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INTRODUCTION

We group here some additional material not included in the main
text of Physical validation of simulators in Computer Graphics: A new
framework dedicated to slender elastic structures and frictional contact,
refereed to as ’the Paper’ in the following. The present document
comprises six sections. In Section 1 we present convergence studies
for the different codes used in the four protocols introduced in the
Paper. In Section 2, we show some of the meshes used in the study,
and in Section 3 we give details on the input parameters for ARcsiM
and LIBSHELL. In Section 4, we present in detail our protocols for
experimental validation. In Section 5 we present the numerical and
experimental results for a setup derived from the Lateral Buckling
test. In Section 6 we list all the numerical plots on the Cantilever
test as some of these could not be included in the Paper, due to space
limitation. Finally in Section 7 we give some additional information
on the codes used in the present study.
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1 CONVERGENCE STUDIES

We show in this section the output of some of the codes tested in
the Paper, but with different number of elements for the spatial
discretisation of the structures.

Please note that computing times are given here as mere indica-
tions and should not be seen as benchmarking.
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1.1 Convergence results for the Cantilever test

N ¢ o N ¢ I ¢ N o N

(a) 10 elements (b) 20 elements (c) 30 elements (d) 40 elements (e) 50 elements, 2h

Fig. 1. Convergence results of SUPER-HELIX on the Cantilever test.

(a) meshX=20 (b) meshX=40 (c) meshX=80 (d) meshX=120 (e) meshX=160 (f) meshX=240
Res 0 Res +

Fig. 2. Convergence results of FENICSSHELL on the Cantilever test. The parameter meshX is the number of mesh points along L, the number mesh points
along w being meshX xw/L. The entire set of graphs was produced in about 1h.

(a) 5 segments (b) 10 segments (c) 15 segments (d) 20 segments (e) 25 segments (f) 30 segments

Fig. 3. Convergence results of SUPER-RIBBON on the Cantilever test. The entire set of graphs was produced in about 10 min.

(a) 5 segments (b) 10 segments (c) 15 segments (d) 20 segments (e) 25 segments () 30 segments

Fig. 4. Convergence results of SUPER-CLOTHOID on the Cantilever test. The entire set of graphs was produced in about 20 min.
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(a) STV-K/MIDEDGEAVERAGE Res —

‘oo L

(g) STV-K/MIDEDGETAN Res — (h) STV-K/MIDEDGETAN Res 0 (i) STV-K/MIDEDGETAN Res +

Fig. 5. Convergence results of LIBSHELL on the Cantilever test. Plots on the left column took about 10 min each, plots in the center column about 1 or 2h
each, and plots in the right column about 8h each. For the Cantilever test, Res — has meshX=55, Res 0 has meshX=120, and Res + has meshX=240. The
parameter meshX is the number of mesh points along L, the number mesh points along w being meshX xw/L.
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(a) 30 segments (b) 80 segments (c) 200 segments (d) 300 segments

Fig. 6. Convergence results of D1scRETE ELAsTIC RoD on the Cantilever test. The entire set of graphs was produced in about 3 days.

(d) BRIDSON 2003 + LIBSHELL Res — (e) BRIDSON 2003 + LIBSHELL Res 0 (f) BRIDSON 2003 + LIBSHELL Res +

Fig. 7. Convergence results of the hinge models on the Cantilever test.

ACM Transactions on Graphics, Vol. 40, No. 4, Article 66. Publication date: August 2021.



