
HAL Id: hal-03231669
https://inria.hal.science/hal-03231669

Submitted on 21 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interacto: A Modern User Interaction Processing Model
Arnaud Blouin, Jean-Marc Jézéquel

To cite this version:
Arnaud Blouin, Jean-Marc Jézéquel. Interacto: A Modern User Interaction Processing Model. IEEE
Transactions on Software Engineering, 2022, 48 (9), pp.3206-3226. �10.1109/TSE.2021.3083321�. �hal-
03231669�

https://inria.hal.science/hal-03231669
https://hal.archives-ouvertes.fr

1

Interacto: A Modern User Interaction Processing
Model

Arnaud Blouin and Jean-Marc Jézéquel

Since most software systems provide their users with interactive features, building user interfaces
(UI) is one of the core software engineering tasks. It consists in designing, implementing and
testing ever more sophisticated and versatile ways for users to interact with software systems, and
safely connecting these interactions with commands querying or modifying their state. However,
most UI frameworks still rely on a low level model, the bare bone UI event processing model. This
model was suitable for the rather simple UIs of the early 80’s (menus, buttons, keyboards, mouse
clicks), but now exhibits major software engineering flaws for modern, highly interactive UIs.
These flaws include lack of separation of concerns, weak modularity and thus low reusability of
code for advanced interactions, as well as low testability. To mitigate these flaws, we propose
Interacto as a high level user interaction processing model. By reifying the concept of user
interaction, Interacto makes it easy to design, implement and test modular and reusable advanced
user interactions, and to connect them to commands with built-in undo/redo support. To
demonstrate its applicability and generality, we briefly present two open source implementations
of Interacto for Java/JavaFX and TypeScript/Angular. We evaluate Interacto interest (1) on a real
world case study, where it has been used since 2013, and with (2) a controlled experiment with 44
master students, comparing it with traditionnal UI frameworks.
Index Terms—user interface, user interaction, UI event processing, separation of concerns, undo/redo

F

1 INTRODUCTION

"Anytime you turn on a computer, you’re dealing with a user
interface" [1]. User Interfaces (UIs), and the user interactions
they supply, pervade our daily lives by enabling users
to interact with software systems. The user interactions
provided by a UI form a dialect between a system and
its users [2]: a given user interaction can be viewed as a
sentence composed of predefined words, i.e. low-level UI
events, such as mouse pressure or mouse move. For example,
we can view the execution of a drag-and-drop interaction as
a sentence emitted by a user to the system. This sentence is
usually composed of the words pressure, move, and release, that
are UI events assembled in this specific order. The human-
computer interaction community designs novel and complex
user interactions. As explained by [3], "Human-Computer
Interaction (HCI) researchers have created a variety of novel [user]
interaction techniques and shown their effectiveness in the lab [...].
Software developers need models, methods, and tools that allow
them to transfer these techniques to commercial applications."
Currently, to use such novel user interactions in software
systems developers must complete two software engineering
tasks: (i) They must assemble low-level UI events to build
the expected user interaction. For example, a developer must
manually assemble the events pressure, move, and release to
build a drag-and-drop. (ii) They have to code how to process
such UI events when triggered by users.

• M. Blouin and M. Jézéquel were with Univ Rennes, Inria, CNRS, IRISA,
France. E-mail: firstname.lastname@irisa.fr

To do so, developers still use a technique proposed with
SmallTalk and the Model-View-Controller (MVC) pattern in
the 80’s [4]: the UI event processing model, currently imple-
mented using callback methods or reactive programming [5]
libraries. This model considers low-level UI events as the
first-class concept developers can use for coding and using
increasingly complex user interactions not supported off-the-
shelf by graphical toolkits. The reason is that interacting
with classical widgets (e.g., buttons, lists, menus) is usually
one-shot: a single UI event, such as a mouse pressure on a
button or menu, has to be processed. For more complex user
interactions such as the drag-and-drop, the current event
processing model exhibits critical software engineering flaws
that hinder code reuse and testability, and negatively affect
separation of concerns and code complexity:

• the concept of user interaction does not exist, so devel-
opers have to re-define user interactions for each UI by
re-coding them using UI events;

• the model does not natively support advanced features,
such as cancellation (undo/redo), event throttling, or
logging;

• developers mix in the same code the assembly of
UI events and their processing, leading to a lack of
separation of concerns;

• the use of callbacks to process UI events (1) can lead
to "spaghetti" code [6], [7]; (2) is based on the Observer
pattern that has several major drawbacks [8], [9], [10],
[11]; (3) can be affected by design smells [12];

This paper makes the following software engineering
contribution: a user interaction processing model called

2

Software System

Data Model

Controllers

cont1

cont2

User Interface

o1

o2

User
1 2 3

Fig. 1: Standard behavior of the UI event processing model:

1 : A user interacts with an interactive object o1 of the user interface.

2 : The interactive object then triggers a UI event gathered by a controller cont1.

3 : The controller contains an event callback that processes this UI event to possibly modify the business data.

Interacto that overcomes the above-mentioned flaws of the
UI event processing model. Interacto reifies user interac-
tions and UI commands as first-class objects and provides
dedicated algorithms, object-oriented properties, run-time
optimizations, and testing facilities to permit developers to
stay focused on the core tasks of coding UIs: (i) select the
user interactions they have to use; (ii) code how to turn these
user interactions into undoable UI commands; (iii) reuse
user interactions and UI commands in different places across
software systems; (iv) write UI tests. In this model, UI events
are now considered as low-level implementation concepts
rarely used by developers.

To demonstrate its applicability and generality, we devel-
oped two implementations of Interacto: Interacto-JavaFX with
Java and JavaFX [13], a mainstream Java graphical toolkit;
Interacto-Angular with TypeScript [14] and Angular [15], a
mainstream Web graphical toolkits. Both implementations
take the form of a fluent API (Application Programming
Interface) [16]. We evaluate Interacto interest:
• on a real world case study: the development LaTeXDraw,

an open-source highly interactive vector drawing edi-
tor for LATEX, downloaded 1.5 k times per month and
available on more than 10 Linux distributions.

• with a controlled experiment with 44 master students,
comparing it with traditional UI frameworks.

The paper is organized as follows. Section 2 introduces
the background concepts and motivates the work by detailing
the limits of the current UI event processing model. Section 3
details the proposed user interaction processing model and
its testing support. Section 4 evaluates the proposal. Section 5
discusses the related research work. Section 6 concludes the
paper and discusses future work.

2 BACKGROUND AND MOTIVATIONS

2.1 Definitions

The standard UI event processing model involves the follow-
ing concepts, as depicted by Figure 1.

User Interface. A UI allows users to control or query a
software system. The most common kind of user interfaces
are Graphical User Interfacess (GUIs). A UI is composed of
interactive objects, such as buttons or canvases for GUIs.

UI event. When a user interacts with an interactive object,
this last triggers a UI event such as mouse pressed or key released.
A UI event embeds data, such as the position of the mouse
pressure.

UI controller.1 A controller registers with different interactive
objects to gather the UI events these objects trigger.

Event callback. An event callback is a method associated
to an interactive object. The interactive object calls such a
method on UI event triggering. Developers define event
callbacks in controllers. The goal of such callbacks is usually
to modify the business data (but can be used to modify the
state of the UI as well).

In addition to the concepts involved in the event process
model, we define the concepts of user interaction and UI
command as follows.

