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ABSTRACT 

In this work, we implement some variations of the parareal method for speeding up the numerical resolution of the two-
dimensional nonlinear shallow water equations (SWE). This method aims to reduce the computational time required for 
a fine and expensive model, by using alongside a less accurate, but much cheaper, coarser one, which allows to 
parallelize in time the fine simulation. We consider here a variant of the method using reduced-order models and 
suitable for treating nonlinear hyperbolic problems, being able to reduce stability and convergence issues of the 
parareal algorithm in its original formulation. We also propose a modification of the ROM-based parareal method 
consisting in the enrichment of the input data for the model reduction with extra information not requiring any 
additional computational cost to be obtained. Numerical simulations of the 2D nonlinear SWE with increasing 
complexity are presented for comparing the configurations of the model reduction techniques and the performance of 
the parareal variants. Our proposed method presents a more stable behavior and a faster convergence towards the fine, 
referential solution, providing good approximations with a reduced computational cost. Therefore, it is a promising tool 
for accelerating the numerical simulation of problems in hydrodynamics. 

1. INTRODUCTION 

A commonly encountered challenge in the numerical simulation of problems in hydrodynamics is the trade-
off between the accuracy of the approximate solution and the computational cost required for computing it. 
Accurate simulations require fine spatial and temporal discretizations (possibly linked by stability 
conditions) and/or high-order integration scheme, which may lead to prohibitive computational times and 
memory demands, thus limiting the practical application of the models. 
 
 An alternative for overcoming these difficulties is to use parallel-in-time numerical schemes, of which 
one of the most popular is the so-called parareal method, an iterative algorithm first developed by [1]. This 
method, whose objective is to parallelize in time a fine, expensive numerical simulation by using alongside a 
coarser, cheaper model, stands out for its simple and generic formulation. Indeed, among its various 
applications, parabolic and diffusive problems are the most successful ones. However, in the case of 
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hyperbolic and advection-dominated problems, the parareal method presents slow convergence and stability 
issues [2]. Variants of the method are presented in the literature for reducing these limitations. 
 
 In this work, we are interested in using the parareal method for reducing the computational cost for the 
numerical resolution of the 2D nonlinear shallow water equations (SWE) [3] 
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where ℎ is the water depth, 𝑢'  and 𝑢+ are the flow velocities respectively in the 𝑥- and 𝑦- directions and 𝑔 is 
the gravitational acceleration. Usually, the SWE are formulated with source terms accounting for bottom 
variation and friction dissipation, but these phenomena are neglected here. 
 
 Equations (1a)-(1c) are a system of nonlinear hyperbolic equations. Thus, for solving them with the 
parareal method, we implement a variant proposed by [4] using reduced-order models (ROMs) computed on-
the-fly along the parareal iterations. However, even if the ROM-based parareal method is effective for 
improving the convergence and stability when applied to nonlinear hyperbolic problems, its performance is 
limited by the quality of the ROMs. Therefore, we propose a modification that consists in enriching the 
ROMs with extra information whose computation does not require any additional computational cost. 
 
 This paper is organized as follows: in Section 2, the original parareal method and its variation using 
reduced-order models are briefly presented, along with an overview on the model reduction techniques 
considered here; in section 3, we present our modification to the ROM-based parareal method; in section 4, 
some numerical tests are presented for studying configurations of the model reduction and comparing the 
performance of the parareal variants; finally, a conclusion is presented in Section 5. 

2.  THE PARAREAL METHOD AND ITS VARIATIONS 

The parareal method [1], whose name stands for “parallel in real-time", is a predictor-corrector iterative 
method aiming to reduce the computational cost for the numerical simulation of a fine, expensive model. By 
using a second, coarser model acting as predictor, the parallel method allows to parallelize the fine 
simulation in time. However, although its successful application in a variety of problems, mainly parabolic 
and diffusive ones, the parareal method presents slow convergence and/or instabilities when applied to 
hyperbolic problems, even the simplest ones as the one-dimensional advection equation [2]. Modifications of 
the method are presented in the literature for overcoming these difficulties. In the case of nonlinear 
hyperbolic problems, one of the approaches consists in introducing reduced-order models (ROMs) in the 
parareal algorithm [4]. We briefly present in this section the original or classical parareal method, following 
its presentation in [5], and its modification for treating nonlinear hyperbolic problems, called hereafter as 
ROM-based parareal method.  

2.1  The classical parareal method 

We present the parareal method by considering the following nonlinear time-dependent problem   

8
𝑑
𝑑𝑡
𝒚(𝑡) = 𝐴𝒚(𝑡) 	+ 𝑭(𝒚(𝑡)), 			in	[0, 𝑇]

𝒚(0) = 𝒚B
(2) 

where 𝒚 ∈ ℝE, 𝐴 is assumed to be time-independent, 𝑭 is a nonlinear function and 𝑇 is the final instant of 
simulation. For solving (2) numerically, we define two discretizations (also called propagators) ℱGH and 𝒢JH , 
associated respectively to homogeneous time steps δ𝑡 and Δ𝑡, with δ𝑡	 < 	Δ𝑡 and Δ𝑡	 = 𝑝δ𝑡, where 𝑝 > 1 is 
an integer (this last assumption is not necessary but considered here for simplification; in a general case, an 
interpolation procedure between the temporal discretizations would be necessary). We also define the 
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instants of a discretization of the temporal domain [0, 𝑇] using Δ𝑡 by 𝑡P = 𝑛Δ𝑡, 𝑛 = 0,… ,𝑁JH  and 𝑡TUV = 𝑇.  
These definitions are illustrated in Figure 1. 
 

 
Figure 1: Definition of the temporal discretization of the fine and the coarse propagators (respectively bullets and 
vertical traces). The instants 𝑡P, 𝑛 = 0,… , 𝑁JH correspond to the coarse discretization. 
 
 We denote the solution propagated from 𝒚 (defined at 𝑡P) to 𝑡PWX using ℱGH and 𝒢JH  respectively by 

ℱGH(𝒚, 𝑡PWX, 𝑡P), 	 	 𝒢JH(𝒚, 𝑡PWX, 𝑡P) 
 
 ℱGH is a fine model (providing an accurate solution compared to analytical and/or experimental ones) 
but too expensive in terms of computational time. It is called hereafter as fine propagator and its numerical 
solution is considered as a referential one.  On the other hand, 𝒢JH , called the coarse propagator, has a much 
smaller computational cost (generally with δ𝑡	 ≪ Δ𝑡), but provides less accurate solutions. We remark that 
𝒢JH  can also contain other simplifications with respect to ℱGH; for example, a coarser spatial discretization 
(which, in the case of hyperbolic problems, is usually defined together with the time step for keeping the 
same CFL number), lower-order numerical schemes or even simplified equations from the mathematical or 
physical point of view [6]. However, the only simplification required by the parareal method is the temporal 
coarsening δ𝑡	 < 	Δ𝑡. 
 
