
HAL Id: hal-03231364
https://inria.hal.science/hal-03231364

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Identifying HCI Patterns for the Support of
Participatory Enterprise Modeling on Multi-touch

Tables
Anne Gutschmidt, Valentina Sauer, Kurt Sandkuhl, Alexey Kashevnik

To cite this version:
Anne Gutschmidt, Valentina Sauer, Kurt Sandkuhl, Alexey Kashevnik. Identifying HCI Patterns
for the Support of Participatory Enterprise Modeling on Multi-touch Tables. 12th IFIP Working
Conference on The Practice of Enterprise Modeling (PoEM), Nov 2019, Luxembourg, Luxembourg.
pp.118-133, �10.1007/978-3-030-35151-9_8�. �hal-03231364�

https://inria.hal.science/hal-03231364
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Identifying HCI Patterns for the Support of
Participatory Enterprise Modeling on

Multi-Touch Tables

Anne Gutschmidt1, Valentina Sauer1, Kurt Sandkuhl1, and Alexey Kashevnik2

1 University of Rostock, Computer Science Department
anne.gutschmidt@uni-rostock.de

2 ITMO University, Information Technology and Programming Faculty

Abstract. This paper deals with the question of how software enabling
participatory enterprise modeling on a multi-touch table should be de-
signed. We will present a pre-selection of existing HCI patterns address-
ing the requirements which come along with collaboratively creating en-
terprise models on a shared workspace. Moreover, we examined a soft-
ware prototype based on a task model and video analysis. The videos
show participatory modeling sessions and give hint on frequent activi-
ties and deficiencies of the prototype. Based on our results, we will give
recommendations of HCI patterns which should be applied when design-
ing software tools for participatory enterprise modeling on multi-touch
tables.

Key words: HCI patterns, participatory enterprise modeling, multi-
touch table, task analysis, video analysis

1 Introduction

Enterprise models are supposed to capture and represent the situation in an
enterprise, either in terms of the current state of affairs or of the planned future
situation [1]. In this context, a precondition for high quality enterprise models
is to fully and correctly elicit the relevant knowledge from within the enterprise
under consideration for the defined scope and purpose of modeling. Participatory
enterprise modeling (PEM) is an elicitation technique considered as in particular
valuable, when an agreement and a joint view of different stakeholders on the
current or future situation are important [2]. Various methods, techniques and
tools have been proposed by the scientific community to support PEM (cf. sec-
tion 2.1). However, constantly emerging new technologies make more and more
new tools possible. We argue that with an increased use of multi-touch tables
(MTT) and large touch screens, more attention should be paid on adapting or
specifically designing tools for participatory, facilitated and collaborative EM.
More concretely, the paper addresses the design of user interface and human
computer interaction (HCI) for MTT in the context of PEM. This may also
contribute to light-weight modelling tools and the research agenda for extending
the reach of enterprise modeling [3]. Our conjecture is that HCI patterns from

2 A. Gutschmidt et al.

software engineering (cf. section 2.2) provide relevant and reusable knowledge
for the design of PEM tools. Based on a general task analysis for goal modeling
as selected part of EM and using the results of a video analysis revealing prob-
lems and challenges in PEM on a multi-touch table, we aim at contributing to
an understanding of specific requirements in PEM tool design. The main contri-
butions of the paper are (1) a list of HCI patterns supporting participation and
enterprise modeling, (2) a task analysis of typical EM activities and (3) results
of evaluating the HCI patterns for improving a modeling tool on a multi-touch
table. The remainder of the paper is structured as follows: Section 2 will present
the theoretical background dealing with the areas of PEM (section 2.1) and HCI
patterns (section 2.2). In section 3 we will present our selection of HCI patterns
where we list patterns we found most fitting for PEM on a MTT. We examined
a software prototype to determine which of the previously selected HCI patterns
have already been applied (section 4). Furthermore, we documented basic user
interactions enabled by the prototype in a task model (section 5) and, based on
video recordings of thirteen PEM sessions, we analyzed the interactions with the
aim of identifying potentials of improvement (section 6). The paper closes with
a general discussion in section 7.

2 Theoretical Background

2.1 Participatory and Collaborative Enterprise Modelling

A General Background In general terms, EM addresses the systematic anal-
ysis and modelling of processes, organization structures, product structures, IT-
systems or any other perspective relevant for the modelling purpose [4]. A de-
tailed account of EM approaches is provided in [5]. PEM and involving different
stakeholder groups in EM has a long tradition (see, e.g., [5]). Since several stake-
holder groups are involved in the modelling process and have to work together
on one model, this process calls for participation of everyone involved. In this
PEM process the methodology experts and domain experts work together on the
model [6]. By working together right from the beginning, it is more likely that
the final model will be accepted by the participants and they will commit to it.
Furthermore, the stakeholders will agree with the model, after all, they worked
on it, too. Another advantage of PEM sessions is that they can increase the
quality of the model, by introducing people into the process who hold valuable
knowledge of the enterprise and its processes. Domain-specific modelling lan-
guages (DSML) [7] are supposed to support these various stakeholders in model
creation and use. The scientific literature on EM offers several views as its con-
stituents (see, e.g., [8, 9]), like the modelling procedure or modelling method,
the result of modelling (i.e. the model), the tool support, and the organiza-
tional structures establishing modelling within an organization. However, not all
researchers in EM agree on the above EM constituents. Some researchers em-
phasize the importance of meta-models and modelling languages for capturing
different perspectives [8]. Tool support is often seen as inseparable manifestation

Identifying HCI Patterns 3

of modelling approaches and notations [10], but in other research work as aid to
support modelling [11]. Organizational structures and role descriptions are often
neglected in EM approaches.