User Interaction. Users perform user interactions on a UI to
control the underlying system. User interactions technically
rely on one or a sequence of UI events. For example, a Drag-
And-Drop (DnD) is the sequence of one pressure event, one or
several move events, and one release event. A user interaction
is independent of its possible usages. For example, one can
use a DnD for moving, scaling, or deleting objects.

UI command. A user performs a user interaction on a UI
to apply a specific UI command on the underlying system.
Examples of UI commands applied using a DnD are moving,
scaling, or deleting objects. UI command can take two shapes:
using callbacks [12] such as in Listing 1 discussed in the next
section; or using classes as discussed in Section 5.

2.2 Motivating Example

Listing 1 contains JavaScript code, adapted from [7], that il-
lustrates the UI event processing model depicted by Figure 1.
In this code example, a user can move a graphical rectangular
node using a drag-lock interaction. During this drag-lock,
the user interface uses a ’hand’ cursor as user feedback. The
JavaScript code of Listing 1 contains: the coding of a drag-
lock user interaction; the use of this drag-lock interaction to
move a graphical node.

The drag-lock user interaction is a special kind of drag-
and-drop. A drag-lock starts by double-clicking on the node
to drag. The user can then move the locked node until she
double-clicks again at the dropping location. The drag-lock
interaction is an interesting motivating example as it is a
standard user interaction but not provided off-the-shelf by
the current UI toolkits.

1. For simplicity, we use the term controller to refer to any kind of
components that processes UI events, such as Presenter (MVP) [17],
ViewModel (MVVM [18]), or Component (Angular [15]).

3

1 let isDragLocked = false;
2 const moveCallback = evt => {
3 draggable.attr({ x: evt.x, y: evt.y });
4 };
5 draggable.addEventListener(’dblclick’, evt => {
6 if (evt.button === 0) {
7 if (isDragLocked) {
8 draggable.style.cursor = ’’;
9 draggable

10 .removeEventListener(’mousemove’, moveCallback);
11 } else {
12 draggable.style.cursor = ’hand’;
13 draggable
14 .addEventListener(’mousemove’, moveCallback);
15 }
16 isDragLocked = !isDragLocked;
17 }
18 });

Listing 1: A JavaScript code snippet to move a node using a
drag-lock, adapted from [7]

The drag-lock of Listing 1 assembles the UI events
dblclick (double-click) and mousemove. Line 5, the node to
drag (draggable) registers to double click events. The second
argument of this function is a callback method executed on
each double-click on this node (Lines 5 to 18). For the first
double-click, the UI uses the ’hand’ cursor and the node
registers to mouse move events (Lines 11 to 14). For the
second double-click, the UI uses the default cursor and the
node unregisters to mouse move events (Lines 7 to 10). The
(un-)registration to mouse move events takes as second
argument the callback method located Line 2 that moves
the node using event data (Line 3). The move of the node
operates only if the user uses the mouse button 0 (Line 6).

This code mixes both the definition of the user interaction
and its use for moving a node. Moreover, coding a user
interaction may require coding specific instructions for
manually registering and unregistering to UI events (Lines 10
and 14).

Locked Unlocked

double
click

move

double
click

Clicked
Double
Clicked

Cancelled

click

timeout [t ≥ 1s]

click

Fig. 2: Finite-State Machines (FSMs) of the drag-lock (top)
and double-click (bottom) user interactions used in Listing 1.
The double-click transition used in the drag-lock FSM refers
to the double-click interaction.

Figure 2 (on the top) depicts an FSM that illustrates the
assembly of the mousemove and dblclick events to build the
drag-lock. A transition refers to a UI event or another user
interaction. The execution of one user interaction ends when
its FSM reaches a terminal state. One may notice that some UI

events are not atomic: if the double-click is a user interaction
based on several events (pressure and release that compose
each click), it is sometimes considered as a UI event since it is
one-shot. Also using an FSM, Figure 2 (on the bottom) depicts
the assembly of UI events to build a standard double-click.

2.3 Limitations of the UI event processing model

We illustrate the current limitations of UI event processing
models using the example introduced in the previous section
and depicted by Listing 1. This example, that involves a
drag-lock user interaction, suffers of the following flaws:

Lack of separation of concerns. Listing 1 illustrates how
relying on UI events breaks the concept of separation of
concerns [19] by intertwining in the same code:
• The definition of the user interaction (the drag-lock) that

consists of the assembly of UI events. Current UI toolk-
its and approaches consider UI events as a first-class
concept for coding user interfaces. UI events, however,
are low-level implementation details that developers need
to manually assemble to build user interactions, such as
the drag-lock.

• The transformation of user interactions into UI com-
mands. In the same code that assembles UI events to
build a user interaction, developers have to define how
to produce output UI commands. Line 3 in Listing 1 is
the command instruction that moves the dragged node.

• Conditions that constraint the execution of the user
interaction. For example, Line 6 checks whether the drag-
lock has been done using the button 0 of the mouse.

Lack of software reuse. Listing 1 also illustrates how the UI
event processing model prevents code reuse [20], [21]:
• No user interaction reuse. Libraries and frameworks

enable software reuse by providing developers with
predefined and reusable artifacts. Ignoring the concept of
user interactions prevents the development of reusable
interactions based on the designs established by the HCI
community.

• No user interaction substitution. User interactions can
be classified in different categories. For example, the
drag-lock is a kind of DnD interactions. Following
the object-oriented substitutability concept, a developer
should easily be able to replace a DnD with a drag-
lock as their underlying data are the same: start and
end positions. Moreover, a same user interaction may
have behavioral variants. Figure 3 depicts alternative
behaviors of the drag-lock and double-click interactions.
The double-click is now canceled on a move between
the two clicks. The timeout has changed to 0.5 s. The
drag-lock now requires at least one move between the
two double-clicks, otherwise it is canceled. A pressure
on the key ’ESC’ cancels the user interaction. In such
cases of user interaction variants, a developer should
easily be able to replace the standard DnD by a variant,
still based on substitutability.
Developers can hardly achieve user interaction substi-
tution with the current UI event processing model as
the assembly of UI events has to be modified and this
model lacks object-oriented constructs.

4

Locked Moved Unlocked

Canceled

double
click

move

key press [key=’ESC’]

double
click

key press [key=’ESC’]
move

double
click

Clicked

Double
Clicked

Canceled
click

timeout
[t ≥ 0.5s]

move

click

Fig. 3: Alternative versions of the drag-lock (top) and the
double-click (bottom) user interactions

Lack of advanced features.

• No undo/redo. The code of Listing 1 modifies the
business data directly in the event callbacks (Line 3).
So, the changes cannot be stored to be then undone and
redone. This would require glue code manually crafted
by developers in the code of Listing 1 to support such a
feature. Note that several UI toolkits overcome this lack
with dedicated features (see Section 5).

• No logging. Modern systems use logs for analyzing UI
usages [22] and for understanding issues. The UI event
processing model does not support logging natively.

• No throttling. Event throttling is an optimization that
permits to reduce the number of similar and successive
events in order to alleviate the processing load (and
possibly to gain performance). The UI event processing
model does not support such a feature.

Complexity and design issues. Intertwining in the same
code the assembly of UI events to build user interactions and
the transformation of UI events into commands makes the
code more complex: it can lead to "spaghetti" code [6], [7]
and can be affected by design smells [12]. Moreover, the UI
process model strongly relies on the Observer pattern that
suffers from several major flaws [8], [9], [10], [11].

This also makes the code more difficult to test. For example
with the code of Listing 1, developers have to test the
assembly of UI events.