Validation for Graphics: Supplementary Document « 66:5

£
o
'.. f.
, v w
VI/p VT/p

w oo

1.2 Convergence results for the Bend-Twist test
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Fig. 8. Convergence results of SUPER-CLOTHOID on the Bend-Twist test. Approximate time for computing all these graphs: ~ 1h
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Fig. 9. Convergence results of SUPER-HELIX on the Bend-Twist test.
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Fig. 10. Convergence results of DiscRETE ELasTIC RoD on the Bend-Twist test.
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1.3 Convergence results for the Lateral Buckling test
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Fig. 11. Convergence results of FENICSSHELL on the Lateral Buckling test. The parameter meshX is the number of mesh points along L, the number mesh
points along w being meshX xw/L.
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Fig. 12. Convergence results of WUNDERLICH CLAMPED on the Lateral Buckling test. This set of data took around 10 min to be generated.
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Fig. 13. Convergence results of LIBSHELL on the Lateral Buckling test. The parameter meshX is the number of mesh points along L, the number mesh points
along w being meshX xw/L. For the Lateral Buckling test, Res — has meshX=25, Res 0 has meshX=50, Res + has meshX=75, and Res ++ has meshX=100.
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(a) Regular meshes (Res +) (b) Irregular meshes with equivalent resolution

Fig. 14. Comparison of the results of the Lateral Buckling test on DISCRETE SHELL (+ LIBSHELL) with differently mesh inputs. We observed no notable
difference between the regular and irregular mesh cases.
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1.4 Convergence results for the Stick-Slip test

For ARGUs NON ADAPTIVE, BRIDSON-HARMON, and PROJECTIVE
FricTiON, the fixed mesh had 350 vertices in total with 50 vertices
along the length. The adaptive mesh for ARGUs was an empty mesh
with just the corner points. All meshes were of length 0.2 m and
width 0.01 m.
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Fig. 15. Example mesh for the Stick-Slip test.
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Fig. 16. Convergence study for the Stick-Slip test with the So-Bocus (+ SUPER-HELIX 2D) code. We show u = Q/P for different values of the time step. As the
time step is decreased, the total number of steps is increased in order to keep a total simulated duration of 60 sec. The coefficients for viscosity and internal

friction are set to 10.
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2 SOME OF THE MESHES USED
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(a) L1BSHELL Res — (meshX=55). (b) L1BSHELL Res 0 (meshX=120). (c) LIBSHELL Res + (meshX=240).

Fig. 17. Some of the meshes used on the Cantilever setup. The parameter meshX is the number of mesh points along L, the number mesh points along w
being meshX xw/L. Here w/L = 0.4125.
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(a) FENICSSHELL Res 0 (meshX=50), with w/L=0.5.  (b) LIBSHELL Res + (meshX=75), with w/L=1. (c) LiBSHELL Res + with w/L=1 (irregular).

Fig. 18. Some of the meshes used on the Lateral Buckling setup. The parameter meshX is the number of mesh points along L, the number mesh points
along w being meshX xw/L.
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3 INPUT PARAMETERS FOR ARCSIM AND LIBSHELL
3.1 Bending formulas

Hinge energy. We describe here the
bending hinge energy for triangular
meshes, introduced concurrently by
Grinspun et al. [2003] and Bridson et al.
[2003]. Both are based on the dihedral
angle between two neighbouring faces
noted 6 (see inset Figure), weighted by
a coefficient accounting for the mesh
resolution. However, their formulations
differ slightly, as Grinspun et al. [2003]’s
formulation is

Fig. 19. Dihedral angle
between two faces.

312 -
kg 7(9 - 0)° o
while Bridson et al. [2003] is
k L (sin(6) — sin(8))? 2
B ,

with 0 the angle at rest, L the length of the common edge, A; the
area of the face f;, and A = A; +Ay. One may also use the equivalent
formulation hl{:hz for the geometric coefficient, with h; the height

of the triangle ;‘1

As mentioned in the Paper, these two formulations differ on two
points. According to their discretization of a continuous energy,
Grinspun et al. [2003] obtain their formula with a factor 3 and use
directly the dihedral angles, while Bridson et al. [2003] obtain a
factor ;11 from their heuristic and use the sines of the angles, which
are easier to compute than the angles themselves.