Participatory Enterprise Modeling Sessions When an enterprise decides
to start an enterprise modeling project with actively involving stakeholder rep-
resentatives, they will have to invest resources into that project: Most obviously,
they will have to exempt employees from work to let them take part in modeling
sessions. The participants should come from different parts of the company, and
have adequate domain knowledge which is why they are called domain experts.
They should also have the authority to suggest organizational changes contained
in the final models [2]. Stirna and Persson [2] propose a number of 4-8 partic-
ipants per session. In addition to domain experts, a company should recruit
so-called method experts. Their purpose is to support the domain experts in
creating enterprise models based on their knowledge of modeling notation and
method. Usually, a facilitator leads the discussion and modeling process while
being completely neutral about the content. A tool operator assists the domain
experts in creating the actual models. He or she helps handling the modeling
tool and generating syntactically correct models. Optionally, a secretary may
take additional notes to document the rationale of the creation process [1, 2].
An enterprise modeling project may comprise multiple modeling sessions lasting
several hours and possibly involving different domain experts who create and
refine models [2].

Modeling Language Enterprise models are usually represented by diagrams
containing geometric shapes such as rectangles or circles. These shapes reflect
concepts and are usually connected by lines or arrows representing relationships.
All model elements may be labeled, giving further information. In a formal lan-
guage both syntactical and semantic rules have to be followed when drawing the
actual model [2]. A goal model in the 4EM notation, for example, consists of
differently colored rectangles, e.g., a green rectangle represents a goal, an orange
rectangle represents a problem. The rectangles usually contain an expressive
description and a number. To show that a certain problem hinders a goal, a
relationship between these components must be added including the respective
label [1].

2.2 HCI Patterns

HCI patterns, also called HCI design patterns, describe successful best prac-
tice solutions for reoccurring User Interface (UI) design problems, therefore also
affecting implicitly the usability of software tools [12]. These patterns should
support the designers and keep them from reinventing the same solutions over
and over again. Their advantage is that useful design solutions can be captured
and generalized in the form of a pattern to solve similar problems with them
[13]. The development of UIs is complex, therefore, reusing knowledge, already
gained by previous design processes, helps the designers and developers to work

4 A. Gutschmidt et al.

more efficiently and improve their productivity [14, 15, 16, 17]. A pattern is the
relationship between a certain context, problem and solution [18]. It describes
the context within which the patterns can be used, the problem that has to be
solved by the pattern and its solution [17]. Initially, this idea of patterns was
developed by Christopher Alexander for architectural designs [18]. The “Gang of
Four” adopted the pattern concept for the design of object-oriented software [19].
Eventually, patterns were also adopted by the HCI community. While the Gang
of Four gives instructions about how to implement a pattern, HCI patterns are
about the general design of an interface and its purpose for the user. The pattern
concept not only included the patterns themselves, but also a pattern language.
A pattern language consists of patterns and their relationships, i.e. a network
of patterns. High-level patterns in this network may be solved by low-level pat-
terns [16]. Since the patterns of one language are connected to each other, it is
apparent that a pattern language combines patterns for a given family of design
problems in a specific domain [15, 20]. Successor and predecessor relationships
between patterns are a key concept when working with pattern languages, since
they enable finding closely related patterns [15].

3 Selecting HCI Patterns for Participatory Enterprise
Modeling on MTTs

We have scanned existing lists of patterns [21, 22, 23, 24, 25] and further works
presenting HCI patterns [26, 27] which covered concepts that could be applied to
MTT. While the lists of Tidwell [23, 22] and van Welie ([21] are most often cited,
Remy et al. [24] created a pattern list specifically for the MTT. We particularly
looked for HCI patterns that fit the requirements of the special context of PEM
with a multi-touch table. We formulated major concepts which helped us se-
lecting and categorizing fitting patterns, and also reflected the above-mentioned
requirements. Figure 1 shows these concepts in bold letters with thick frames at
the top of the diagram. The remaining elements represent existing HCI patterns
we have found in the above-mentioned sources. The arrows represent relation-
ships among the elements, e.g. space may be saved using collapsible panels. A
pattern may also serve several concepts. Moreover, patterns may be related.

Usually, enterprise models become very big and complex. So, space for in-
teractions will become more and more scarce as a model is growing. To save
space, several patterns may be used, such as collapsible panels or hover tools
[23]. Tidwell introduced the pattern hover tools for mouse-based applications
[23], where elements are displayed only when hovering the mouse icon over an
object. For touch devices, there is not yet an equivalent to hovering, but only
touching. Tidwell is of the opinion that touching may cause precipitate commit-
ment. Nevertheless, it may ensure that the displayed model is not cluttered by
displaying editing options which are not needed at the moment. Different views
[21] may be used as an alternative, where users may switch between editing view
and “final” view that is showing just the model.