3 THE USER INTERACTION PROCESSING MODEL

This section describes a user interaction processing model
we named Interacto, that overcomes the limitations detailed
in the previous section. User interactions form a core concept
of this model instead of events. So, we call this model a user
interaction processing model instead of an event processing
model. The gist of Interacto is to turn user interaction
executions into (undoable) commands.

Definition 1. Interacto binding. An Interacto binding is an
object that turns the executions of one user interaction into
(undoable) command instances.

Definition 2. Interacto binder. An Interacto binder is an
object that configures one specific Interacto binding. In the
Interacto implementations, an Interacto binder takes the form
of a fluent API.

Section 3.1 gives an overview of the Interacto approach.
Sections 3.2 and 3.3 describes how user interactions and UI
commands work in Interacto. Sections 3.4 and 3.5 then focus
on the Interacto binding behavior and the Interacto binder
syntax. Section 3.7 details the benefits of Interacto in terms
of UI testing by proposing new UI testing oracles. Finally,
Section 3.6 describes properties that characterize Interacto
binders.

All the examples of this section are based on our Java
implementation of Interacto, namely Interacto-JavaFX. The use
of our TypeScript implementation, Interacto-Angular, would
have led to very similar code examples.

3.1 Approach overview

Consider the example of Section 2.2: users have to use a drag-
lock interaction to translate a graphical object. Listing 2 illus-
trates how Interacto works in pseudo-code. The developer:
selects one user interaction (Line 1); specifies the widgets
on which the Interacto binding will operate (Line 2); selects
the command to produce (Line 3); details what to do during
the execution of the user interaction, in particular when the
interaction starts, updates, and ends or is canceled (Lines 4
to 8); defines the conditions that constraint the production
and the execution of the ongoing command (Line 9).

1 Use the drag-lock user interaction,

2 On the interactive object ’node’,

3 To produce and execute ’Translate’ command instances,

4 When the interaction starts, sets a shadow to ’node’,

5 When the interaction stops or is cancelled, removes

6 this shadow,

7 When the interaction updates, updates the translation

8 vector that the ongoing command will use,

9 That, only if the user uses the primary mouse button.

Listing 2: Pseudo-code of an Interacto binder that configures
an Interacto binding that translates a node using a drag-lock

This pseudo-code illustrates the four key concepts, that
Figure 4 depicts, on which Interacto relies. These concepts,
detailed in the next sub-sections, are:

• User interactions are reusable, composable (one can
build a user interaction using other user interactions),
and stateful objects that graphical libraries should pro-
vide to developers instead of low-level UI events.

• UI commands are reusable and undoable objects.
• An Interacto binding transforms executions of one user

interaction into output UI (undoable) commands.
• An Interacto binder has properties and a concrete syntax

for configuring Interacto bindings.

5

Software System

Data Model

Commands

cmd1

cmd2

Controllers

cont1

cont2

User interactions

inter1

inter2

User Interface

o1

o2

User
1 2 3 4 5

Fig. 4: Behavior of the proposed user interaction processing model (in bold what differs from Figure 1):

1 : A user interacts with an interactive object o1 of the user interface.

2 : The interactive object then triggers a UI event processed by a running user interaction inter1.

3 4 : Controllers contain Interacto bindings that turns user interaction executions into UI commands.

5 : The running Interacto binding executes the ongoing UI command to modify the state of the system.

3.2 User interaction
A user interaction is composed of two separated elements:
its behavior and its data.
Interaction behavior. The proposed model makes no as-
sumption on how the behavior of a user interaction is defined.
This can be, for example, using FSMs [23], [24], Petri nets [25]
or reactive programming [26]. Our implementation and the
description of the approach make use of FSMs. We already
detailed how we model user interactions using FSMs in
Section 2.2 by discussing the examples of Figures 2 and 3.

Running Ended

Canceled

start end

cancel

update

Fig. 5: User interaction life cycle

Figure 5 depicts the generic life cycle of any user in-
teraction. An interaction starts when its FSM leaves its
initial state, and is then considered as running. A transition
of an interaction FSM corresponds to a UI event or to
another interaction FSM (composite FSM). A transition
is executed when its matching UI event is triggered (or
when its sub-interaction has ended). Each time a transition
of the interaction FSM is executed and the targeted state
is not a terminal state, the interaction is updated: user
interactions update their interaction data (based on the data
of the UI event) on transitions executions. Moreover, user
interactions automatically perform optimizations on entry
and exit actions of states (see Section 4.1). An interaction
can end in two ways. Either the interaction is canceled (state
Canceled), i.e., the user wants to abort the interaction not to
produce a command. Either the interaction ends normally
(state Ended), i.e., the user completed the user interaction.
We specify these two different terminal states in interaction
FSM examples (Figures 2 and 3) by naming a canceling state
Canceled. For example in Figure 2 on the right, the FSM
reaches the state Canceled when a timeout of 1 second expires.
The data of a user interaction are updated at each step (i.e.,
on each transition execution) of their life cycle.

We define an interaction execution execi as a path in the
interaction life cycle, i.e., a path: start→ . . .→ (cancel|end).
Note that an interaction execution also corresponds to a
path of the FSM of the interaction. For example with the
FSM of the drag-lock interaction of Figure 3, the FSM path:
double click → move→ move→ double click, corresponds
to the following path in the interaction life cycle: start →
update→ update→ end.
Interaction data. A user interaction is stateful and exposes
data that an Interacto binding can use. The class diagram of
Figure 6 depicts the data model shared by both the drag-lock
and the DnD interactions. The drag-lock and DnD interac-
tions are of the same type: they consist in user interactions
that operate from a source position to a target position.
The interface FromToData represents the data of such user
interactions, composed of: the source position (getSrcPosition);
the source picked object (getSrcObject); the target position
(getTgtPosition); the target picked object (getTgtObject); the
possible button if the interaction involves a mouse (getButton).
Other user interactions complete this family, such as the drag-
and-pick, the drag-and-pop [27] and the dwell-and-spring [28].

interactionData 1

DragLock

DragAndDrop

DragAndPick

DragAndPop

DwellAndSpring
DnDBase

�interface�
FromToData

+ getSrcObject() : Node
+ getTgtObject() : Node
+ getSrcPosition(): Point
+ getTgtPosition() : Point
+ getButton() : Optional<Button>

Fig. 6: The data model of user interactions that operate from a
source position to a target position (e.g., DnD and drag-lock)

Interaction type and substitution. During the definition
of an Interacto binding, developers access the data of the
selected user interaction, not its behavior. For example with
Figure 6, all the user interactions of the same family as the
DnD expose the same type of interaction data FromToData.
This choice follows the same reasoning than the bridge design

6

pattern [29] that promotes the decoupling of interfaces and
implementations: user interaction exposes stable interaction
data interfaces. Developers base their configuration of an
Interacto binding on such user interaction data so that this
permits the substitution of user interactions of a same family.

Formally, we call an interaction data type D the interface
that a user interaction i of type I exposes. This allows
user interactions substitution: developers can replace one
user interaction i of data type D (e.g., a DnD that exposes
interaction data of type FromToData), with another user
interaction i′ of the same data type D (e.g., a drag-lock,
which interaction data type is also FromToData) without any
other change in the Interacto binder.

3.3 Undoable UI command
UI command. When a user interacts with a user interface
using a given user interaction, her goal is to act on the
underlying system, such as to modify its state. Developers
can encapsulate such actions on the system in UI command
classes. In the literature, this has two benefits:
• Enable UI commands reuse across the different con-

trollers of the UI. One UI command may be produced
from different user interactions and interactive objects
of the UI (e.g., buttons, menus, shortcuts).