Using the angle or its sine are equivalent for small deflections,
and may only affect accuracy in the regime of high I' values in
our Cantilever experiment. However, note that we did not test the
sin formulation since ARcSIM’s original implementation actually
directly relies on the dihedral angle 8 and its derivative. Moreover,
in the Arcsim implementation, be mindful to note that an additional
% factor is present, leading to this alternative formula for Bridson
et al. [2003]’s energy,

kg L?
2 4A

The main difference to us, when comparing (1) and (3) is thus the
scaling coefficient of 12 between the two formulas, which yields a
vertical shift between the two models, as shown in the Paper.

(0-0)* withkg = 2kg. 3)

Discrete Koiter’s shell energy. Described in [Chen et al. 2018], the
discrete version of the Koiter’s shell energy directly stems from the
continuous formula where the first and second fundamental forms
are replaced by their discrete equivalents on triangular meshes.

For the bending term, it leads to an energy defined per face that
reads as

LI 1, . vaeta

212 la='b - )“sv eta O
with h the thickness of the shell, a and b the first and second discrete
fundamental forms defined on the triangular face and the bar quan-
tities denoting the rest configurations. The norm ||0||§V is called

Validation for Graphics: Supplementary Document « 66:11

the "Saint-Venant-Kirchoff" norm, defined by

A
lelly = 5”(‘)2 + ptr(e?) ®)
with A and y the first and second 2D Lamé parameters defined as
Ev E
A= p= 6
11—zt 2(1+v) ©

with E the Young modulus and v the Poisson ratio.

3.2 Input format

To test the physical accuracy of the codes, we must be able to com-
pute bending coefficients from the physical parameters.

For L1BSHELL, we simply fill in the values for the geometry of the
plate, the Young modulus and Poisson ratio. For DISCRETE SHELL
and ArcsiM, we need to define the kg parameter of the hinge energy.
Following [Tamstorf and Grinspun 2013], we identify kp with half
the bending rigidity,

D ER?
kp=—=———-
2 24(1-v?)
which directly gives a good agreement on DISCRETE SHELL.

For ARrcsim, an extra step needs to be carried on to incorporate
this bending modulus. Indeed, the implementation stems from Wang
etal. [2011] who used an orthotropic "by part" model to approximate
the anisotropic behavior of cloth. As such, in practice, the stretching
and bending coeflicients are interpolated between 5 set of fitted
coefficients depending on the cloth orientation. Hence, to perform
our test, the material input file needs to be composed of five times
the same elasticity matrix and 5 times the same bending matrix.

For bending, as noted in Equation 3, a factor % is already present,
so the bending matrix we have to use to fill in the kg value is

Ddiag(1,1,1). ®

™

For stretching, ArRcsim considers that cloth is a linear orthotropic
material, i.e. a linear anisotropic material with 3 symmetry axes.
It can thus be characterized by the following linear strain-stress
relationship [Wang et al. 2011],

Ouu ‘11 €12 0 fuu
o= 0pp |=| c12 c2 0 evo | =Ce,
Ouv 0 0 €33 fuv

where o is the (plate) stress tensor and ¢ the (plate) strain tensor.

Here we assume that the material is isotropic (Hookean material),
meaning that the 4 coefficients c;; are not independent, but given
by the following formulas [Audoly and Pomeau 2010, Sec. 6.4]

Cc11 = I_Evz
cz= £% = ven
€22 = 1_EVv2 = c11
€33 = 11y

ACM Transactions on Graphics, Vol. 40, No. 4, Article 66. Publication date: August 2021.
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4 EXPERIMENTAL PROTOCOLS
4.1 Materials

Our four tests require rods,
plates and ribbons with
controlled geometry and
known mechanical proper-
ties. Ribbons and plates are
made by cutting rectangu-
lar pieces, with the desired
dimensions, out of large
plastic sheets. The most rel-
evant characteristic is the
flatness of the sample. The
PRO Shim Kit by RS Com-
ponents (RS Stock No.:770-
816) was found to be the
best for our purposes, see Figure 20. This set of plastic sheets are
made out of polyethylene terephthalate, PET, which has a Young
modulus in the order of 5 GPa and they come in thickness ranging
from 50 to 500 pym. These values are only estimations and for our
tests we characterize our samples mechanically and geometrically
by ourselves.