Identifying HCI Patterns 5

Depending on the size of the table and of the model elements, it may be
difficult to see/read or reach certain objects. As mentioned before, there should
be 4-8 domain experts plus at least one method expert present at a modeling
session. Thus, the software must present the model in a way that is visually and
physically available to several persons at a time. Patterns such as zooming [24, 23]
and extending reachability [24] support physical and visual reachability.

As mentioned above, the modeling tool is mainly handled by the tool opera-
tor. However, Stirna and Persson suggest that domain experts should be involved
by e.g. letting them write down their ideas on colored cards, present them to
the group, discuss them and then cluster related cards [2]. Thus, the editing
software for the MTT should not be tailored to only the tool operator. It should
also offer domain experts an easy way of capturing their ideas in their own words
with the MTT. A third party like the tool operator may accidentally change the
meaning of statements. Still, the tool operator may then assist in composing a
syntactically correct model. Furthermore, the software should not be designed in
a way that one person may take over a whole modeling session. Remy et al. [24]
introduced a pattern called balanced participation. This implies that there
must not be any conflict about or restricted access to resources, especially input
devices. An overlay menu [21], possibly with multiple instances, instead of a
single fixed menu could support this. When providing a horizontal work surface,
different perspectives must be provided for users possibly standing at all sides
of the table. This is addressed by the pattern desktop orientation [24] mean-
ing that the orientation of the interface can be changed. Balanced participation
could also be promoted by user identification [24]. In private spaces participants
may take notes of their own ideas, possibly with embedded electronic devices
such as tablets [24], before sharing them with the group analogous to the above
mentioned card writing. However, the content produced in private space should
be meant to be shared, otherwise it might undermine collaboration.

The modeling task itself brings some special requirements with it. As men-
tioned before, models can become very complex. So, the table should be large
enough to both display the model and let all participants have access to the
model (large collaboration table [24]). According to [2], domain experts should
not be burdened with details of the modeling notation. Consequently, at best,
the software should make obvious what can be done (e.g. with input hints [23]),
and it should not allow what should not be done (e.g. with constraint input [21]),
possibly already considering notation rules.

As domain experts should not be expected to be experts on digital touch
devices such as tabletops either, the software must be very intuitive and easy
to handle. An intuitive interface may be implemented based on patterns such
as input hints, good defaults [23] and constraint input [21] such that users know
what to do. With easy handling, we mean that it should not be difficult or
effortful to see content on the table or to perform an interaction on the MTT.
E.g., the “fat-finger” problem may be prevented by applying a pattern such as
generous borders applied to the components of a model or buttons and keys

6 A. Gutschmidt et al.

P
ar

ti
ci

p
at

o
ry

EM

 o
n

 M
T

T

W
YS

IW
YG

[2

2
]

Ea
sy

h

an
d

lin
g

D
o

cu
m

en
t

ra
ti

o
n

al
e

In

p
u

t
d

e
vi

ce
s

B
al

an
ce

d

p
ar

ti
ci

p
at

io
n

P

h
ys

ic
al

/v
is

u
al

re

ac
h

ab
ili

ty

Su
p

p
o

rt

m
o

d
e

lin
g

Sa
ve

sp

ac
e

In

tu
it

iv
e

in

te
rf

ac
e

H
ig

h

p
re

ci
si

o
n

P

h
ys

ic
al

ke

yb
o

ar
d

Ex
te

n
d

in
g

re
ac

h
ab

ili
ty

[2

4
]

Pe
n

in

p
u

t

O
n

-s
cr

ee
n

ke

yb
o

ar
d

H
an

d

ge
st

u
re

D
es

kt
o

p

o
ri

en
ta

ti
o

n

C
o

lla
p

si
b

le

p
an

el
s

[2
3

,2
1

]
U

se
r

id
en

ti
fi

ca
ti

o
n

Zo
o

m
in

g
[2

3
,2

4
]

C
o

n
ve

n
ie

n
t

en
vi

ro
n

m
en

t
ac

ti
o

n
s

In
vi

si
b

le

h
ar

d
w

ar
e

In
p

u
t

Ta
n

gi
b

le
s

D
ro

p
 d

o
w

n

ch
o

o
se

r
[2

1
-2

3
]

G
o

o
d

d

ef
au

lt
s

Lo
ca

liz
ed

o

b
je

ct

ac
ti

o
n

s

So
ve

re
ig

n

p
o

st
u

re

H
o

ve
r

to
o

ls
 [

2
3

]

P
h

ys
ic

al
 o

b
je

ct

st
o

ra
ge

 b
in

[2

4
]

D
yn

am
ic

ke

yb
o

ar
d

re

la
b

el
in

g

In
p

u
t

h
in

t

P
ile

 o
f

it
em

s

D
is

ab
le

ir

re
le

va
n

t
th

in
gs

C

en
te

r
st

ag
e

[2
1

,2
3

]

