or divergence problems. For example, large time steps coupled

with any kind of damping could be used. However, when using a

dynamic code, be sure to check that equilibrium has been reached,

i.e. that the speed is almost zero, before stopping the simulation.

Otherwise, it could be a (bad) reason for a KO, especially for the

Bend-Twist test, as explained in the paper.

1.3 Notes about discrete geometry
We do not give a precise protocol for generating input geometry

and depending on models it might require different features, e.g.

preferences between regular grid or asymmetrical meshes. However

we use a common parameter for meshes, 𝜉 = 𝐿
mesh
/𝐿

plate
, where

𝐿
mesh

is the typical size of a mesh element and 𝐿
plate

the length of

the plate.
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2 THE CANTILEVER TEST
As described in the main paper, the configuration of this test is quite

simple as it requires to compute/wait for the equilibrium with an

horizontal clamp.

2.1 Algorithm for reproducibility

1 𝑟 ← 5.10−4;
2 InitializeRodGeometry(𝐿 = 1, CrossSectionRadius= 𝑟 );

3 InitializePhysicalParameters(𝐸 = 4

𝜋𝑟 4
, density 𝜌 = 1

𝜋𝑟 2
);

4 for i← −3 to 4 by 0.025 do
5 Γ ← 10

𝑖
;

6 SetGravity(0, Γ);

7 ComputeEquilibrium();

8 𝑥,𝑦 ←coordinatesOfEndPoint();

9 Record(Γ,
𝑦
𝑥 );

10 end
Algorithm 1: Cantilever

This algorithm can be adapted to ribbons by setting the width to

𝑤 = 0.1, the thickness to ℎ = 10
−3
, the plate bending coefficient to

𝐷 = 1, and the density to 𝜌 = 1/ℎ. Note that this test is insensitive
to the Poisson ratio 𝜈 .

2.2 Remarks about the algorithm
L.1-3 If the rod has a non-circular cross section, just set 𝐸 = 1

𝐼
and

𝜌 = 1/𝐴.
L.6,8 Although models are 3D, the Cantilever protocol is purely

2D (see Figure 2 of the paper).

L.7 Previous solution can be used as a warm-start for the compu-

tation of the next equilibrium.

2.3 Discrete geometry characteristics
Weused two variants for meshes: 𝜉 = 1

120
in Res 0 or 𝜉 = 1

240
in Res +.

For our evaluated rod models, the number of elements was less than

50 for curvature-based models, and less than 300 for position-based

ones. These number can serve as reference for further studies.

2.4 Redundant test
As mentioned before, the general idea is to check that the dimen-

sionless law is recovered, regardless of the scale of the inputs (in a

reasonable range).

As an example, we describe below the protocol used to test Lib-

Shell, Arcsim and Discrete Shell.

A similar warm-start strategy as described above was used, we

proceeded by continuation by descending values of 𝐸 for given

values of 𝐿 and ℎ.

Note that this way of sampling does not guarantee that each Γ
value will be tested twice or more times with different entries, but

it provides a dense sampling and assumes a "continuous" behaviour

of the simulator.

1 lengths← {0.5𝑚, 0.8𝑚};
2 thicknesses← {1𝑚𝑚, 2.5𝑚𝑚};
3 young_moduli← 25 log-samples in [10𝑘𝑃𝑎, 10𝐺𝑃𝑎];
4 𝜈 ← 0.3;

5 𝜌 ← 1287𝑘𝑔/𝑚3
;

6 𝑔← 9.81𝑚/𝑠2;
7 SetGravity(0,−𝑔);
8 for (𝐿,ℎ, 𝐸) in (lengths, thickness, young_moduli) do
9 Γ ← ComputeGamma(𝐿,ℎ, 𝐸, 𝜈, 𝜌, 𝑔);

10 ComputeEquilibrium();

11 𝑥,𝑦 ←coordinatesOfEndPoint();

12 Record(Γ,
𝑦
𝑥 );

13 end
Algorithm 2: Redundant Cantilever, relying on the sam-

pling of dimensional parameters, combining differently to

generate a dense sampling of the Γ range: all data should

collapse on the same curve.

To test the exact same values, one could put Γ in the entries along

other parameters but one (e.g. 𝐿), and compute this parameter so as

to recover the wanted Γ value

(
e.g. for a rod 𝐿 = 3

√︃
Γ𝐸𝐼
𝜌𝐴𝑔

)
.