 The objective of the parareal method is to provide an accurate numerical solution for (2), with the same 
or a close accuracy as the fine, referential one, but with a smaller computational cost than the one required 
for the simulation of ℱGH. This is performed via the following parallel-in-time predictor-corrector procedure: 
 

• Initialization: coarse prediction given by a sequential simulation of 𝒢JH: 
 

𝒚PWXB = 𝒢JH(𝒚PB , 𝑡PWX, 𝑡P), 	 	 𝑛 = 0,… ,𝑁JH − 1 
 

• Predictor-corrector iterations: for 𝑘 = 1,… ,𝑁itermax: 
 

𝒚cWXd = 𝒢JH*𝒚cd, 𝑡PWX, 𝑡P,effffgffffh
prediction (seq.)

+ ℱGH*𝒚cdiX, 𝑡PWX, 𝑡P, − 𝒢JH*𝒚cdiX, 𝑡PWX, 𝑡P,effffffffffffgffffffffffffh
correction (par.)

, 	 	 𝑛 = 0,… ,𝑁JH − 1 (3) 

 
where 𝒚cd  is an approximation, in the parareal iteration 𝑘, for the solution of (2) at the instant 𝑡P  of the coarse 
temporal discretization; and 𝑁itermax is an user-defined maximum number of parareal iterations. Notice that 
the numerical resolution of (3) contains two nested loops: the outer one corresponds to the parareal iterations 
and, within each iteration, a full time loop (from 0 to 𝑇) is performed, as illustrated in Figure 2. 
 

 
Figure 2: Schematic representation of the parareal algorithm. A full time loop is performed within each parareal 
iteration. 
 
 Notice that, for updating the solution in the iteration 𝑘, the correction term of (3), in which the fine 
propagator is used, depends only on the solution of the previous iteration 𝑘 − 1, already available in the 
beginning of the iteration for all the instants 𝑡P, 𝑛 = 0,… ,𝑁JH  . Therefore, the fine propagations along each 
coarse time window [𝑡P, 𝑡PWX] are independent one from another and thus can be parallelized. The only term 
of (3) that needs to be computed sequentially is the coarse prediction, which has a low computational cost. 
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 Supposing that the parareal simulation is distributed to 𝑁JH  parallel processors, then, in each parareal 
iteration, each processor performs the fine propagation along only one coarse time step. Therefore, in an 
ideal case, the numerical resolution of ℱGH in each iteration takes 1/𝑁JH of the computational time needed to 
a full fine, sequential simulation. As an immediate consequence, the parareal method is only interesting if it 
attains a certain convergence in a small number of iterations, much smaller than the number of coarse time 
steps 𝑁JH; else, the parareal simulation is more expensive than the referential one. In practice, this fast 
convergence is verified for several problems, but not for hyperbolic problems, for which stability issues are 
also observed. 

2.2 The ROM-based parareal method 

Modifications of the parareal method are proposed in [4] for overcoming the instabilities and slow 
convergence observed for hyperbolic problems, by using reduced-order models (ROMs) constructed from 
snapshots of the parareal solution along iterations. In general lines, the objective of the model-order 
reduction is to reduce the computational complexity of an expensive problem. Suppose that, in problem (2), 
𝑀 is very large (for example, the problem is solved in a very refined mesh). Therefore, one may be interested 
in formulating a simplified reduced problem with a much smaller dimension 𝑞	 ≪ 𝑀. 
 
 The idea of the ROM-based parareal method is to replace, in each iteration 𝑘	 ≥ 1, the coarse 
propagator 𝒢JH  by a ROM ℛGH

o , solved with the same small time step δ𝑡 of the fine propagator. Therefore, the 
ROM ℛGH

o  is seen as an unexpensive approximation of ℱGH. In the case of nonlinear hyperbolic problems, the 
ROMs are formulated using two combined model reduction techniques, used respectively for reducing the 
linear and the nonlinear term of the equations: the proper orthogonal decomposition (POD) and the empirical 
interpolation method (EIM) [7]; for this last one, we use a particular and simplified case also known as 
discrete empirical interpolation method (DEIM) [8]. Following the presentation by [4, 8], we briefly 
introduce these techniques and their application to the parareal method. 
 
2.2.1  The proper orthogonal decomposition 
 
The POD is one of the most popular model reduction methods, also known under other names in different 
applications, e.g. as principal component analysis (PCA) in Statistics [9]. Its objective is to write the 
unknown 𝒚 in problem (2) as a linear combination of 𝑞 orthonormal vectors (called POD modes), with 𝑞	 ≪
𝑀, and approximate (2) by a problem whose unknown is the vector 𝒚p containing the coefficients of this 
linear combination. Since 𝒚p is a vector with 𝑞 components, the approximate problem is much cheaper than 
(2), which has a large dimension 𝑀. 
 
 The POD modes are obtained from snapshots of 𝒚, i.e., the solution of (2) computed in a certain number 
of instants 𝑡X, … , 𝑡Pq . We call the matrix 𝑌 ∈ ℝE×Pq  containing the snapshots on its columns as the snapshot 
matrix. The POD consists in performing a singular value decomposition (SVD) of this matrix, 𝑌 = 𝑈ΣWw, 
where 𝑈 and 𝑊 are matrices containing respectively the 𝑛y left and right singular vectors of 𝑌, an Σ is a 
diagonal matrix containing their respective singular values σ{, 𝑖 = 1,… , 𝑛y. The 𝑞 POD modes are the first 𝑞 
left singular vectors (the first 𝑞 columns of 𝑈), i.e. those associated with the largest singular values σ{. 
Usually, 𝑞 is chosen so as to retain a minimal fraction 1 − ε~ of the total POD ”energy” [10]: 

∑ σ{
�
{�X

∑ σ{
Pq
{�X

≥ 1 − ε~ (4) 

where the subscript in ε~ stands for “linear” and is adopted in contrast to a further definition in this paper. 
 