• Support undo/redo features. developers may code UI
command as undoable, so that users can undo and redo
changes they apply on the system.

1 public class Translate extends CommandBase implements Undoable {

2 double mementoX;

3 double mementoY;

4 double newX;

5 double newY;

6 final Shape data;

7
8 public Translate(Shape shape) {

9 data = shape;

10 }

11 @Override public boolean isExecutable() {

12 return !(newX == data.getX() && newY == data.getY());

13 }

14 @Override protected void execution() {

15 data.setPosition(newX, newY);

16 }

17 @Override protected void createMemento() {

18 mementoX = data.getX();

19 mementoY = data.getY();

20 }

21 @Override public void undo() {

22 data.setPosition(mementoX, mementoY);

23 }

24 @Override public void redo() {

25 execution();

26 }}

Listing 3: An example of an undoable UI command

Listing 32 gives the Java code of a typical Interacto UI
command coded by a developer (where CommandBase and
Undoable are part of Interacto). The pseudo-code of Listing 2
uses this UI command. This UI command Translate moves
the given shape (Line 6) to a new position (Lines 4 and 5).
The method execution defines the execution of the command
(Line 14). The isExecutable method checks whether the UI
command can be executed (Line 11). Here, this method

2. For readability, all the code that uses an implementation of Interacto
is put in listings with a grayed background.

checks that the translation vector is not null. This command
is undoable (its implements the interface Undoable) so that
the developer has to implement the methods undo and
redo (Lines 21 and 24). The undo method puts the shape
back to its former location using a memento [29] produced
by the createMemento method (Line 17). Interacto bindings
automatically store the executed undoable commands in an
undoable command history. Interacto supplies developers
with predefined UI commands for helping developers in
adding undo/redo features in their UIs.

Asynchronous command. A developer may want to run a
command asynchronously. For example, a Web application
may send queries to servers. In such a case, the execution
method of an Interacto command can return a Promise object
that corresponds to the pending query. In TypeScript, such a
method can be written as follows:

protected execution(): Promise<void> | void {

return this.http.put(...).toPromise();

}

Undo history. An undo history collects the executed un-
doable commands and implements a specific undo mech-
anism. In the literature, the standard undo mechanism is
linear: a new command is pushed on a stack toUndo; on
undo, the top command of this stack is popped to be undone
and pushed on a second stack toRedo; the opposite process
operates on redo.

The literature proposed several undo mechanisms such
as selective ones [30], [31]. Interacto does not constraint the
use of specific undo mechanisms and by default provides
a linear undo history. Interacto also permits to have several
undo histories in the same application to work with given
Interacto binding as detailed in the next section.

3.4 Interacto binding behavior

interaction1 currentCommand0..1

data1 behavior1

bindings0..*history1

undos0..* redos0..*

Undoable

InteractoContext

UndoRedoHistory

InteractionBehaviorInteractionData

CommandUserInteraction

InteractoBinding

Fig. 7: The metamodel of an Interacto binding.

An Interacto binding focuses on transforming the execution
of a user interaction into UI command instances. The main goal
of an Interacto binding is to produce, update, execute, or
cancel one UI command instance along one execution of a
user interaction. Figure 7 gives the metamodel of an Interacto
binding. An Interacto binding operates within an Interacto
context that contains an undo/redo history. Formally, an
Interacto binding b is set between a user interaction i of type

7

I , that exposes an interaction data typeD, and a UI command
of type C. Each interaction execution execi(b) of i, managed
by b, may produce a new instance c of the command C, such
that: execi(b) → c ∧ exec′i(b) → c′ =⇒ c 6= c′. A user
interaction has a behavior, such as an FSM.

1 onInteractionStart() {

2 // when(): states whether the binding can create the command

3 if(when()) {

4 currentCommand = toProduce(); // Creation of the command

5 first(); // Command initialisation

6 }

7 }

8 onInteractionUpdate() {

9 if(when()) {

10 if(currentCommand == null) {

11 currentCommand = toProduce();

12 first();

13 }

14 then(); // Command update

15 // The binding executes the command on each update:

16 if(continuous() && currentCommand.isExecutable()) {

17 currentCommand.execute();

18 }

19 }}

20 onInteractionEnd() {

21 if(when()) {

22 if(currentCommand == null) {

23 currentCommand = toProduce();

24 first();

25 }

26 then();

27 if(currentCommand.isExecutable()) {

28 currentCommand.execute(); // Execution of the command

29 // Registration of the command (for undo/redo)

30 registerCurrentCmd();

31 }

32 }

33 end();

34 currentCommand = null;

35 }

36 onInteractionCancel() {

37 cancel();

38 if(continuous() && currentCommand.wasExecuted()) {

39 undoCurrentCommand();

40 }

41 currentCommand = null;

42 }

Listing 4: The algorithm in pseudo-code of the Interacto
binding behavior. An Interacto binding operates when its
user interaction is running.

Listing 4 gives the algorithm of the behavior of an Inter-
acto binding execi(b). Method calls in italic (namely: when,
first, toProduce, end, cancel, then, continuous) refer to methods
available during the building of the Interacto binding (i.e.,
with an Interacto binder), as detailed in the next section.
The user interaction life cycle (Figure 5) drives the behavior
of an Interacto binding. First, when an interaction starts
(Line 1) the Interacto binding creates a new UI command
if the condition of the Interacto binding (when, Line 3) is
fulfilled. The Interacto binding creates a UI command using
the function toProduce (Line 4). Then, the Interacto binding
initializes the UI command (first, Line 5).

On each interaction update (Line 8) the predicate when
conditions the update of the ongoing UI command. One
may notice that the Interacto binding may not create a
UI command when the user interaction starts because of
the when predicate. So, if not already created, the Interacto
binding creates a UI command and initializes it (Lines 10
to 13). The Interacto binding then updates the UI command

(then, Line 14). The Interacto binding executes the ongoing
UI command either at the end of the user interaction, or on
each update of the user interaction (what we call continuous
command execution). So, if the execution of the ongoing UI
command is continuous and the command executable, the
Interacto binding executes it (Lines 16 to 18).

When an interaction ends normally (Line 20), and sim-
ilarly to the update of the user interaction, the Interacto
binding checks the predicate when to possibly create and
update the ongoing UI command (Lines 21 to 26). Then
Line 27, the Interacto binding checks whether it can execute
the UI command (see the method isExecutable Line 11 in
Listing 3). The Interacto binding puts the executed UI
command in a command register (Line 30) to keep in memory
UI commands that may be undone by users. The Interacto
binding finally ends (Line 33) and dereferences the ongoing
UI command (Line 34).

When the user cancels the ongoing user interaction
(Lines 36 to 42), the Interacto binding calls the method cancel
(Line 37) and clears the ongoing command (if it exists).

Start and stop an Interacto binding. An Interacto bind-
ing can start and stop. On start, an Interacto binding asks its
user interaction to start, i.e., to listen for UI events from the
selected interactive objects. On stop, an Interacto binding ask
its user interaction not to listen for UI events anymore. The
user interaction also flushes its interaction data.

3.5 Interacto binder syntax

The syntax of the Interacto binder definition language is
summarized in Figure 8. An Interacto binder works as a
builder [29] to produce one Interacto binding. A developer
writes an Interacto binder using a set of routines (config in
Figure 8) to configure how the produced Interacto binding
will work. The call to the terminal method bind creates and
starts the Interacto binding. We summarize here the main
ones.