O
ve

rl
ay

m

en
u

A
u

to
sa

ve

[2
5

]

Ex
p

lo
ra

b
le

in

te
rf

ac
e/

u
n

d
o

Pa
n

n
in

g
n

av
ig

at
o

r

Sy
m

b
o

ls
/I

co
n

s

[2
1

,2
6

,2
7

]

P
ro

xi
m

it
y

&

si
m

ila
ri

ty

C
o

n
st

ra
in

t
in

p
u

t

V
ie

w

[2
1

]
C

o
lo

r
&

co

n
tr

as
t

Ex
tr

a
st

ep

G
en

er
o

u
s

b
o

rd
er

s

La
rg

e
co

lla
b

o
ra

ti
o

n

ta
b

le

P
ri

va
te

sp

ac
e

Em
b

ed
d

ed

el
e

ct
ro

n
ic

d

ev
ic

es

+

+

+

+
+

+

+

+

+

[2
4

]

[2
4

]

[2
4

]

[2
2

]

[2
4

]

[2
4

] [2
1

]

[2
2

]

[2
1

]

[2
3

]

[2
2

]

[2
7

]

[2
7

]

[2
6

,2
7

]

[1
4

]

[2
6

,2
5

]

[2
2

]

[2
3

] [2
2

]

[2
4

]

[2
4

]

[2
4

]

[2
4

]

[2
5

]

[2
4

] [2
4

]

[2
4

]

[2
4

]

Fig. 1. Selection of HCI patterns suitable for PEM on a MTT. Please note that HCI
patterns may have different names in the pattern catalogues. A check mark means,
the pattern has been found in the software, a plus mark means, the pattern should be
added.

Identifying HCI Patterns 7

[23]. The pattern WYSIWYG (what you see is what you get) [22] should make
interactions quicker, as immediate feedback of one’s action is given.

With the MTT, different input devices are available. While the physical
keyboard is often felt as more convenient, but occupying space on the work
surface, on-screen keyboards may be instantiated for every user at each required
spot and easily dismissed if no longer needed [24]. Input tangibles may be used
as an alternative [24], although there must be some additional space where these
objects can be stored beyond the work surface (physical object storage bin [24]).

In an enterprise modeling session, it is also of interest how ideas evolved. The
rationale may be documented by a secretary [1]. User identification may add
information in a way that the author information of components in the model
can be saved in addition.

4 Identifying HCI Patterns in a Prototype PEM Editor

In order to confirm the suggested HCI patterns, they should actually be applied
in existing software. To our knowledge, there does not yet exist a commercial
enterprise modeling editor especially developed for collaborative working with a
MTT. Therefore, we have examined a prototype developed at the university of
Rostock, as a starting point. In previous studies, we have worked with this pro-
totype [28, 29] which allows creating goal models according to the 4EM notation
on a MTT. In particular, it supports collaboration by enabling simultaneous
input by several users. We wanted to know whether some of our selected HCI
patterns from section 3 have already been applied in the software and present
their concrete implementation. Due to space limitations, we can only describe
a small selection. In Fig. 1 we have marked the patterns we have found in the
prototype with a check mark.

In the editor, localized actions [22] in terms of buttons directly accompanying
components and relations, simplify the handling and support balanced partici-
pation, i.e. users can manipulate all the objects they can reach without having
to access a menu possibly situated somewhere else. E.g., each component has
a button to set it to an editing mode and to generate a new relation starting
from this component. Moreover, when the user touches one of the text fields of
a component which is in editing mode, an on-screen keyboard [24] is attached
right below the component. This keyboard belongs only to this component (lo-
calized object actions), every component may have its own keyboard. Thus, the
keyboard is not a resource to be shared which should also promote balanced par-
ticipation. Thus, actions referring to an object are situated in its close proximity
as can be seen in Fig. 2a.

These buttons, however, are hidden by default in order to save space and
keep an uncluttered view. Only when a user touches the component, the buttons
appear. After a few seconds, the buttons slowly fade out following the pattern
hover tools [23] (see Fig. 2a).

8 A. Gutschmidt et al.

a b

c d

Fig. 2. Example screenshots of the prototype showing a) localized object actions,
on-screen keyboard and hover tools, b) drop-down chooser for selecting a component
type, c) a relation in editing mode with drop-down chooser, and d) overlay menus and
a newly created relation with tool tip/input hint.

By offering the possibility to rotate components, the pattern desktop orien-
tation [24] is partly implemented. Only single elements, but not the whole model
can be rotated to a participant’s respective orientation.

When a user wants to create a new component, a menu (see Fig. 2d) must
be opened by hand gesture [24], namely tap and hold. The same gesture is also
used to set a relation into editing mode, e.g. for setting a label or deleting it.
There is no fixed menu, but the menu can be opened at any point on the work
surface as described in the pattern overlay menu [21]. The pattern balanced
participation [24] is implemented by allowing several instances of the menu.
That way, participants do not have to share this resource. For the creation of
the actual component from the menu, the pattern constrained input was used.
The menu allows the creation of only those elements that are included in the
modeling language. There is no free drawing.