 Then, the POD can be resumed in the following steps: 
 

• Collect 𝑛y snapshots of 𝒚 and store them in the columns of the snapshot matrix 𝑌; 
• Compute the SVD  𝑌 = 𝑈ΣWw; 
• For a given threshold ε~, choose the first 𝑞 left singular vectors (the first 𝑞 columns of 𝑈) and store 

them in a matrix 𝑉 ∈ ℝE×�; 
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and the problem (2) is reduced by replacing 𝒚 by its approximation 𝑉𝒚p and left-multiplying (2) by 𝑉� , 
yielding the ROM 

𝑑
𝑑𝑡
𝒚p(𝑡) = 𝐴�𝒚p(𝑡) + 𝑉�𝑭*𝑉𝒚p(𝑡), (5) 

where 𝐴� = 𝑉�𝐴𝑉 is a matrix not depending on time, being computed only once in the beginning of the 
simulation. As said before, (5) is a problem with small dimension 𝑞, solved for 𝒚p, thus with a reduced 
computational cost compared to (2). However, the nonlinear term is still expensive to compute, since 𝑭  
needs to be evaluated on 𝑀 points (𝑉𝒚p ∈ ℝE). It motivates the introduction of a second order reduction 
approach for reducing the complexity of the nonlinear term. 
 
2.2.2  The (discrete) empirical interpolation method 
 
The EIM, introduced by [7], has a similar objective to the POD: it seeks to write the nonlinear term of (2) as 
a linear combination of 𝑚 vectors, with	𝑚 ≪ 𝑀. However, this approximation is performed using 
interpolation. Therefore, the EIM consists not only in obtaining the	𝑚 vectors, but also in defining 𝑚 
interpolation functions and choosing 𝑚 interpolation points. 
 
 We consider here the particular and simplified case of the EIM in which the basis vectors and 
interpolation functions are the POD modes obtained from a POD applied to snapshots of 𝑭(𝒚). The 
interpolation points are chosen via a greedy algorithm. The combined algorithm is presented in [8] under the 
name of POD-DEIM. It can be resumed in the following steps: 
 

• Define a snapshot matrix 𝑌� containing snapshots of the nonlinear term 𝑭(𝒚) and use the POD 
procedure described above, with a given threshold εT~  (whose subscript stands for “nonlinear”), to 
obtain 𝑚 POD modes to be stored in the columns of a matrix 𝑉� ∈ ℝE×�; 

• Use the greedy DEIM algorithm for choosing 𝑚 spatial points, identified by the indices 𝒫X,… ,𝒫�, 
and obtaining a matrix 𝑃� 	∈ ℝE×�	whose 𝑗 −th column is the 𝒫�-th canonical vector of ℝE. We 
refer to [8] for the description of the DEIM algorithm. 

 
 By introducing the approximation to the nonlinear term into (4), we obtain the final  POD-DEIM ROM 

𝑑
𝑑𝑡
𝒚p(𝑡) = 𝐴�𝒚p(𝑡) + 𝐵�𝑃��𝑭*𝑉𝒚p(𝑡), (6) 

where B� = 𝑉�𝑉�*𝑃��𝑉�,
iX

is, analogously to 𝐴�, a matrix that can be precomputed since it does not depend on 
time. The left multiplication of a vector by 𝑃�� is equivalent to choosing the elements of the vector with 
indices 𝒫X,… ,𝒫�. It means that, in (6), the nonlinear function needs to be computed only on the 𝑚 chosen 
interpolation points. 
 
2.2.3  Introduction of the ROM in the parareal method 
 
As proposed by [4], the ROM is introduced in the parareal method by replacing the coarse propagator 𝒢JH . 
However, 𝒢JH  is still used in the 0-th iteration, for producing the initial prediction. Therefore, the ROM-
based parareal method reads: 
 

• Initialization: coarse prediction given by a sequential simulation of 𝒢JH: 
 

𝒚PWXB = 𝒢JH(𝒚PB , 𝑡PWX, 𝑡P), 	 	 𝑛 = 0,… ,𝑁JH − 1 
 

• Predictor-corrector iterations: for 𝑘 = 1,… ,𝑁itermax: 
 

𝒚cWXd = ℛGH
o *𝒚cd, 𝑡PWX, 𝑡P,effffgffffh

prediction (seq.)

+ ℱGH*𝒚cdiX, 𝑡PWX, 𝑡P, − ℛGH
o *𝒚cdiX, 𝑡PWX, 𝑡P,effffffffffffgffffffffffffh

correction (par.)

, 	 	 𝑛 = 0,… ,𝑁JH − 1 (7) 
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where ℛGH
o  is a numerical discretization of the ROM (6). The superindex on ℛGH

o  indicates that the ROM is  
reformulated on-the-fly at each iteration, by using information from all the previous iterations. The snapshots 
are provided by the fine correction term of (7). Then, the ROM formulation consists in the following steps: 
 

• Collect the fine correction terms 𝒚pPWX
� = ℱGH �𝒚c

� , 𝑡PWX, 𝑡P� and define the snapshots matrices 𝑌 =

�𝒚pP
� , 𝑛 = 0,… ,𝑁JH; 	𝑗 = 0,… , 𝑘 − 1� and 𝑌� = �𝑭*𝒚pP

� ,, 𝑛 = 0,… ,𝑁JH; 𝑗 = 0,… , 𝑘 − 1�;  
• Formulate ℛGH

o  using the POD and the POD-DEIM applied respectively to 𝑌 and 𝑌� and using 
respectively the thresholds ε~ and εT~ . 

3. IMPROVEMENT OF THE ROM-BASED PARAREAL METHOD 

As illustrated in the numerical examples presented in Section 4, the ROM-based parareal method is effective 
for overcoming the issues of the classical parareal algorithm when applied to hyperbolic problems. However, 
the performance of this novel approach has a strong dependency on the quality of the reduced-order models 
formulated along the parareal iterations: evidently, if the ROMs themselves are unstable and/or low-accurate, 
one cannot expect a good behavior of the parareal method using them. 
 
 Since the snapshots used for the model reduction are obtained from the parareal solution along 
iterations, they may not be a good enough representation of the dynamics of the fine, reference model, 
mainly in the first iterations. Moreover, even if the POD is the best representation of a given snapshots set, it 
is not necessarily the best representation of the dynamics that produced them, such that keeping more POD 
modes (choosing larger values of 𝑞) may lead to non-physical behaviors [11]. Another possible issue is that 
relevant physical processes may have low energetic content, being discarded in the POD truncation [12]. It is 
also known that POD-based ROMs are more effective for representing smooth flows, but can be ineffective 
for strongly non-stationary, nonlinear problems [13]. . 
 