Using our JavaFX implementation Interacto-JavaFX, the
pseudo-code of Listing 2 gives the following Java code that
describes an Interacto binder that configures an Interacto
binding. This Interacto binding will work using a DragLock
interaction to produce Translate command instances:

1 binder()

2 .using(DragLock::new)

3 .toProduce(d -> new Translate(d.getSrc().getData()))

4 .on(node)

5 .first((d, c)->

6 d.getSrcObject().setEffect(new Shadow()))

7 .then((d, c) -> c.setCoord(

8 c.getShape().getX() + d.getTgtPoint().getX()

9 - d.getSrcPoint().getX(),

10 c.getShape().getY() + d.getTgtPoint().getY()

11 - d.getSrcPoint().getY()))

12 .when(d -> d.getButton() == MouseButton.PRIMARY)

13 .continuous()

14 .endOrCancel(d -> d.getSrcObject().setEffect(null))

15 .bind();

Listing 5: An Interacto binder to move a node using a drag-
lock

8

Syntax:

binding ::=binder()config.bind() (Binding Configuration)
config ::=.using(()→ i) (Interaction Creation)

| .toProduce(d→ c) (Command Creation)
| .on(w) (Widgets Selection)
| .first((d, c)→ void) (Interaction Started)
| .then((d, c)→ void) (Interaction Updated)
| .end((d, c)→ void) (Interaction Ended)
| .cancel(d→ void) (Interaction Canceled)
| .endOrCancel(d→ void) (Interaction Over)
| .when(d→ bool) (Command Condition)

| .with(k) (Keyboard Keys)
| .throttle(int) (Throttling)
| .strictStart() (Strict Interaction Start)
| .continuous() (Continuous Execution)
| .consume() (Consume UI Events)
| .log(l) (Logging)

l ::=interaction|binding|cmd (Logging Level)
d (Interaction Data)
w (Interactive Object)
k (Keyboard Code)
Typing:

Γ ` i : I (Interaction Type)
Γ ` c : C (Command Type)
Γ ` d : D (Interaction Data Type)
Γ ` i :< d (Interaction Substitution)

Fig. 8: The Interacto binder syntax

using: User Interaction Creation. The routine using selects
the user interaction the Interacto binding will use. In Listing 5,
using takes as argument a function that returns a new instance
of the predefined drag-lock interaction (Line 2).

toProduce: Command Creation. The routine toProduce
(Line 3) focuses on the production of a UI command. This
routine takes as argument an anonymous function that
returns a UI command as depicted in Listing 5 (Line 3).

on: Nodes Selection. The user interaction operates on se-
lected interactive objects to produce commands. The routine
on allows developers to specify these interactive objects (e.g.,
Line 4).

The on routine can also take as arguments an observable
list of interactive objects l. This allows to dynamically register
and unregister interactive objects to/from the Interacto
binding: when an object w is added to a list l, the binding
will work for w until w is removed from l. In the following
code excerpt, the interaction will operate on each object the
canvas will contain, dynamically.

// on can also take an observable list of nodes

.on(canvas.getChildren())

To support this feature using the standard event processing
model, developers would have needed to manually develop
the glue code that manages the (un-)registration.

when: Command Condition. An Interacto binding con-
straints the creation, the update, and the execution of a UI
command using the when routine (e.g., Line 12). The when
routine is a predicate that takes as argument the current
interaction data (d) to state whether a UI command can be
created, updated, or executed, as detailed by Listing 4.
first, then, end, cancel: Interaction Starts, Updates, Ends,
Cancels. The Interacto binding calls the routines: first right
after the instantiation of a UI command; then on each update
of the running interaction; end on each normal end of an
interaction execution (if the when predicate is respected); can-
cel on each cancellation of the current interaction execution.
They take as arguments the current interaction data (d in the
following code) and/or the current UI command (c). Listing 5
illustrates the use of these routines (Lines 5, 7 and 14).

3.6 Interacto binder Properties
An Interacto binder has the following properties:
Type-safe. The return of each builder routine is typed and
constrained by the previously called routines. For example,
the next code selects the user interaction DragLock. So, this
user interaction selection constraints the routines used next.
In this example, the attribute d of the routine when has the
type FromToData, which is the interaction data type of the
drag-lock interaction.

binder()

.using(DragLock::new)

.when((FromToData d) -> ...)...

The same reasoning applies to the selected UI command
to produce. Also, to call the method bind, the developer
should at least have call the routines using, toProduce, and on
beforehand.

This permits to write factory methods that shortcuts the
writing of bindings. For example, using our implementations
developers rarely call binder().using(DragLock::new) but
instead dragLockBinder() using the factory method that par-
tially builds a binding by selecting the drag lock interaction:

public static PartialBinder<...> dragLockBinder(){

return new Binder<Interaction<FromToData>, FromToData>()

.usingInteraction(DragLock::new);

}

Immutable. On each routine call, the builder clones itself to
return a new builder. The goal is to ease builder reuse and
factorize Interacto binders code. For example, the following
code starts by defining a partial binder (baseBinder). This
partial binder is then used to create two binders.

var baseBinder = buttonBinder().on(button).end(...);

baseBinder

.toProduce(...)

.when(...)

.bind();

baseBinder

.toProduce(...)

.when(...)

.bind();

9

3.7 Testing Interacto bindings
The proposed model does not impose testing tools to testers
and does not change the way developers write UI tests.
Instead, the proposed model comes with specific test oracles
and testing facilities that complement classical UI testing
techniques [32] and oracles [33]. We classified our proposed
test oracles into two groups: Interacto binding test oracles;
UI command test oracles.

Interacto binding test oracles. The goal of an Interacto
binding is to transform one user interaction execution into
a UI command. So, we define a testing oracle: command
produced. The command produced oracle checks whether a
user interaction execution produces a given command type.
Listing 6 depicts this oracle using a UI test case that performs
a DnD to then check whether the expected command has
been created. Because Interacto bindings are first-class
objects, we can observe them in a testing context to collect
and analyze the UI commands they created. We built a JUnit5
extension that does this job and provides a BindingsContext
test parameter (automatically injected) that provides testers
with command produced assertions. For example Line 6 queries
this test parameter to assess that a single command of type
AddShape was produced during the test execution.

1 @Test

2 void dndToAddShape(FxRobot robot, BindingsContext ctx) {

3 // ...

4 robot.moveTo(...).press(...).moveTo(...).release(...);

5 // ...

6 ctx.oneCmdProduced(AddShape.class);

7 }

Listing 6: Example of UI test case that uses the command
produced oracle

Listing 7 is another testing example that checks no
command of type AddShape are created when executing a
specific scenario:

1 @Test

2 void dndToAddShapeKO(FxRobot robot, BindingsContext ctx){

3 //...

4 ctx

5 .listAssert()

6 .noneSatisfy(cmd -> cmd.ofType(AddShape.class));

7 }

Listing 7: A second example of UI test case that uses the
command produced oracle

UI command test oracles. Reifying UI commands as first-
class objects permits the design of dedicated testing facilities.
First, we define UI command oracles implemented in a
dedicated testing framework. Second, we provide testers
with a UI command test skeletons generator that help them
in starting their UI command testing tasks.

UI command testing framework. We defined the following
UI command test oracles: can do, cannot do, do, and undo. The
can do oracle checks that the command can be executed. The
cannot do oracle checks scenarios where the command cannot
be executed. The do oracle checks the correct (re-)execution
of the command. The undo oracle checks that the undoable

command was correctly undone after its execution. Note that
the redo oracle is the same than the do oracle.