WYSIWYG [23] is applied when drawing a relation and moving elements.
E.g., components may be moved and rotated, and the effect of these actions
can be seen immediately. Moreover, if a relation is connected to a component in
movement, the relation’s orientation and length is adapted automatically like a
physical rubber band.

Identifying HCI Patterns 9

0. Create Goal
Model

1. Check Model
2. Add

Component

Plan 2: Do 2.1 If
Menu closed Do
2.2 Then Do 2.3
Then 2.4

If Menu no
longer needed
Do 2.5

2.1 Check Menu

2.2 Open Menu

2.3 Choose
Component

2.4 Create
Component

3. Change
Component

Plan 3: Do 3.1 If
Editing Mode is

inactive Do 3.2 Then
3.3 Repeat 3.3 until

Component is
accurate and
complete If

component exists and
state is OK Do 3.4

3.1 Check Editing
Mode

3.2 Open Editing
Mode of

Component

3.3 Edit
Component

Plan 3.3: Do 3.3.1 If
Components text is
inaccurate Do 3.3.2
Else If Components

Type is inaccurate Do
3.3.3 Else Do 3.3.4

3.3.1 Check
Component

3.3.2 Change
Description of

Component

3.3.3 Change
Component type

3.3.4 Delete
Component

4. Create Relation

Plan 4: Do 4.1
Then If Relation
is erreneous Do

4.2 Else 4.3

4.1 Create New
Relation at
Component

4.3 Connect
Relation with

other Component

5. Change
Relation Plan 5: Do 5.1 If

Editing Mode is
inactive Do 5.2

Then 5.3 If
Relation exists
and state is OK

Then 5.3
5.1 Check Editing

Mode

5.2 Open Editing
Mode of Relation

5.3 Edit Relation

Plan 5.3: Do 5.3.1
If Relation Type is

inaccurate Do
5.3.2 Else Do

5.3.3

5.3.1 Check
Relation

5.3.2 Change
Relation Type

5.3.3 Delete
Relation

Plan 0: Do 1 Then
2 Or 3 Or 4 Or 5

Until Model is
accurate and

complete Then
Exit

6. Structure the
Model

Plan 6: Do 6.1 If
Position is

wrong Do 6.2 Or
6.3 Else Do 6.4

6.1 Check
Appearance of

Element

6.2 Move
Element

6.3 Rotate
Element

4.2 Dismiss New
Relation at
Component

2.5 Close Menu

3.4 Close Editing
Mode of

Component
5.4 Close Editing
Mode of Relation

5.3.4 Change
Direction

Fig. 3. Task model with basic user interactions with the prototype modeling editor.

Although the physical conditions do not belong to the software, we want to
add some more patterns which may also have an influence on using it. The multi-
touch device is embedded in a wooden table making the hardware invisible [14]
and offering some space on the table’s wooden frame and below the table to store
physical objects such as a physical keyboard or handouts (physical object storage
bin [24]). Due to this setting, we are dealing with a horizontal work surface which
cannot be tilted [24]. It was technically not possible to use tangible objects nor
user identification [24] with the concrete device (cf. section 6.1).

5 Task Analysis

In order to further examine the software prototype and find potentials of im-
provement, we wanted to create an overview of user interactions with the software
necessary to generate a model. We decided to use Hierarchical Task Analysis
(HTA) to attain a graphical representation of theses interactions we could then
examine. HTA may help discovering those parts of a task which may cause a
user to eventually fail or to succeed [30]. The basic idea of HTA is that there
is a general task at the highest level which consists of an operation. Each oper-
ation is connected with a goal whose accomplishment can be measured. Goals
can be decomposed into sub-goals, thus the connected goals are decomposed
into sub-goals. So-called plans determine the order in which (sub-)operations
should be executed, including the formulation of conditions and circumstances
by which operations are triggered [30, 31]. Examining the software prototype,
we considered creating a goal model as main operation which we decomposed

10 A. Gutschmidt et al.

into sub-operations. We furthermore defined plans indicating when each opera-
tion is triggered. The resulting task model (see Fig. 3) will lead us later in the
observation study presented in section 6.

When creating a goal model with the prototype editor, the user may repeat-
edly check the model before deciding on an action. When the user decides to
add a new component, a menu must be opened offering the possibility to create
as many components as desired. When the user wants to change the description
or type of a component, or wants to delete the component, the editing mode of
the component has to be started. Relations between components may be created
starting from one component, drawing the relation to the target component. If a
relation was created erroneously, it may be deleted right away. Relations may be
labeled with a type by first starting an editing mode. The editing mode is also
necessary if the relation is to be deleted. The general appearance of the model
may be changed by moving and rotating components.

6 Video Analysis

From a previous study, we used secondary data to find out which of the inter-
actions contained in the task model occur most frequently. We examined video
recordings of thirteen modeling sessions performed with the software prototype
without interventions of a tool operator. This might give hint on critical points
that should be improved or supported in a better way by HCI patterns. For the
same purpose, we examined what caused the most difficulties for its users. We
also recommend additional patterns, marked with a plus sign in Fig. 1.