 Therefore, an alternative for improving the model reduction and the ROM-based parareal method would 
be to increase the quality of the coarse model 𝒢JH , for obtaining more accurate snapshots from the initial 
iteration. It could be done by refining its temporal and/or spatial discretization or using high-order numerical 
schemes. However, it would increase the computational cost of the parareal method and reduces its parallel 
efficiency: we recall that the coarse model is run sequentially in the algorithm. Moreover, in practical 
applications, the user may not be able to choose the propagators freely (this choice could be restricted by the 
availability of a spatial mesh and stability conditions). 
 
 Another way to improve the reduced-order model is to increase the number of snapshots used as input 
for the model reduction. In the ROM-based parareal method presented above, the snapshots are taken on the 
instants 𝑡P, 𝑛 = 0,… ,𝑁JH  of the coarse temporal discretization. If Δ𝑡	 ≫ δ𝑡 (which is usually the case in the 
parareal method), there may be not enough input data for representing the dynamics of the fine problem. 
However, we notice that, even if only the information computed on the instants 𝑡P  are stored and used in the 
parareal method, there are also intermediary solutions computed on the fine correction step of (7) and 
defined on the instants of the fine temporal discretizations (the instants separated by δ𝑡). 
 
 Therefore, we propose a modification of the ROM-based parareal method consisting in using a certain 
number of additional snapshots, chosen among the fine time steps between the instants of the coarse 
temporal discretization. These extra snapshots are already computed along the parareal iterations, not 
requiring any additional computation. More precisely, we define a time step Δ𝑡� = αΔ𝑡 for taking the extra 
snapshots, with α ≤ 1 such that δ𝑡	 ≤ Δ𝑡� ≤ Δ𝑡 (i.e. 1	 ≤ 1/α ≤ 𝑝) The snapshots matrices	𝑌 and 𝑌� are thus 
enriched by adding columns corresponding to the fine solution computed on the intermediary instants, i.e. for 
each coarse time window [𝑡P, 𝑡PWX], the quantities ℱGH �𝒚c

� , 𝑡P + 𝑙Δ𝑡�, 𝑡P� and 𝑭�ℱGH �𝒚c
� , 𝑡P + 𝑙Δ𝑡�, 𝑡P� , 

with 𝑡P < 𝑡P + 𝑙Δ𝑡� < 𝑡PWX (see Figure 3). This modified method is called hereafter as enriched ROM-based 
parareal method. We notice that the case α = 1  is equivalent to the non-enriched ROM-based parareal 
method. 
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 A question that naturally arises when using this modified approach concerns the number of additional 
snapshots to be taken. The answer lies on a trade-off to be established between accuracy and computational 
cost, since the cost of the POD has a quadratic dependence on the number of snapshots. In iteration 𝑘, the 
total number of snapshots for each model reduction procedure (the number of columns of 𝑌 and 𝑌�) is 
𝑘(𝑁JH + 1)/α; thus, the ROM formulation has a cost proportional to 1/α2. Therefore, one should keep α as 
large as possible; e.g. α = 	1/2, which means that only one extra snapshot is taken per coarse time window 
[𝑡P, 𝑡PWX]. Numerical tests presented in Section 4 compare the performance of the method in function of α in 
terms of quality of the solution and computational cost. 

 
Figure 3: Definition of the time step  where the extra snapshots for the model reduction are taken. Detail on a coarse 
time step[𝑡P, 𝑡PWX]. 

4. NUMERICAL EXAMPLES 

In this section, we perform two sets of numerical tests, with increasing complexity, for illustrating and 
studying the parareal methods presented in the previous sections. In a first moment, we consider the non-
enriched ROM-based parareal method (α = 	1) with different thresholds ε~ and εT~  for the model reduction 
(used respectively in the POD and the POD-DEIM). The objective is to analyze the influence of the ROMs 
on the parareal simulations using them. Next, we choose some fixed pairs (ε~, εT~) and compare simulations 
using different values of α. The original parareal method, the ROM-based one and our proposed 
modifications are compared in terms of quality of the solution and computational time. 
 
 The SWE (eq. (1a) – (1c)) are discretized using a finite volume (FV) scheme and an explicit Euler 
temporal evolution. We refer to [14] for a detailed description of the model reduction of (1a)-(1c) using the 
procedures described in Section 3. All the parareal simulations are performed with a maximum number of 
iterations 𝑁itermax = 5 (except when unstable behaviors lead to negative water depth and stop the numerical 
resolution). The reference solution is given by the sequential simulation of the fine propagator ℱGH and its 
value on the instant 𝑡P  of the coarse discretization is denoted by 𝒚ref,P. For comparing the quality of the 
parareal solutions, we define the following relative error, computed at every iteration and coarse time step: 

𝑒Po =
∑ £[𝒚Po]{ − �𝒚ref,P�{£
¤E
{�B

∑ £�𝒚ref,P�{£
¤E
{�B

 

where 𝑀 is the number of spatial cells in the FV mesh (for each cell the solution has three components, 
namely	ℎ, ℎ𝑢'  and ℎ𝑢+) and [𝒚]{ denotes the 𝑖-th component of the vector	𝒚. 
 
 Moreover, for comparing the parareal simulation in terms of computational time, we define the speedup 

𝑠(𝑘) =
τref

τ(𝑘)
 

where  τref and τ(𝑘) are the computational times respectively for the sequential referential simulation and the 
parareal simulation at the end of the 𝑘-th iteration. A speedup larger than 1 means that the parareal 
simulation is faster than the fine, referential one. All the computational times presented in this paper 
correspond to the average of five executions. 

4.1  Influence of the truncation thresholds for the model reduction 

We first place ourselves in the framework of the ROM-based parareal method (without enrichment of the 
snapshots set, i.e. α = 1) for illustrating the influence of the thresholds ε~ and εT~  used for choosing the 
dimension of the POD basis computed respectively from snapshots of the solution (𝑌) and snapshots of the 
nonlinear term (𝑌�). 
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4.1.1  1D flow 
 
For the first test case we consider a square domain Ω = [0,20]2. The initial solution is a lake-in-rest with 
initial water depth ℎ(𝑥, 𝑦, 𝑡 = 0) = 1. All the boundaries are closed (null mass flux), except for the western 
one (𝑥	 = 	0) for which a unitary inward flux ℎ𝑢' = 1 is defined. The coarse and the fine propagators use the 
same Cartesian spatial mesh. Therefore, there is only one direction of propagation in this test case, even if it 
is, numerically, a 2D simulation. The configurations of the parareal simulation are presented in Table 1. 
 