A dedicated testing framework has to alleviate the job of
developers by automating the execution of UI commands to
help these developers in focusing on writing UI commands
fixtures and oracles. The code of Listing 8 is an example of a
UI command test class. Testers have to write do and undo test
oracles (Lines 19 to 31). Testers must also write UI command
fixtures for configuring a command that: can be executed
(used for the can do, do, undo oracles), Lines 4 to 12; cannot be
executed (for the cannot do oracle), Lines 14 to 16. As several
can do and cannot do scenarios may exist, the methods return
a set of (Stream.of()) oracles and fixtures.

1 class DelShapesTest extends UndoableCmdTest<DelShapes> {

2 List<Shape> shapes;

3 Drawing drawing;

4 @Override protected Stream<Runnable> canDoFixtures() {

5 return Stream.of(() -> {

6 shapes = List.of(Factory.newRec(),

7 Factory.newRec(), Factory.newRec());

8 drawing = Factory.newDrawing(shapes);

9 cmd = new DelShapes(drawing,

10 List.of(shapes.get(0), shapes.get(2)));

11 });

12 }

13 @Override

14 protected Stream<Runnable> cannotDoFixtures(){

15 return Stream.of(() -> {

16 cmd=new DelShapes(Factory.newDrawing(), List.of());

17 });

18 }

19 @Override protected Stream<Runnable> doCheckers() {

20 return Stream.of(() -> {

21 assertThat(drawing.size()).isEqualTo(1);

22 assertThat(drawing.getShapeAt(0))

23 .isSameAs(shapes.get(1));

24 });

25 }

26 @Override protected Stream<Runnable> undoCheckers() {

27 return Stream.of(() -> {

28 assertThat(drawing.size()).isEqualTo(3);

29 assertThat(drawing.getShapes()).isEqualTo(shapes);

30 });

31 }}

Listing 8: Example of a UI command test class

Fig. 9: The tests executed by the UI command testing
framework for the test class of Listing 8

10

The execution of this test class runs the targeted UI
command under several scenarios (test instances) to check
the UI command oracles. Figure 9 shows the different tested
scenarios: can execute, cannot execute, execute, undo, redo,
several do/undo/redo sequences.

UI command test skeletons generator. Since UI commands
are first-class objects, a static analysis can extract from them
information to generate UI command test class skeletons. For
example with Listing 8, testers only wrote the code inside
the Stream.of() instructions, the rest being automatically
generated. The test class attributes are copied from the
UI command class attributes. The static analysis checks
whether the UI command is undoable for generating methods
undoCheckers.

4 EVALUATION

In this section we evaluate five aspects of Interacto: Is Interacto
implementable on different UI platforms? Does the approach
scale in terms of performance and expressiveness? What are
the pros and cons based on our usage? What is the scope of
Interacto? Can students successfully use Interacto?

All the material of this section is available on our com-
panion web page.3

4.1 Implementations

We define the first research question we address as follows:

RQ1. Can we implement the proposed model in different
programming languages and graphical toolkits that support
different paradigms?

We implemented the Interacto approach on the top of
two programming languages: Java and TypeScript [14]. For
each of these two languages we provide a UI platform-
independent library, namely Interacto-Java and Interacto-
TypeScript (this last uses the native Web graphical API4).

Regarding Java, we implemented an extension library,
Interacto-JavaFX, for supporting the JavaFX UI toolkit [13], a
major UI toolkit for Java. Interacto-JavaFX-Test complements
Interacto-JavaFX with testing facilities for JavaFX. The support
of another Java UI toolkit, such as Android, would require
an new library that extends Interacto-Java by defining how to
register to low-level UI events of the UI platform.

Regarding TypeScript, we implemented an extension
library, Interacto-Angular, for improving the use of Interacto-
TypeScript within the Angular UI toolkit [15].

The implementations contain around 8000 lines of Java 11
code and 5000 lines of TypeScript 3.8 code. Both implemen-
tations rely on the same concepts detailed in this paper. User
interactions are developed using composite and concurrent
FSMs. As illustrated in Section 2.3 with Figure 3, the drag-
lock FSM is composite: its transitions labelled double click
refers to the double-click interaction. Regarding concurrent
FSMs, an example is the multi-touch interaction where each
touch that starts corresponds to touch interaction.5 Both
implementations provide a set of around 30 predefined user

3. https://github.com/interacto/research
4. https://developer.mozilla.org/en-US/docs/Web/API
5. See the companion web page for more details on the multi-touch

interaction.

interactions that developers can use. The implementations
are open-source and free available.6

We implemented several optimizations in the implemen-
tations of user interactions for both Java and TypeScript:
• Efficient event registration. For example with Figure 3,

the FSM on the top uses mouse click (for double click),
mouse move, and key pressure events. When a user inter-
action is activated, it does not listen for all the possible
UI events that this user interaction uses. Instead, when
entering a state the accepted UI events at this state are
identified, and the user interaction registers for these
UI events only (and un-register for the other ones).
For example, when the top FSM of Figure 3 starts, it
only listens for mouse click events (as the fist event
of a double click interaction). When entering the state
Locked, this FSM now listens for mouse move and mouse
click events only. When programming user interactions
by hand, software engineers have to think about this
optimization to then manually craft it.

• Late starting. Let us take the example of the DnD. One
developer may consider that a DnD starts at the first
move, not at the initial mouse pressure. In such a case,
one can specify the state of a user interaction that will
correspond to the starting of the user interaction (that
calls the map and first routines).

• Interacto binder shortcuts. Our implementations pro-
vide shortcuts for initializing Interacto binders. For ex-
ample, Listing 9 contains two Interacto binders coded in
TypeScript with the Angular framework (to be discussed
later in this section). The first Interacto binder starts
with multiTouchBinder(2). This code is equivalent to
binder().using(() => new MultiTouch(2)): for most
of the user interactions we defined, we provide a coding
shortcut for initializing Interacto binders that use a given
user interaction. In this case, the user interaction multi-
touch is configured to use two touch points.

Differences between the Java and TypeScript implemen-
tations. Regarding user interactions, each graphical toolkit
has its own UI events. If most of such UI events are common
across the graphical toolkits, some others are platform-
specific or have different parameters. For examples: the
touch event of the native Web API has a force parameter
(the amount of pressure the user is applying) that is not
supported in JavaFX; JavaFX provides window-based UI
events that the native Web API does not provide; the native
Web graphical toolkit has a multi-touch support so that our
TypeScript implementation provides various standard touch
user interactions such as pan, swipe, tap. This has a limited
impact of the library of predefined user interactions provided
by each implementation.

Still related to user interactions, the Angular/Web API has
a feature that permits to disable the default user interaction
initially imposed by the Web browser. For example, a right-
click shows a menu on most of Web browser, which can
enter conflict with the expected behavior of a developed
Web application. This feature is called preventDefault. We
support this feature for user interactions of our TypeScript
implementation. For example with Listing 9, we used this
feature for the first Interacto binder multiTouchBinder.

6. https://interacto.github.io

https://github.com/interacto/research
https://developer.mozilla.org/en-US/docs/Web/API
https://interacto.github.io

11

The last difference concerns the name of specific Interacto
binder routines. The name of several concepts differ from
JavaFX to Angular/Web API. For example, the concept that
consists of stopping the propagation of a UI event refers
to the term consume on JavaFX and to the term stopImmedi-
atePropagation on Angular/Web API. Our implementations
use the name used by their UI toolkit. Similarly, because of
TypeScript method conflicts, the TypeScript implementation
uses the name onDynamic (see Listing 9) to refer to the on
routine that takes as argument a list to observe.