6.1 Method and Sample

Thirteen teams of three persons performed an enterprise modeling task on an
MTT (3M Multi-Touch Display C5567PW, size: 1210 x 680mm) in a study con-
ducted in 2018 at the University of Rostock [32]. The teams had to create a
goal model for a fictitious company within half an hour. 27 of the 39 partici-
pants were students, among them students of psychology, business information
systems, pedagogy, biology, physics, chemistry, economics, engineering and com-
puter science. On a scale from 1 (novice) to 5 (expert) the participants reported
to be quite inexperienced in the modeling notation (µ = 1.3, σ = 0.8) and with
MTT (µ = 1.2, σ = 0.5).

The modeling sessions were video recorded from two perspectives, one show-
ing the table from above, another one capturing the front view on the team.
We analyzed the video recordings looking for specific difficulties the participants
had during the modeling. Sometimes, participants commented on their prob-
lems during the critical incident. At other times, clearly identifying problems
with the use of the software turned out to be difficult and is dependent on the
observer’s interpretation. Moreover, we counted the interactions introduced in
our task model (Fig. 3).

Identifying HCI Patterns 11

6.2 Results and Recommendations

The difficulty which occurred most often (µ = 11.2 times over all sessions) was
that menus were opened accidentally. When movements, such as dragging a
component, were performed too slowly, this was misinterpreted by the software
as tap-and-hold gesture, and unwanted menus were opened. The challenge is to
choose hand gestures which are easy enough for the user to perform but clear
enough for the system to be distinguished from other actions. We suggest a
double tap as a substitute since more complex gestures might make the software
less intuitive [24]. Hand gestures have to be thoroughly tested.

Three types of negative incidents were often caused by a lack of space: the
editing mode was opened accidentally (µ = 3), a new relation was created by
accident (µ = 2.6), and the wrong component was moved (µ = 2.3). As the
models grew in complexity, more and more elements were overlapping. To save
space, hidden buttons were used. Although the buttons were no longer visible
they were still active. This caused users to accidentally press hidden buttons of
closely situated components creating new relations etc. To solve this problem, we
could disable buttons when they are not visible. Putting buttons inside the com-
ponents bears the danger of accidentally triggering actions where components
should only be moved. A hand gesture could be used to replace one button, pos-
sibly mitigating the problem. Close proximity of model elements was, however,
only one reason for these negative incidents. Accidental actions were also trig-
gered by participants leaning or putting sheets of paper on the table. Remy et al.
[24] suggested physical object storage bin for storing items such as keyboard or
tangible objects, but no surface to actually lean on or put down sheets of paper
is mentioned. In the future, additional frames around the MTT might turn out
as a pattern. Nevertheless, such a frame can be in conflict with reachability of
all elements on the MTT depending on the size of table and frame.

Considering the interactions to be performed with the goal of creating an
enterprise model, opening a component’s editing mode was performed
most frequently (µ = 31.4 times over all sessions), followed by closing a com-
ponent’s editing mode (µ = 30.1) and editing a component’s description
(µ = 29.8). This frequency might encourage to believe that these interactions
should be additionally supported. E.g., one could think about simplifying the
access to editing functions as we have already described above. Another option
could be to automatically set a component into editing mode after having cre-
ated it. This, however, could be in conflict with creating a pile of items where
participants create a kind of repository similar to a stack of cards.

Creating a new relation is the next most frequently performed interaction
(µ = 25.8). It is performed by tapping on the component resulting in the display
of an arrow button. When the button is pressed a new relation arrow is generated
pointing to a red circle that must be drawn to the target component (see Fig.
2b). We observed that some users wanted to draw the arrow button to the target
component right away. It seems that this button implies this functionality. Either
the button symbol has to be changed or, better because reducing the number

12 A. Gutschmidt et al.

of steps, the expected behavior should be implemented. The latter would also
make dismissing new relations obsolete and simplify the creation process.

Drawing a relation occurred 20.8 times on average over all sessions. It
seems to work well for the participants, probably being very intuitive. Opening
the editing mode of the relation was performed equally often (µ = 19.8). The
low occurrence of editing interactions such as changing the relation type
(µ = 11.4) and changing a relation arrow’s direction might be explained by the
way they had to be accessed (see Fig. 2c for illustration of the editing mode).
We observed that some participants did not expect a tap-and-hold gesture but
simply tapped once on the relation. The latter would, however, increase the
danger of triggering unwanted actions. Nevertheless, it should be taken care
that hand gestures are consistent for similar functions. Moreover, good defaults
could be provided for new relations taking into consideration syntactic rules.

Creating components occurred with an average frequency of 18.8 times.
We see the possibility of opening multiple menus for the creation of components
at every spot as a major advantage when supporting this interaction. It also
enables the creation of a pile of components compared to a participant grabbing
a pile of cards he or she can write on.

Closing a menu (µ = 14.8) and closing the relation editing mode
(µ = 14.5) occurred with a similar frequency. They could be made obsolete
by closing them automatically after an interaction was performed. It must be
investigated and compared how useful users find each feature.