Total simulation time 𝑇	 = 	4 
Number of coarse time steps 𝑁JH = 20 

Number of parallel processors 𝑁¨ = 20 
 ℱGH  𝒢JH  

Time step 𝛿𝑡	 = 	0.001 Δ𝑡	 = 	0.2 (𝑝 = 200) 
Mesh size (𝑥-direction) 𝛿𝑥	 = 	1 Δ𝑥	 = 	1 
Mesh size (𝑦-direction) 𝛿𝑦	 = 	1 Δ𝑦	 = 	1 

Table 1: First test case (1D flow): parareal configurations. 
  
 We run the parareal algorithm with the thresholds ε~ and εT~  taking values in {10iX, 10i¤, 10i¬, 10i­}, 
totalizing 16 simulations. The typical curves obtained for the relative error 𝑒Po in the parareal method are 
illustrated in Figure 4 and the errors for all the simulations, for the first and fifth iterations and 𝑡	 = 	𝑇/2 and 
𝑡 = 𝑇 are presented in Table 2. The speedups after one and five iterations are presented in Table 3. 
 

 
Figure 4: First test case (1D flow): relative error per iteration and instant for the ROM-based parareal simulations using 
different thresholds ε~ and εT~ for the model reduction (left: ε~ = ε¯° = 10i¤; right:	ε~ = ε¯° = 10i­ ). The vertical, 
dashed lines indicate the instants 𝑡 = 𝑇/2 and 𝑡 = 𝑇 in which the errors presented in Table 2 are computed. 
 

𝒕	 = 	𝑻/𝟐	 = 𝟐, iteration 𝒌 = 𝟎 𝒕	 = 	𝑻	 = 	𝟒, iteration 𝒌 = 𝟎 
4.40E-2 4.35E-2 

𝒕	 = 	𝑻/𝟐	 = 𝟐, iteration 𝒌 = 𝟏 𝒕	 = 	𝑻	 = 	𝟒, iteration 𝒌 = 𝟏 
ε~  \  εT~ 10iX 10i¤ 10i¬ 10i­ ε~  \  εT~ 10iX 10i¤ 10i¬ 10i­ 
10iX 5.78E-2 3.62E-2 3.60E-2 3.58E-2 10iX 4.84E-2 4.30E-2 4.31E-2 4.34E-2 
10i¤ 5.94E-2 3.03E-3 1.25E-3 1.32E-3 10i¤ 4.99E-2 4.30E-2 1.54E-2 1.60E-2 
10i¬ 6.29E-2 3.49E-3 8.76E-4 9.46E-5 10i¬ 4.91E-2 1.98E-2 1.01E-2 9.81E-3 
10i­ 6.29E-2 3.48E-3 1.64E-3 8.14E-5 10i­ 4.92E-2 1.92E-2 1.54E-2 6.70E-3 

𝒕	 = 	𝑻/𝟐	 = 	𝟐, iteration 𝒌 = 𝟓 𝒕	 = 	𝑻	 = 	𝟒, iteration 𝒌 = 𝟓 
ε~  \  εT~ 10iX 10i¤ 10i¬ 10i­ 𝜀~  \  𝜀T~ 10iX 10i¤ 10i¬ 10i­ 
10iX 1.02E-2 1.01E-2 1.02E-2 1.02E-2 10iX 2.93E-2 1.79E-2 1.79E-2 1.78E-2 
10i¤ * 3.40E-5 3.55E-5 2.55E-5 10i¤ * 8.12E-4 1.15E-4 1.14E-4 
10i¬ * 2.06E-3 9.29E-7 1.52E-7 10i¬ * 1.61E-1 4.86E-6 5.23E-6 
10i­ * 2.35E-3 1.78E-5 3.30E-10 10i­ * 6.14E-2 8.48E-5 9.36E-7 

Table 2: First test case (1D flow):  relative error per iteration and instant for the ROM-based parareal simulations using 
different thresholds ε~ (rows) and εT~ (columns) for the model reduction, for 𝑡 = 𝑇/2 and 𝑡	 = 	𝑇, and the zeroth, first 
and fifth parareal iterations. Errors in iteration 0 are the same for all the simulations and correspond to the error between 
𝒢JH  and	ℱGH . Simulations with an asterisk were unstable and did not complete five iterations. 
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Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 

ε~  \  εT~ 10iX 10i¤ 10i¬ 10i­ ε~  \  εT~ 10iX 10i¤ 10i¬ 10i­ 
10iX 4.61 4.78 4.42 4.39 10iX 1.26 1.19 1.08 1.05 
10i¤ 4.95 4.65 4.31 4.01 10i¤ * 1.11 1.04 0.97 
10i¬ 4.80 4.26 4.10 3.91 10i¬ * 1.04 0.98 0.97 
10i­ 4.85 4.24 4.28 3.95 10i­ * 1.02 1.00 0.95 

Table 3: First test case (1D flow):  speedup at the first and fifth iterations in function of the thresholds ε~ (rows) and 
εT~ (columns) for the ROM-based parareal simulations. Simulations with an asterisk were unstable and did not 
complete five iterations. 
 
4.1.2  Flow around obstacles 
 
This second test case, defined on a square domain Ω = [0,100]2, uses the same initial and boundary 
conditions as the previous simulation. However, as shown in Figure 5, a 5×5 Cartesian grid of impermeable, 
square blocks is defined in the center of the domain. Each block has side equal to 4 and is distant of 4 from 
its neighbor in each direction. This configuration adds complexity to the problem due to the reflection of the 
flow on the buildings, generating 2D propagations and discontinuities of the velocity field. The parareal 
simulations have larger relative errors and more critical stability issues compared to the previous test case. 
Therefore, we perform simulations with ε~ and εT~  taking values respectively in	{10iX, 10i2, 10i¤, 10i¼} 
and	{10iX, 10i¤, 10i¬}	. The configurations of the parareal simulation, the errors for each simulation (for the 
first and fifth iterations and 𝑡	 = 	3𝑇/4 and 𝑡 = 𝑇) and the speedups (for the first and fifth iterations) are 
presented respectively in Table 4, Table 5 and Table 6. 
 

 
Figure 5: Second test case (flow around obstacles): computational meshes used by the fine (left) and coarse (right) 
propagators. The red, horizontal line represents the slice 𝑦	 = 47 on which the solution is taken for comparison. 
 