Example of how Interacto-JavaFX works within a JavaFX
controller and an Angular component.

Interacto can work with any architectural pattern that
processes UI events and provides access to the user interface
elements in the code. We illustrate this point with the two
following Angular and JavaFX examples.

1 export class AppComponent implements AfterViewInit {

2 @ViewChild(’canvas’) private canvas: ElementRef;

3 // ...

4 ngAfterViewInit(): void {

5 multiTouchBinder(2)

6 .toProduce(i => new DrawRect(

7 this.canvas.nativeElement as SVGSVGElement))

8 .on(this.canvas.nativeElement)

9 .then((c, i) => {

10 c.setCoords(Math.min(...i.getTouchData()

11 .map(touch => touch.getTgtClientX()))-b.x,...);

12 })

13 .continuousExecution()

14 .preventDefault()

15 .bind();

16
17 tapBinder(3)

18 .toProduce(i => new ChangeColor(

19 i.getTapData()[0].getSrcObject()))

20 .onDynamic(this.canvas.nativeElement)

21 .when(i => i.getTapData()[0].getSrcObject()

22 !== this.canvas.nativeElement && ...)

23 .bind();

24 }}

Listing 9: An example of how developers can code Interacto
binders within an Angular component

Listing 9 is an excerpt of an Angular component (a
kind of controller in the Angular framework). It shows
how one can use Interacto-Angular within an Angular com-
ponent. Currently, Interacto-Angular requires the widgets
to be accessible from the component code. This requires
the definition of a class attribute that corresponds to a
widget defined in the HTML part of the component (the
view of an Angular component is an HTML document).
To overcome this requirement, we can improve Interacto-
Angular with dedicated Angular facilities. In this example,
canvas refers to such a widget (Line 2). Interacto binders
are defined in the method ngAfterViewInit (Line 4), which
is a special method of each Angular component: Angular
automatically calls this method once the HTML view of the
component loaded, so that Interacto binders can access its
widgets. This method contains two Interacto binders: the
first one (Line 5) builds an Interacto binding that uses a
multi-touch interaction to produce DrawRect commands; the

second one (Line 17) builds an Interacto binding that uses
a tap interaction to produce ChangeColor commands. These
commands are specific to this application and defined in a
dedicated folder. The code of these Interacto binders and
their the commands they use is similar to the Java code show
in this paper to detail and illustrate the proposal.

Listing 10 gives a concrete example about how Interacto
binders are defined in a JavaFX controller. The CanvasCon-
troller class is in charge of managing a JavaFX view (not
depicted here). The JavaFX dependency injection permits the
controller to access the interactive objects of its view (cf. the
annotation @FXML, Line 2). JavaFX calls the method initialize
at the first use of the controller. We use this method (Line 4)
to code two Interacto binders that configure JavaFX Interacto
bindings (Lines 5 and 10).

1 public class CanvasController ... {

2 @FXML Canvas canvas;

3 // ...

4 public void initialize(...) {

5 binder()

6 .using(DragLock::new)

7 ...

8 .on(canvas.getChildren())

9 .bind();

10 binder()

11 .using(DnD::new)

12 .toProduce(d -> new Add(...))

13 .on(canvas).

14 ...

15 .bind();

16 }}

Listing 10: Example of how developers can code an Interacto
binder within a JavaFX controller

To conclude on RQ1, these two implementations de-
tailed in this section show that the proposed model is not
tied to one specific programming language or graphical
framework.

4.2 A real world use case: LaTeXDraw
RQ2. Does the implementation of the proposed model
scale? We first discuss the ability of the proposal to scale for
the development of a representative software system. Then,
we discuss performance of the implementation compared to
the use of the standard UI event processing model.

LaTeXDraw is a large open-source and highly interactive
vector drawing editor for LATEX.7 It is downloaded 1.5 k
times per month. LaTeXDraw is distributed on more than 10
Linux distributions, also available on Windows and MacOS.
On its Github page, the project has 340 stars and 58 forks.
LaTeXDraw is composed of around 35 000 lines of Java code.
We developed LaTeXDraw in Java since 2005 using callback
methods for processing UI events. As any software system,
LaTeXDraw evolves: we progressively introduced the use of
Interacto-JavaFX instead of callback methods since 2013. The
current version of LaTeXDraw (4.0) now entirely relies on
the fluent Interacto binder API. Note that the development

7. http://latexdraw.sourceforge.net

http://latexdraw.sourceforge.net

12

of LaTeXDraw precedes the development of Interacto-JavaFX
(2005 vs 2013). Moreover, the goal of LaTeXDraw has no
relation with Interacto. Because of the successive evolutions,
the fully callback version and the fully Interacto version are
not isomorphic and cannot be compared. LaTeXDraw 4.0 has
the following characteristics. It is composed of 45 controllers
(around 4700 lines of Java code) that contain a total of
224 Interacto bindings (around 1000 lines of Java code).
These Interacto bindings produce 37 different UI commands
(around 1400 lines of Java code). Regarding the used user
interactions: 45 Interacto bindings use several forms of DnD
(12), click (11), or keyboard interactions (22). The rest of
the Interacto bindings (179) are based on standard widgets
and window interactions (buttons, lists, color pickers, etc.).
We developed all the Interacto bindings using the Interacto
binder fluent API described in this paper. On the issue
tracking system of the Github page of the project, eight
issues, on the 30 ones opened, were related to user interaction
processing.

Regarding the testing oracles and features we propose
with Interacto-JavaFX and Interacto-JavaFX-Test, we tested
all the UI command of LaTeXDraw using the proposed UI
command oracles. We used the UI command test generator
to produce test class skeletons we then completed. Before
using this testing feature we wrote only few UI command
test classes. The generated test classes replaced these test
classes as we considered the new ones as covering more
UI command concepts (undo, redo, etc.) and they achieve a
better code coverage (currently 98.3% of covered lines). We,
however, cannot currently use the Interacto binding oracle
for testing LaTeXDraw’s Interacto bindings as this testing
feature requires JUnit5 tests while LaTeXDraw UI test suite
is written in JUnit4. We use this testing feature for testing the
library Interacto-JavaFX and in other cases as discussed in the
next section.

We use Interacto-JavaFX since 2013 for developing a
highly interactive and widely-used open-source software
system. This shows the ability of the proposal to scale for
the development of such software systems.

Regarding the performance of the implementation, we
evaluated the possible overhead of the use of Interacto-JavaFX
compared to the use of UI callbacks. Because of the successive
evolutions of LaTeXDraw, the fully callback version and
the fully Interacto-JavaFX version are not isomorphic and
cannot be compared. We thus ported LaTeXDraw 4.0 to use
UI callback methods only. This new callback version still
uses the developed UI commands. The controllers of this
callback version have the following code metrics: 5600 lines
of code (vs 4700 lines for the Interacto-JavaFX version); A
cyclomatic complexity (mean per method) of 2.55 (vs 1.89);
An LCOM value (Lack of Cohesion in Methods) of 1.86
(vs 1.49). We used the existing test suite of LaTeXDraw to
validate the call back version: the LaTeXDraw test suite,
that covers 90% of the UI controllers code and 100% of
the Interacto binders code, assesses the isomorphic property
between the Interacto-JavaFX and callback versions. Then,
using these two implementations (Interacto-JavaFX and UI
callback), we executed 10 times the test suite that covers the
Interacto binders. We used a Linux computer with 4CPUs
of 2.6GHz each, 16GB RAM, an Intel HD Graphics 5500

graphical card, and Xorg 1.19.6 as graphical server (the used
test suite is composed of user interface tests), and Java 8
update 161. The test execution was not parallelized. We
removed all the tests not related to UI event processing. We
obtained a test suite composed of 447 tests. These GUI tests
simulate user interactions with the GUI to trigger (or not)
the creation of commands. So these tests directly operate on
Interacto binders and UI callbacks. We modified the resulting
test suite to automatically measure and log the execution
time of each test. We removed the assertions of these tests to
transform them into executable UI scenarios only. Figure 10
summarized the measured execution times.