Deleting a relation (µ = 4.6), deleting a component (µ = 2.5), dis-
missing a new relation (µ = 2.5) and changing a component’s type
(µ = 2.4) occurred rarely. Participants did not seem to experiment with model
elements after they had created them. Nevertheless, an undo function is funda-
mentally advisable with inexperienced users. Opening a menu was also a rare
interaction (µ = 4.4). Menus remained open although they took a lot of space.
Either users prefer a constantly present menu or the actions necessary to open
(tap-and-hold) and close a menu are considered as too effortful.

We also observed how much participants moved and rotated compo-
nents. For the interactions, we measured the average overall amount of time
over all sessions. As some users tended to perform one big movement in several
small steps, frequencies would have given a distorted impression of the actual
movement behavior. We noted that rotation was rarely used (µ = 4.6 seconds).
One reason might be that rotating components is too difficult. Secondly, rotating
single elements might not be seen as beneficial when the remaining model keeps
its original orientation. Remy et al. [24] suggest a generally adaptable desktop
orientation. This would be a global function requiring the awareness and ap-
proval of all users such that no one will be disturbed while working. 5.8 seconds
were spent on average on handing over components to another person, and 13.8
seconds were spent on average on moving components to oneself. Due to space
problems and layered objects, users often moved components to a place were they
could interact with them more conveniently (µ = 17.5 seconds). Movement that
we could not assign to any of the above categories made about 179.1 seconds on

Identifying HCI Patterns 13

average. We often observed that participants repeatedly rearranged components
to minimal extend, similar to fidgeting with a pen.

In one of the modeling sessions, a software bug made the system crash. As
there was no autosave, the model had to be recreated quickly. Although the bug
has been removed, autosave is fundamentally advisable.

The space problem caused several difficulties. It could generally be mitigated
by a zoom function. A global zoom is again a function whose activation must be
agreed on by all active users. A panning navigator should additionally be used
to give users some orientation about what part of the model they are currently
viewing. Another option would be to make all elements smaller by default, but
still recognizable, and offer a zooming function for a single component for further
examination and editing. Furthermore, the menus are very big in relation to the
work surface and the other model elements. To save space, the menu could be
replaced by simply creating default components, set into editing mode from the
beginning. This would, however, make creating a pile of components difficult.
The work surface could be extended using embedded electronic devices which
may also serve as private spaces. Finally, one could also consider buying a bigger
table, however a large collaboration table could undermine reachability.

7 General Discussion

New digital devices such as MTT appear very attractive in the context of PEM.
They can be a useful tool for collaboratively gathering knowledge and ideas. The
intent of this paper was to present experiences and give inspiration on how to
design software for MTT serving PEM. HCI patterns provide proven solutions to
frequent design problems which may be reused by interface designers. We have
searched existing lists of HCI patterns, many of them do not originally refer to
touch applications. We presented a selection of HCI patterns we assume to be
suitable for PEM on MTT. However, a pattern is really a pattern when it is re-
peatedly used. To our knowledge, there is no commercial PEM software which is
originally made for MTT. So, as a starting point, we investigated a software pro-
totype to check whether we would find some of the previously selected patterns
and we showed what kind of interactions are required to create an enterprise
model on an MTT with this prototype. Our task and video analysis have shown
that the number of interactions may actually be reduced in the prototype. The
results of the video analysis also revealed shortcomings of the prototype which
might be overcome by using additional HCI patterns from our selection.

One of our major findings is that certain patterns may be in conflict. E.g.,
in the prototype, multiple instances of menus and on-screen keyboards were
used. On the one hand, this supports balanced participation. On the other hand
it takes a lot of space. The lack of space is a severe challenge, yet, a large
collaboration table could make it difficult for users to recognize and reach all
elements. A zoom function could also help solving the space problem, however,
as a global function it might disturb users in their work. Thus, we recommend to
use global functions with care. Hand gestures are a beneficial means for saving

14 A. Gutschmidt et al.

space. Nevertheless, we recommend to test which gestures users find intuitive and
convenient. Furthermore, there must be consistent gestures for similar functions.
We observed modeling sessions where participants were usually standing. We
found that some persons tended to lean on the table or put down paper on it.
Thus, we would recommend to use a frame around the table, but thoroughly
considering that this will not restrict reachability.

Eventually, our selection of HCI patterns can certainly not be considered as
complete or final. We hope to be able to investigate more applications in this area
in the future to further test, confirm and adapt our selection of HCI patterns.

Acknowledgements. Part of the research has been developed in scope of a
project financed by Government of Russian Federation (Grant 08-08).