Fig. 20. Samples of PET sheets used
for our experimental tests.

Fig. 21. Fabrication process of an elastomeric model rod. Top left: De-
gassing in a vacuum chamber. Bottom left: Polymer injection on coiled PVC
tube. Right: Final shape of the rod after pulling out a large portion of rod
from the PVC tube.

Curly and flat rods are fabricated using vinyl polysiloxane com-
mercialised by Zhermack™. For our rods to have a Young’s modulus
in the order of 1 MPa, we use Elite32™. This product comes with a
base and a curing catalyser that have to be scrupulously mixed in a
1:1 proportion. The mixing process produces accumulation of air
in the mixture, therefore to achieve the expected elastic behaviour
one needs to remove it while the mixture is fluid. To this end, we

ACM Transactions on Graphics, Vol. 40, No. 4, Article 66. Publication date: August 2021.

degas the mixture by reducing pressure in a vacuum chamber for 2
minutes (see top left image in Figure 21). We observe that in this
time most of the trapped air has been removed and the mixture
remains fluid.

By means of a syringe, we inject the polymer into a PVC tube
(see bottom left image in Figure 21). The final natural geometry
of the moulded rod will be determined by the shape in which the
PVC tube is arranged. Naturally curly rods are obtained by coiling
the PVC tube around a metallic cylinder and holding it in a given
configuration. For straight rods, we keep the PVC tube straight.
Polymerisation takes about few hours, but to be on the safe side
we usually let the polymer settle for 24 hours before removing it
from the tube. Because silicon based polymers do not adhere to PVC,
we simply pull the elastic rod out of the tube, see right image in
Figure 21.

4.2 Experimental setups

The Cantilever setup, shown in Figure 26a, is a simple arrangement
of a clamp held by two pillars where rods and ribbons are clamped
tightly. The length of the sample is measured when it is placed on
the clamp and we are careful to orthogonally align the sample to
the clamp. To measure the deformation, we fix a graduated rail that
allows vertical displacements of an horizontal metalic bar. For each
sample length, we let the sample deflect and reach its equilibrium
shape. We move the horizontal bar to the same height as the free end
and measure H on the graduated vertical rail. Finally, W is measured
with a ruler along the horizontal bar from the rail to the sample
free-end. In Figure 22, we show the results for the measured aspect
ratio as a function of the length for samples with different thickness,
widths and made of different materials (VPS, Acetate and PET).

30

® Rod of VPS, = 2 mm
m Ribbon of Acetate, w =3 cm, h = 0.17 mm
= Ribbon of PET w =4 c¢m, A = 0.26 mm °
m Ribbon of PET w = 3 cm, A = 0.10 mm
%1 m Ribbon of PET w = 3 cm, h = 0.14 mm ° ]
Ribbon of PET w = 3 cm, h = 0.10 mm e
m Ribbon of PET w =4 cm, A = 0.13 mm
°
°
20
°
°
H
W st e |
°
°
°
10
° [
° u
b d =
®
5 a" "a, " i
® &ﬁ mmE
L eastSiumnE ..0 J ﬂlll Ash ‘ ‘
0 03 04 05

L

Fig. 22. Raw data Cantilever test



The Bend-Twist setup, shown in
Figure 26b, is built only for illustra-
tion purposes since we rely on the ex-
perimental validation and the large
data set presented in [Miller et al.
2014]. A rod of a given length is
clamped in such a way that its tan-
gent coincides with the gravity. De-
pending on the rod’s geometry and its
material properties, one observes that
the deformed shape either remains in
a plane or goes 3D, the Bend-Twist
transition separating these two be-
haviours.