3 THE BEND-TWIST TEST

3.1 Algorithm for reproducibility
As for the previous test, configuring this test is relatively easy as it

evaluates equilibriums under a simple boundary condition. However,

as mentioned below in the remarks, because we are interested here

in an instability, a perturbation might be required to reveal it.

1 𝑟 ← 5.10−4;
2 InitializeRodGeometry(𝐿 = 1, CrossSectionRadius= 𝑟 );

3 InitializePhysicalParameters(𝜈 = 0.5, 𝐸 = 4

𝜋𝑟 4
, density

𝜌 = 1

𝜋𝑟 2
);

4 X ← logspace(0.105, 0.95, 30);
5 Y ← logspace(0.3, 10, 23);
6 foreach 𝑦 ∈ Y do
7 𝜙 = 2𝜋𝑦;

8 ResetRodShape();

9 Rod.SetNaturalCurvatures(𝜏 = 0, 𝜅1 = 𝜙 , 𝜅2 = 0);

10 foreach 𝑥 ∈ X do
11 RodShapeEpsilonPerturbation();

12 Γ ← (𝑥𝜙)3;
13 ComputeEquilibrium();

14 𝑑 ← 𝑅𝑜𝑑.3𝐷𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ();
15 Record(𝑥 , 𝑦, 𝑑);

16 end
17 end

Algorithm 3: Bend-Twist
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3.2 Remarks about the algorithm
L.9 Only one bending curvature of the natural shape is nonzero.

L.11 Using the previous solution as a warm-start of the algorithm

is a good way to shorten the convergence time to the next

equilibrium. However, when starting from a 2D configuration,

algorithms have sometimes difficulties to reach 3D configura-

tions. To resolve such a situation one could introduce some

perturbation, e.g. add 0.001 to the curvatures. If the different

equilibria however always remain 2D, one can try to increase

this perturbation.

L.14 For the 3D measure, we suggest the use the norm of the

twist of the rod

∫ 𝐿

𝑠=0
|𝜏 (𝑠) |𝑑𝑠 . Note the second curvature is

also a measure of the 3D configuration. However if a model

does not handle the curvatures as a degree of freedom, an

alternative measure is the lateral deviation of the center-line∫ 𝐿

𝑠=0
|𝑦 (𝑠) |𝑑𝑠 .

To transform any of these measures to a Boolean, a tolerance

of 𝜖 = 10
−3

can be used.

3.3 Discrete geometry characteristics
In our tests, 30 elements proved sufficient for curvature-based mod-

els. Position-based models however require a much larger number

of elements, we found that at least 700 elements were needed for

Discrete Elastic Rod to properly account for strongly curled con-

figurations.

4 THE LATERAL BUCKLING TEST

4.1 Algorithm for reproducibility
Whether it be stable or unstable, the 2D configuration is always

an equilibrium in this test. In order to avoid some of the codes to

be artificially stuck in a 2D configuration, we introduce an initial

rotation to prepare the system. The rotation consists in introducing

an angle 𝜃 between the gravity direction, e𝑧 , and the clamping

direction. Once gravity has been fully turned on, the initial rotation

is discarded. The lateral displacement is the distance 𝑑𝑦 as shown

in Figure 4 of the paper.

4.2 Remarks about the algorithm
L.4-11 The beginning of the algorithm searches a good warm start

for the procedure. Depending on the solver, the loop lines

7–10 can be adapted, e.g. for FenicsShell there are 30 steps,

for Super-Ribbon only 1.

L.11 Changing the 𝜃 angle implies rotating the plate adequately.

If needed, it can be done in several steps, similarly to 7–10.

L.16 The 𝜖 value should indicate whether the plate is flat or not, we

suggest 𝜖 = 10
−4
. To be sure which value to choose, plotting

the curve𝑑𝑦 (Γ) will help. Please note that the critical Γ𝑐 value
is the locus of a pitchfork bifurcation, but that the incipient

post-buckled part, Γ ≳ Γ𝑐 , of the curve might look somehow

flat.

L.17-19 The value of 𝐿 being 1, the present width value indeed yields

𝑤/𝐿.