Total simulation time 𝑇	 = 	16 
Number of coarse time steps 𝑁JH = 20 

Number of parallel processors 𝑁¨ = 20 
 ℱGH  𝒢JH  

Time step 𝛿𝑡	 = 	0.005 Δ𝑡	 = 	0.8 (𝑝	 = 	160) 
Mesh size (𝑥-direction) 𝛿𝑥	 = 	2 Δ𝑥	 = 	4 
Mesh size (𝑦-direction) 𝛿𝑦	 = 	2 Δ𝑦	 = 	4 

Table 4: Second test case (flow around obstacles): parareal configurations. 
 
4.1.3  Conclusions 
 
The following conclusions can be made from the results presented in this section: 

• Using too large thresholds ε~ (i.e. defining very low-dimensional POD models) degrades the 
convergence of the parareal method, since the ROMs do not contain enough information to properly 
approximate the reference model. For ε~ = 10iX, the error reduction along iterations is small and 
little improvements are obtained by increasing the dimension of the ROM constructed using the 
POD-DEIM (smaller values of εT~), meaning that the misrepresentation of the POD is dominant; 

• By reducing ε~, a better convergence behavior is obtained for the parareal method, with a more 
important error decreasing along iterations; however, for too small values of ε~ (high-dimensional 
POD models), an unstable behavior is observed. In the first test case, for ε~ ≤ 10i¤ and εT~ =
10iX, the instabilities lead to negative water depth and only the two first parareal iterations are 
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performed. In the second test case, several simulations are unstable, and little improvement of the 
errors is observed along iterations. As discussed above, it may be caused by the low accuracy of the 
snapshots with respect to the reference solution, mainly in the second test case, due to is highest 
complexity; 

• When a small ε~ is used, more stable and accurate solutions are obtained by decreasing	εT~ ; it may 
be caused by the improvement of the interpolation procedure performed by the POD-DEIM. 

• The improvements of the parareal method by reducing ε~ and εT~  have as drawback a higher 
computational cost; firstly because the formulated ROMs have higher dimension, and secondly 
because the DEIM algorithm is more expensive (since 𝑚 is larger). 

 
𝒕	 = 	𝟑𝑻/𝟒	 = 	𝟏𝟐, iteration 𝒌 = 𝟎 𝒕	 = 	𝑻	 = 	𝟏𝟔, iteration 𝒌 = 𝟎 

2.44E-2 4.05E-2 
𝒕	 = 	𝟑𝑻/𝟒	 = 	𝟏𝟐, iteration 𝒌 = 𝟏 𝒕	 = 	𝑻	 = 	𝟏𝟔, iteration 𝒌 = 𝟏 

ε~  \  εT~ 10iX 10i¤ 10i¬ ε~  \  εT~ 10iX 10i¤ 10i¬ 
10iX 3.05E-2 2.67E-2 2.75E-2 10iX 4.62E-2 4.25E-2 4.36E-2 
10i2 3.04E-2 1.88E-2 1.93E-2 10i2 4.40E-2 3.99E-2 3.84E-2 
10i¤ 2.96E-2 1.68E-2 1.61E-2 10i¤ 4.25E-2 3.74E-2 3.52E-2 
10i¼ 3.14E-2 2.21E-2 1.79E-2 10i¼ 4.96E-2 5.15E-2 3.71E-2 
𝒕	 = 	𝟑𝑻/𝟒	 = 	𝟏𝟐, iteration 𝒌 = 𝟓 𝒕	 = 	𝑻	 = 	𝟏𝟔, iteration 𝒌 = 𝟓 

ε~  \  εT~ 10iX 10i¤ 10i¬ ε~  \  εT~ 10iX 10i¤ 10i¬ 
10iX 1.58E-2 5.19E-3 4.99E-3 10iX 6.11E-2 2.43E-2 2.00E-2 
10i2 * 1.13E-2 3.42E-3 10i2 * 1.10E-1 3.04E-2 
10i¤ * * 4.08E-2 10i¤ * * 1.72E-1 
10i¼ * * * 10i¼ * * * 

Table 5: Second test case (flow around obstacles): relative error per iteration and instant for the ROM-based parareal 
simulations using different thresholds ε~ (rows) and εT~ (columns) for the model reduction, for 𝑡 = 3𝑇/4 and 𝑡	 = 	𝑇, 
and the zeroth, first and fifth parareal iterations. Errors in iteration 0 are the same for all the simulations and correspond 
to the error between 𝒢JH  and	ℱGH. Simulations with an asterisk were unstable and did not complete five iterations. 
 

Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 
ε~  \  εT~ 10iX 10i¤ 10i¬ ε~  \  εT~ 10iX 10i¤ 10i¬ 
10iX 7.96 7.71 7.33 10iX 1.89 1.65 1.48 
10i2 7.37 7.50 6.99 10i2 * 1.49 1.31 
10i¤ 6.91 6.73 6.66 10i¤ * * 1.19 
10i¼ 6.55 6.22 6.10 10i¼ * * * 

Table 6: Second test case (flow around obstacles): speedup at the first and fifth iteration in function of the thresholds ε~ 
(rows) and εT~ (columns) for the ROM-based parareal simulations. Simulations with an asterisk were unstable and did 
not complete five iterations. 

4.2 Comparison between the variants of the parareal method 

We consider the tests cases presented above for comparing the performance of the classical parareal method, 
the ROM-based one and our proposed modification. This comparison is made for fixed pairs of thresholds 
(ε~, εT~), and for different values of α for the enrichment of the snapshot sets. 
 
4.2.1  1D flow with 𝜀~ = 𝜀T~ = 10i¬ 
 
As shown in Table 2, the ROM-based parareal method behaves well with ε~ = εT~ = 10i¬. Therefore, the 
objective in using the snapshot enrichment is to have more precise results within less iterations. We perform 
simulations with α taking values in {1, 1/2, 1/4, 1/10, 1/200}, the first of these values corresponding to the 
non-enriched method and the last one to the smallest possible value for α, since	𝑝 = 200 (i.e. the snapshots 
are taken in every time step of the fine discretization). 
 
 Table 7 presents the error 𝑒Po for each parareal simulation, in the first and fifth iterations, and 𝑡	 = 	𝑇/2 
and 𝑡	 = 	𝑇. We first notice that the classical parareal method is unstable in this simple test case, with an 
increasing error along iterations. Concerning the ROM-based simulations, we observe important 
improvements by enriching the model reduction, mainly for 𝑡	 = 𝑇/2, where, in one iteration, the relative 
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error decreases from 10i¤ (in the non-enriched simulation) to 10i¬ approximately, with only one extra 
snapshot per time step (α = 1/2). More but less remarkable improvements are observed for smaller α. 
 