For this test, we fabricate our own
helical rod as described in section 4.1. The moulding cylinder had a
diameter of 3 cm. The coiled tube, where VPS was injected, had an
interior diameter of 3.6 mm and a wall thickness of 0.75 mm. From
these values, we estimate the radius and the pitch of the helical
shape to be R = 1.75 cm and p = 5.1 mm, equivalent to a curvature
x = 57.02 m~! and a torsion 7 = 2.65 m~!. This small intrinsic
torsion is an imperfection in our setup, but the 2D/3D transition is
evident as you increase the length of the rod. We show this transition
in Figure 23, which happens between L = 9 cm and L = 9.6 cm.

Fig. 23. Bend-Twist tran-
sition. (Left) 3D rod, with
L = 9.6 cm. (Right) 2D rod,
with L =9 cm.
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Fig. 24. Raw data Lateral Buckling test

The Lateral Buckling setup is shown in Figure 26c. This experi-
ment is complex because the plate undergoes a large 3D deformation.
To avoid time consuming digital reconstructions, we measure di-
rectly the lateral displacement of the centerline. To this end, we find
the clamp projection to a position on the floor of the experimental
setup. Once the plate has settled on its equilibrium shape, we gently
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approach a square cross-section beam to project to the floor the
position of the centerline at the free end. Finally, we measure with
two orthogonal rulers the lateral displacement. The procedure is
repeated for different free lengths L to sample I'* values. In Fig-
ure 24, we present our measurements for plates of polyethylene
terephthalate (PET) of different widths w and thicknesses h.

The Stick-Slip setup, shown in Figure 26d, is a complex exper-
imental setup, where we quasi-statically impose the vertical dis-
placement of the clamp whilst measuring the lateral and normal
forces. We use two calibrated Futek load cells and the force sig-
nal is digitalised with a National Instrument DAQ USB-6002. The
vertical displacement is characterised by small steps of 2 mm fol-
lowed by a in-position force measurement. The whole experiment
is composed of a descending phase to the maximum displacement
that we set to Ay = 0.33L and an ascending phase returning to the
initial configuration to make sure the sample was not deformed
plastically. However the experiment is stopped prematurely if the
sample slides. Each vertical displacement is captured by a camera,
and the slippage process is also captured in a video. We present
in Figure 25 our force measurements for different samples with
large enough friction coefficients so that sliding did not occur in
the A, € [0, 0.33]L range. Each force measurement is an average
of 2000 points acquired during 2 seconds at 1 kHz while the clamp
remains at a given position.

> L =285mm, w=30mm
[> L =245 mm, w =30 mm

L =205 mm, w =30 mm
> L=275mm, w =45 mm
> L=245mm, w = 45 mm

L =205 mm, w =45 mm
= Planar Elastica

I I
0 0.05 0.1 0.15 0.2 0.25 0.3
€, = —Ay

Y L

Fig. 25. Raw data Stick-Slip test
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Fig. 26. Our experimental setups for the four validation tests Cantilever (a), Bend-Twist (b), Lateral Buckling (c), and Stick-Slip (d).

5 ROTATION EXPERIMENT BEHIND THE LATERAL
BUCKLING TEST

5.1 Description

We present here a modification of the Lateral Buckling test. The
clamped orientation is now tilted by an angle « from the vertical di-
rection. The case & = 0 corresponds to the classic Lateral Buckling
geometry, and the case @ = 7/2 corresponding to the Cantilever
geometry. We let the plate hang and sag under its own weight and
record the lateral displacement as « is varied from /2 down to 0.

We have performed experiments with the same Poly-Styrene
plates as in the main text, thickness h = 0.10 mm, density p = 1410
kg/m?3, Young’s modulus E/(1 — v2) =~ 7.75 GPa, and Poisson’s ratio
v = 0.35. The width is here fixed to w = 10 cm, and three different
lengths have been used L = 17, 23, and 27 cm, corresponding to
'™ =~ 10.52, 26.05, and 42.14 respectively.