1 InitializePhysicalParameters(𝜈 = 0.35, 𝐷 = 1);

2 for width from 0.1 to 1 by 0.1 do
3 InitializePlateGeometry(𝐿 = 1, 𝑤 = width, ℎ = 10

−3
);

4 InitializeClampingTheta(0.2);

5 SetGravity(0 , 0, 0);

6 ComputeEquilibrium();

7 for Γ from 0 to 40 do
8 SetGravity(0 , 0, −Γ);
9 ComputeEquilibrium();

10 end
11 ChangeClampingTheta(0);

12 for Γ from 40 down to 10 by 0.5 do
13 SetGravity(0 , 0, −Γ);
14 ComputeEquilibrium();

15 𝑑𝑦 ←PlateLateralDisplacement();

16 if |𝑑𝑦 | < 𝜖 then
17 Record(width, Γ, 2D);

18 else
19 Record(width,Γ, 3D);

20 end
21 end
22 end

Algorithm 4: Lateral Buckling

4.3 Discrete geometry characteristics
We set two variants for meshes: 𝜉 = 1

50
in Res 0 or 𝜉 = 1

75
in Res +.

For curvature based models, the number of elements should be 30.

5 THE STICK-SLIP TEST

5.1 Algorithm for reproducibility
The Stick-Slip test is a 2D test which is only valid for negligible

gravity, so one should take zero gravity, yielding Γ = 0. Remaining

degrees of freedom are the friction coefficient 𝜇 and the bending

force 𝐸𝐼/𝐿2. The test should be insensitive to the latter parameter,

so it can be taken equal to 1.

5.2 Remarks about the algorithm
L.3 With So-Bogus and Argus we needed to take 𝑑𝑡 = 0.5 ms

to obtain good results (see convergence plot for So-Bogus

in the supplemental). Note that it is possible to perform the

test for static simulators which only output equilibria, in that

case there is not time step to set. Note that in our study, we

have not evaluated any static simulator on Stick-Slip.
L.8 The initial setup is the vertical (straight) rod, with Δ𝑦 = 0

L.9 In the simulation, 𝜖𝑦 is increasedwith the speed ¤𝜖𝑦 = 0.01/sec.
Consequently, there are 3333 time-steps for each iteration of

the loop L.9-L.17.

L.11 For dynamic simulators: when decreasing Δ𝑦 , the dynamical

simulation should be quasi-static to avoid any effect of the

speed of the rod. Damping should be used to dissipate energy

and stabilize the simulation.
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1 InitializePhysicalParameters(𝐿 = 1, 𝐸𝐼 = 1, 𝜌𝐴 = 1);

2 SetInitialRodStraight();

3 SetInitialRodClamping(0 , −𝐿, 0);
4 InitializeTimeStep(𝑑𝑡 );

5 SetGravity(0 , 0, 0);

6 for 𝜇 from 0 to 0.35 by 0.05 do
7 SetFrictionCoefficient(𝜇);

8 ResetRodSetup();

9 for 𝜖𝑦 from 0 to 0.6 by 1/60 do
10 ChangeClamp(Δ𝑦 = 𝜖𝑦/𝐿, mode=quasiStatic);

11 𝑟𝑥 ←ComputeHorizontalPositionOfTheRodTip();

12 if |𝑟𝑥 | > 𝜖 then
13 Record(𝜖𝑦 , 𝜇, SLIP);

14 else
15 Record(𝜖𝑦 , 𝜇, STICK);

16 end
17 end
18 end

Algorithm 5: Stick-Slip

L.13 𝜖 can be taken equal to 10
−3
. For dynamic simulators: it is

possible that the initial impact (i.e. when the rod touches the

substrate for the first time) creates a small horizontal displace-

ment 𝜖𝑥 of the rod tip at the very beginning. Such an impact

can be removed by carefully positioning the rod initially so

that it just brushes the substrate. If one does not manage to

get rid of this initial impact, one should then compare |𝑟𝑥 −𝜖𝑥 |
against 𝜖 in L.13.

L.12-17 A possible variant is to decide whether the state is stick or

slip by computing the contact force. This is actually the test

we perform experimentally, because we easily have access to

forces (but not to the friction coefficient 𝜇). Yet when testing

the codeswe have not retained this variant, because it may not

be applicable to all of them: some codes do not output forces.

However, it can be a nice complementary test to perform

for codes which do provide forces. For So-Bogus and Argus

for example, we did this additional test and obtained good

results as well (see our convergence plot for So-Bogus in the

supplemental, computed using this technique). To use this

variant, one should change L.12–17 with block algorithm 6

1 𝑄, 𝑃 ←ComputeForces();

2 if 𝑄
𝑃

> 𝜇 then
3 Record(𝜖𝑦 , 𝜇, SLIP);

4 else
5 Record(𝜖𝑦 , 𝜇, STICK);

6 end
Algorithm 6: Block for the Stick-Slip variant with force test

5.3 Discrete geometry characteristics
In the codes that use meshes, we choose 𝜉 = 1

50
.
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