 The water depth at the final instant of simulation is presented in Figure 6 for some of the performed 
parareal simulations and compared to the referential solution. The unstable behavior of the classical parareal 
method is evident. For the ROM-based parareal method, without or with enrichment, the solutions at the first 
iteration are almost visually indistinguishable from the referential one. Finally, Figure 7 shows, for each 
simulation, the computational time and the speedup along iterations. The drawback of choosing a too large 
number of snapshots is evident for the cases α = 	1/10 and α = 	1/200, which are more expensive than the 
referential simulation after few iterations, with little accuracy improvement, as shown in Table 7. Therefore, 
α = 1 or α = 1/2 are reasonable choices for this test case, corresponding respectively to a speedup factor of 
approximately 4 and 3, respectively (in the first iteration, in which a high-quality solution is obtained). 
 

Parareal method 𝒕	 = 	𝑻/𝟐	 = 	𝟐 𝒕	 = 	𝑻 = 	𝟒 
Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 

Classical 3.37E-2 2.11E-2 3.75E-2 6.98E-2 
ROM-based (α = 	1) 8.76E-4 9.29E-7 1.01E-2 4.86E-6 

ROM-based (α = 	1/2) 1.70E-5 2.09E-9 6.31E-3 2.79E-6 
ROM-based (α = 	1/4) 1.01E-5 1.01E-8 6.58E-3 2.77E-6 

ROM-based (α = 	1/10) 4.38E-6 5.63E-10 7.21E-3 1.89E-6 
ROM-based (α = 	1/200) 4.48E-6 4.68E-10 7.37E-3 1.80E-6 

Table 7: First test case (1D flow) with ε~ = εT~ = 10i¬: relative error per iteration and instant using the classical 
parareal method and the ROM-based parareal method with different values of α, for 𝑡 = 𝑇/2 and 𝑡	 = 	𝑇, and the first 
and fifth parareal iterations. 
 

 
Figure 6: First test case (1D flow) with ε~ = εT~ = 10i¬: water depth at the final instant of simulation (𝑇 = 4) along 
the slice 𝑦 = 10  in iteration 0 (left figure), 1 (middle figure) and 2 (right figure) of the classical parareal method 
(squares), the ROM-based parareal with 𝛼 = 	1 (crosses) and the ROM-based parareal with 𝛼 = 	1/2 (ticks).  The 
dashed line represents the referential solution. All the parareal solutions coincide in the 0-th iteration, since it 
corresponds to the coarse solution (given by 𝒢JH). The solutions are the same along any slice in the 𝑥 direction. 
 

 
Figure 7: First test case (1D flow) with ε~ = εT~ = 10i¬: computational time (left figure) and speedup 𝑠(𝑘) (right 
figure) for each parareal simulation. The dashed lines represent respectively the computational time for the simulation 
of the fine, referential solution, and a unitary speedup (no acceleration). 
 
4.2.2  1D flow with 𝜀 = 10i¬ and 𝜀T~ = 10i¤ 
 
Table 2 reveals that the ROM-based parareal method is unstable for ε~ = 10i¬ and εT~ = 10i¤; therefore, 
we expect a more stable behavior by enriching the snapshot sets. We consider the same values of α as above. 
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The evolution of the errors presented in Table 8 shows smaller but still present instabilities for α ≤ 1/2, 
specially for advanced time steps. Also, taking smaller values of  does not introduce significative quality 
gain. The water depth in the final instant of simulation, shown in Figure 8, evidences the unstable behaviour 
for α = 1.  The computational times are similar to the previous test cases (with a small gain due to the 
reduction of  εT~) and are omitted here. Therefore, in this test case α = 1/2 is the most effective choice, but 
it would be preferable to choose other values for ε~ and  εT~ . 
 

Parareal method 𝒕	 = 	𝑻/𝟐	 = 	𝟐 𝒕	 = 	𝑻 = 	𝟒 
Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 

Classical 3.37E-2 2.11E-2 3.75E-2 6.98E-2 
ROM-based (α = 	1) 3.49E-3 2.06E-3 1.98E-2 1.61E-1 

ROM-based (α = 	1/2) 2.92E-3 1.51E-3 1.95E-2 1.05E-2 
ROM-based (α = 	1/4) 2.37E-3 8.99E-4 1.75E-2 9.73E-3 

ROM-based (α = 	1/10) 2.37E-3 3.85E-4 1.86E-2 7.96E-3 
ROM-based (α = 	1/200) 2.38E-3 6.68E-4 1.91E-2 1.36E-2 

Table 8: First test case (1D flow) with ε~ = 10i¬ and εT~ = 10i¤: relative error per iteration and instant using the 
classical parareal method and the ROM-based parareal method with different values of α, for 𝑡 = 𝑇/2 and 𝑡	 = 	𝑇, and 
the first and fifth parareal iterations. 
 

 
Figure 8: First test case (1D flow) with ε~ = 10i¬ and εT~ = 10i¤: water depth at the final instant of simulation (𝑇 =
4) along the slice 𝑦 = 10 in iteration 0 (left figure), 1 (middle figure) and 2 (right figure) of the classical parareal 
method (squares), the ROM-based parareal with 𝛼 = 	1 (crosses) and the ROM-based parareal with 𝛼 = 	1/2 (ticks).  
The dashed line represents the referential solution. All the parareal solutions coincide in the 0-th iteration, since it 
corresponds to the coarse solution (given by 𝒢JH). The solutions are the same along any slice in the 𝑥 direction. 
 
4.2.3  Flow around obstacles with 𝜀~ = 10i¤ and 𝜀T~ = 10i¬ 
 
We consider the thresholds ε~ = 10i¤ and εT~ = 10i¬ for simulating the second test case. Table 5 shows 
an unstable behavior of the non-enriched ROM-based parareal method under these configurations. We 
consider the values in {1, 1/2, 1/4, 1/8, 1/16} for α. 
 
 Table 9 presents the relative errors 𝑒Po. The classical parareal method is unstable and produces negative 
water depth from the third iteration. By enriching the snapshots sets, more stable solutions are obtained; a 
less important unstable behavior is still observed in the first iterations for the last time steps (mainly for the 
most enriched case, α = 	1/16), but it is effectively controlled in the following iterations. 
 