References

1. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise modeling. The
Enterprise Engineering Series. Springer Berlin Heidelberg (2014)

2. Stirna, J., Persson, A.: Enterprise Modeling - Facilitating the Process and the
People. Springer International Publishing (2018)

3. Sandkuhl, K., Fill, H.G., Hoppenbrouwers, S., Krogstie, J., Matthes, F., Opdahl,
A., Schwabe, G., Uludag, Ö., Winter, R.: From expert discipline to common prac-
tice: A vision and research agenda for extending the reach of enterprise modeling.
Business & Information Systems Engineering 60(1) (Feb 2018) 69–80

4. Vernadat, F.: Enterprise modeling and integration (emi): Current status and re-
search perspectives. Annual Reviews in Control 26(1) (2002) 15 – 25

5. Stirna, J., Persson, A., Sandkuhl, K.: Participative enterprise modeling: experi-
ences and recommendations. In Krogstie, J., Opdahl, A., Sindre, G., eds.: Advanced
information systems engineering. Number 4495 in Lecture Notes in Computer Sci-
ence. Springer (2007)

6. Gutschmidt, A., Sandkuhl, K., Borchardt, U.: Multi-touch table or plastic wall?
Design of a study for the comparison of media in modeling. In: Lecture Notes in
Business Information Processing. Volume 263. 123–135

7. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices 35(6) (2000) 26–36

8. Frank, U.: Multilevel modeling. Business & Information Systems Engineering 6(6)
(Dec 2014) 319–337

9. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.J., Rossi, M.: Situational method
engineering. Springer (2014)

10. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for software engineering.
Wiley Publishing (2008)

11. Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer Berlin Heidel-
berg (2006)

12. Specker, M., Wentzlaff, I.: Exploring usability needs by human-computer interac-
tion patterns. In Winckler, M., Johnson, H., Palanque, P., eds.: Task Models and
Diagrams for User Interface Design. Volume 4849 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2007) 254–260

13. Wurhofer, D., Obrist, M., Beck, E., Tscheligi, M.: Introducing a comprehensive
quality criteria framework for validating patterns. In Dini, P., ed.: Computation
world, IEEE (2009) 242–247

Identifying HCI Patterns 15

14. Borchers, J.O.: A pattern approach to interaction design. 15 (2001) 359–376
15. Kruschitz, C., Hitz, M.: Human-computer interaction design patterns. 3 (2010)
16. Kruschitz, C., Hitz, M.: Analyzing the hci design pattern variety. In Hanyuda, E.,

ed.: Proceedings of the 1st Asian Conference on Pattern Languages of Programs,
ACM (2010) 1

17. Guerrero-Garćıa, J., González-Calleros, J.M., González-Monfil, A., Pinto, D.: A
method to align user interface to workflow allocation patterns. In González
Calleros, J.M., Collazos Ordoñez, C.A., Guerrero-Garćıa, J., eds.: Proceedings of
the XVIII International Conference on Human Computer Interaction. ICPS, ACM
(2007) 1–8

18. Alexander, C.: A pattern language. Volume 2 of Center for Environmental Struc-
ture series. Oxford Univ. Pr (1977)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns. 39. printing
edn. Addison-Wesley professional computing series. Addison-Wesley (2011)

20. Lukosch, S., Schümmer, T.: Communicating design knowledge with groupware
technology patterns. In de Vreede, G.J., ed.: Groupware: Design, Implementation
and Use. Volume 3198 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2004) 223–237

21. van Welie, M.: Welie.com: Patterns in interaction design. http://www.welie.com/
patterns/index.php (2008) Accessed: 2019-07-30.

22. Tidwell, J.: Common ground. http://www.mit.edu/~jtidwell/common_ground_

onefile.html (1999) Accessed: 2019-05-02.
23. Tidwell, J.: Designing interfaces. 2nd ed. edn. Safari Tech Books Online. O’Reilly

(2011)
24. Remy, C., Weiss, M., Ziefle, M., Borchers, J.: A pattern language for interac-

tive tabletops in collaborative workspaces. In: Proceedings of the 15th European
Conference on Pattern Languages of Programs. EuroPLoP ’10 (2010) 9:1–9:48

25. Laakso, S.A.: User interface design patterns. https://www.cs.helsinki.fi/u/

salaakso/patterns/index.html (2003) Accessed: 2019-05-02.
26. Coram, T., Lee, J.: Experiences - a pattern language for user interface design. http:

//www.maplefish.com/todd/papers/Experiences.html#Interaction (2016)
27. Lockton, D., Harrison, D., Stanton, N.A.: Exploring design patterns for sustainable

behaviour. The Design Journal 16(4) (2013) 431–459
28. Gutschmidt, A.: Empirical insights into the appraisal of tool support for partici-

pative enterprise modeling. In: Proceedings of the 9th International Workshop on
Enterprise Modeling and Information Systems Architectures, Rostock, Germany,
May 24th - 25th, 2018. (2018) 70–74

29. Gutschmidt, A.: On the influence of tools on collaboration in participative enter-
prise modeling–an experimental comparison between whiteboard and multi-touch
table. In: ISD 2018. (2018)

30. Stanton, N.A.: Hierarchical task analysis. 37 (2006) 55–79 Journal Article Research
Support, Non-U.S. Gov’t Review.

31. Annett, J.: Hierarchical task analysis. In: The Handbook of Task Analysis for
Human-Computer Interaction. CRC Press (2003) 83–98

32. Gutschmidt, A., Sauer, V., Schönwälder, M., Szilagyi, T.: Researching partici-
patory modeling sessions: An experimental study on the influence of evaluation
potential and the opportunity to draw oneself. In Pańkowska, M., Sandkuhl, K.,
eds.: Perspectives in Business Informatics Research, Cham, Springer International
Publishing (2019) 44–58