In addition we have simulated this new setup with the follow-
ing codes: SUPER-RIBBON-clamped, LIBSHELL (STV-K/MIDEDGETAN),
©ABAQUS, and FENICSSHELL.

5.2 Results and analysis

The classic Lateral Buckling test was a bifurcation test with a
binary output: either 2D or 3D solution. Here in contrast we record
the continuous value of the lateral displacement as « is varied.
We see that for the case L = 17 cm the lateral displacement is
zero when a = 0, i.e. this case lies in the 2D region of the phase
diagram (Figure 4 of the Paper), far from the threshold curve. For
this case all numerical codes agree fairly well with experiments. The
same agreement is found for the case L = 27 cm where the lateral
displacement at & = 0 is clearly non zero, as this case is deep in
the 3D region of the phase diagram. The case L = 23 cm, which
is nearer to the threshold curve, is more demanding and we see
that the agreement between experiments and numerics is here not
uniform. Indeed, for large « all curves agree very well, but when «
becomes small and approaches zero, the curves show a divergence.
Here the lateral displacement quickly drops to a non-zero value, as
L = 23 cm is indeed in the 3D region of the phase diagram, but the
different axis intercepts do not agree, the experimental one being
much larger than the numerical ones. This mismatch is typical of
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pitchfork bifurcations which are altered by imperfections, present
in experiments and not taken into account in the tested numerical
codes.
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(a) Tilted Lateral Buckling test with L = 17 cm.
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(c) Tilted Lateral Buckling test with L = 27 cm.

Fig. 27. Rotations experiments for the Lateral Buckling test.
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6 FULL RESULTS ON THE CANTILEVER TEST

Here we added a OK score for variants that almost pass the test.
This intermediary score does not need to be used in the Paper since
for each test, we always obtained either one clear success or only
clear failures among the different variants of the same code.
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W e e w ow W e e @ W @ e W e o w W W W 0w e w0 w0 o wowt e @ W @
r r r r r
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Fig. 28. Full results on the Cantilever test. NH stands for Neo-Hookean.
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7 SOME MORE INFORMATION ON THE CODES USED

For each of the different codes used in our four tests, we list in
Table 1 some aspects that were used. Please note that we do not list
general features of the codes, but the actual setups that we used in
present study.
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Table 1. Codes configurations used in the present study. *some of the plots of Figure 28 were generated with a fixed mesh, see details in the captions of

Figure 28.

Tested code parameter static / dynamic  adaptative grid or mesh
dimensions
Rod
DiscreTE ErasTic Rop [Bergou et al. 2010] dim dyn no
SupeR-HELIX [Bertails et al. 2006] dim-less dyn no
SupeR-CLoTHOID [Casati and Bertails-Descoubes 2013] dim-less stat no
Ribbon
SupER-RIBBON [Charrondiére et al. 2020]. dim-less stat no
Plate
LiBSHELL [Chen et al. 2018] dim stat no
DI1sCRETE SHELL (+ LIBSHELL) [Grinspun et al. 2003] dim dyn no
ArcsiM [Narain et al. 2012] dim dyn yes*
DISCRETE SHELL + ARCSIM (tentative fix of ArRcsim) dim dyn yes®
ProJECTIVE DYNAMICS [Bouaziz et al. 2014] dim dyn no
Contact & friction
Viscous FRICTION (+ SUPER-HELIX 2D) dim dyn no
So-Bogus [Daviet et al. 2011] (+ SuPER-HELIX 2D) dim dyn no
ARGUSs (~ ArcsiM + So-Bogus) [Li et al. 2018] dim dyn yes
ARGUs NoN ADAPTIVE (fix of ARGUS) dim dyn no
BripsoN-HARMON [Bridson et al. 2002; Harmon et al. 2008] (+ Arcsiv) | dim dyn no
PROJECTIVE FRICTION [Ly et al. 2020] dim dyn no
Reference codes in Mechanical Engineering
FeENIcsSHELL [Hale et al. 2018] dim-less stat no
©ABAQUS dim stat & dyn yes
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