 The physical behavior of the solution is illustrated in Figure 9 and Figure 10, showing the water depth 
along the slice 𝑦 = 47, respectively at 𝑡 = 3𝑇/4 = 12 and 𝑡 = 𝑇	 = 	16. In the former case, very good 
approximations to the referential solution are obtained after two iterations of the classical parareal methods 
and the enriched ROM-based ones, with 𝛼 = 1/2 and 𝛼 = 1/4. In the latter case, strong instabilities are 
produced in the classical and the non-enriched ROM-based methods, and three iterations of the ROM-based 
methods, specially for 𝛼 = 1/4, produce high-quality approximations. Finally, Figure 12 compares the 
referential solution (water depth, 𝑥-unit discharge and 𝑦-unit discharge in the entire domain) with the 
parareal one (ROM-based with α = 1/4), in the zeroth, first and  third iterations. 
 
 Concerning the computational times, presented in Figure 11, speedup factors between 2 and 4, 
approximately, are obtained after two iterations for α = 1/2 and α = 1/4. For the third iteration, the 
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speedups are below 2. Therefore, more efficient implementations of the parareal method and the model 
reduction are necessary for improving the parallel efficiency of the algorithm. 
 

Parareal method 𝒕	 = 	𝟑𝑻/𝟒	 = 𝟏𝟐 𝒕	 = 	𝑻 = 𝟏𝟔 
Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 Iteration 𝒌 = 𝟏 Iteration 𝒌 = 𝟓 

Classical 2.72E-2 * 5.91E-2 * 
ROM-based (α = 	1) 1.61E-2 4.08E-2 3.52E-2 1.72E-1 

ROM-based (α = 	1/2) 2.73E-2 8.58E-4 6.17E-2 1.16E-2 
ROM-based (α = 	1/4) 1.59E-2 8.27E-4 3.67E-2 9.19E-3 
ROM-based (α = 	1/8) 2.26E-2 1.46E-3 8.29E-2 3.44E-2 

ROM-based (α = 	1/16) 2.54E-2 6.31E-4 5.06E-2 1.30E-2 
Table 9: Second test case (flow around obstacles) with ε~ = 10i¤ and εT~ = 10i¬: relative error per iteration and 
instant using the classical parareal method and the ROM-based parareal method with different values of α, for 𝑡 = 3𝑇/4 
and 𝑡	 = 	𝑇, and the first and fifth parareal iterations. The asterisk indicates that the classical method was unstable and 
did not complete five iterations. 
 

 

 
Figure 9: Second test case (flow around obstacles) with ε~ = 10i¤ and εT~ = 10i¬:  water depth at 𝑡 = 3𝑇/4 = 12 
along the slice 𝑦 = 47. Dashed curves represent the reference solution. Top: coarse solution (iteration 0); first column: 
classical parareal method; second column: ROM-based parareal with α = 1; third column: ROM-based parareal with 
α = 1/2; fourth column: ROM-based parareal with α = 1/4. Second row: iterations 1; third row: iteration 2; fourth 
row: iteration 3. 
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Figure 10: Second test case (flow around obstacles) with ε~ = 10i¤ and εT~ = 10i¬:  water depth at 𝑡 = 𝑇	 = 16 
along the slice 𝑦 = 47. Dashed curves represent the reference solution. Top: coarse solution (iteration 0); first column: 
classical parareal method; second column: ROM-based parareal with α = 1; third column: ROM-based parareal with 
α = 1/2; fourth column: ROM-based parareal with α = 1/4. Second row: iterations 1; third row: iteration 2; fourth 
row: iteration 3. 

 
Figure 11: Second test case (flow around obstacles) with ε~ = 10i¤ and εT~ = 10i¬: computational time (left figure) 
and speedup 𝑠(𝑘) (right figure) for each parareal simulation. The dashed lines represent respectively the computational 
time for the simulation of the fine, referential solution, and a unitary speedup (no acceleration). 

4.CONCLUSIONS 

In this paper, we implemented and compared some variants of the parareal method for speeding up the 
numerical resolution of the two-dimensional nonlinear shallow water equations. This method allows to 
pararellize in time a fine, expensive simulation in a predictor-correction iterative algorithm, in which the 
predictions are given by a coarser and less expensive model. The variant considered here uses reduced-order 
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models formulated on-the-fly with the POD and EIM techniques and allows to overcome the well-known 
stability and convergence issues for the method when applied to hyperbolic problems. We proposed a 
modification of the ROM-based parareal method consisting in the enrichment of the snapshots set used as 
input for the model reduction, with extra snapshots whose computation does not require any extra 
computational cost. 
 

 
Figure 12: Second test case (flow around obstacles) with ε~ = 10i¤ and εT~ = 10i¬:  water depth (left column), 𝑥-unit 
discharge (middle column) and 𝑦-unit discharge (right column) at 𝑡	 = 	𝑇	 = 	16. First row: reference solution; second 
row: iteration 0 (coarse solution); third and fourth rows: iterations 1 and 3 of the ROM-based parareal method with α =
	1/4. 
 
 A number of test cases with increasing complexity were performed for illustrating and studying the 
methods.  Firstly, we studied the influence of the truncation thresholds for the formulation of the ROMs. The 
results show that the parareal method using ROMs with higher dimensions converges faster but may present 
unstable behaviors, due to the inaccuracy of the input snapshots. These instabilities can be partially 
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minimized by increasing the dimension of the reduced nonlinear term of the governing equations, however 
with a higher computational cost. 
 
 Secondly, we compared the classical parareal method, the ROM-based one and our proposed 
modification for different number of extra snapshots for the ROM enrichment. Our method provides, with 
few extra snapshots, more stable solutions and a faster decreasing of the relative error with respect to the 
reference solution. Further increments on the number of snapshots provide more but less remarkable 
improvements, with the drawback of a prohibitive computational time: even if the computation of the extra 
snapshots is costless, the model reduction has a quadratic cost relative to the number of input snapshots. 
 
 Therefore, the enriched ROM-based parareal method, with few extra snapshots, is able to provide good 
and stable approximations of the fine, referential solution with a smaller computational time. Speedup factors 
up to 3 were obtained in the simulations presented along this paper. Thus, the method shows itself as a 
promising alternative for speeding up the resolution of the SWE and other problems in hydrodynamics. 
Moreover, further improvements in the speedup could be obtained with more efficient implementation of the 
parareal method and the model reduction procedures.  
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