Fig. 10: Execution time comparison

For each test we computed its mean execution value
based on ten executions. The mean execution time for a
test is 1.331 s for the callback version and 1.334 s for the
Interacto-JavaFX version (see Figure 10). We use the Wilcoxon
signed-rank test (a paired difference test) [34] to compare
the two sets of mean execution times (data do not follow a
normal distribution and we used an initial confidence level
of 95%, i.e., α = 0.05): the observed differences between
the callback and Interacto-JavaFX versions (p-value of 0.9472)
are not significant and may be due to randomness. We can
conclude that using the JavaFX implementation the con-
ducted experiment gives no significant evidence regarding
an execution time overhead caused by the use of Interacto-
JavaFX compared to the implementations based on callback
methods.

This experiment shows no overhead in terms of per-
formance when using Interacto-JavaFX compared to stan-
dard JavaFX UI callbacks.

RQ3. What are the pros and cons of the proposed model
based on our real world usage? This research question
permits to discuss about the scope, the expressiveness of
our proposal mainly in the context of LaTeXDraw.

The use of Interacto-JavaFX in LaTeXDraw completely
removed the use of UI callbacks for processing UI events.
We faced no situation in which we could not use Interacto-
JavaFX to process all the heterogeneous user interactions that
LaTeXDraw employs.

The use of Interacto-JavaFX does not remove the use
of general-purpose callbacks and data binding features in

13

LaTeXDraw. The first reason is that the Interacto approach
complements data binding and achieves different purposes:
Interacto provides features for processing user interactions
while data binding creates dynamic links between object
values. For example, the following code statement, from
LaTeXDraw, establishes a data binding that does not imply
the use of any UI command or user interaction:

msg.visibleProperty().bind(Bindings
.createBooleanBinding(!msg.getText().isEmpty() ...));

Similarly, the following reactive programming code, ex-
tracted from LaTeXDraw, listens for changes in an observable
list to call the method updateSelectionBorders. This reactive
code uses throttling to limit the number of updates and
improve performance. This code does not refer to any UI
event (and thus not to any user interaction) and is thus out
the scope of Interacto.

JavaFxObservable.<ObservableList<Shape>>changesOf(
drawing.getSelection().getShapes())

.throttleLast(20, TimeUnit.MILLISECONDS)

.observeOn(JavaFxScheduler.platform())

.subscribe(next -> updateSelectionBorders());

These two remarks also concerns the Angular framework
that supports data binding and reactive programming fea-
tures.

The main drawback we found concerns several complex
Interacto binders that require temporary variables to share
data across the different routines of the binding. For example,
the following Interacto binder code defines and uses two
objects, namely xgap and ygap, to share data across the first
and then routines. In this case, developers may prefer to
define a new class instead of using an Interacto binder. This
is possible with our implementations.

private void configureDnD2ScaleBinding() {

final AtomicInteger xgap = new AtomicInteger();

final AtomicInteger ygap = new AtomicInteger();

binder()

...

.first((i, c) -> {

// This routine sets values to xgap and ygap.

})

.then((i, c) -> {

// This routine uses xgap and ygap.

})

.bind();

}

The code above also shows that we placed the Interacto
binder code into a specific method. Several controllers have
multiple and complex Interacto binders. Putting all the
Interacto binders in the same method would produce a long
method code smell. For readability we split these definitions
into different methods with a name that clearly describes the
job of the Interacto binder.

Another point is related to coding style. There exists two
ways for registering callbacks on widgets in both JavaFX and
Angular:
1/ Programmatically, one can register as follows in this
TypeScript code:

button.addEventListener(’mousedown’, evt => {...});

2/ One can also register in the UI description code, here in
the HTML code of an Angular application:

<button (mousedown)="myCallback()"/>

where myCallback is a TypeScript method defined in the code.
The goal of this style is to permit stakeholders with limited
programming skills (e.g., designers) to specify which user
interactions to use into views.

The Interacto implementation for Angular supports both
styles. For example, the following Angular HTML example
defines an SVG rectangle on which the use of a drag-lock is
specified for moving it (Interacto attribute ioDraglock):

<rect [ioDraglock]="moveRect"></rect>

The method moveRect is defined in the Angular compo-
nent as follows. This method takes as arguments a partial
binder: the user interaction to use is already configured.

moveRect(binder: PartialDragLockBinder): void {

binder

.toProduce(() => ...)

....bind();

}

Finally, in some specific cases a developer may not want
to rely on UI events but on data binding as an alternative
to UI event processing. For example, the following code
establishes a binding between the text value of a text field,
changed when a user interacts with the text field.

msg.textProperty().bind(button.textProperty());

Instead of processing UI keyboard events produced by this
text field, a developer can bind the text value to another
value. This way of binding data, however, does not support
undo/redo features for JavaFX and Angular. Conceptually
and technically, Interacto can support such a use case. To do
so, we have to build a user interaction whose FSM uses the
value change event of such text properties. Then, we can use
this new interaction within an Interacto binding. However,
the core idea of Interacto to focus on real user interactions.

4.3 Scope of the proposed model
We discuss here the expressiveness and extensibility of
the proposal through the kinds of software systems it can
support.

RQ4. What is the scope of the proposed model?
This research question aims at discussing the types of UIs

Interacto supports and to what extent it is extensible.

The long-term use case detailed in Section 4.2 discusses
about LaTeXDraw, a highly-interactive graphical software
systems. LaTeXDraw employs both a large panel of stan-
dard widgets (e.g., buttons, checkboxes, lists, tabs) and 2D
user interactions dedicated to the handling of 2D shapes.
LaTeXDraw must be used with mice and keyboards.

We use Interacto-JavaFX to build other yet smaller software
systems. We developed and maintain Spoon Visualisation, a
graphical tool for visualizing and interacting with the Spoon
Abstract Syntax Tree (AST) of Java code. Spoon is a Java
framework for developing dedicated Java code analyzers [35].

14

It parses Java code to build a Spoon AST that one can handle
to transform or analyze Java code. Spoon Visualisation uses
Spoon to parse Java code and display the resulting Spoon
AST using tree-based and text widgets. Spoon Visualisation
uses other user interactions and widgets that LaTeXDraw and
covers a different domain. The Spoon maintainers accepted
Spoon Visualisation and merged it in the main branch of Spoon
as a tool of the Spoon ecosystem.8

Regarding Interacto-Angular, we ported Spoon Visualisation
to Angular.9 We also develop an illustrative Angular Web
application to explain how to use the TypeScript imple-
mentation of our proposal within Angular.10 This applica-
tion mainly uses touch-based user interactions (multi-touch,
swipe, etc.).

These developments show that Interacto can be used
in other contexts that LaTeXDraw. The types of software
systems one can develop using Interacto are the same as the
ones targeted by the graphical toolkits we support, namely
Angular and JavaFX. So, this encompasses desktop, Web,
mobile software systems developed to use touch-screens,
mice, keyboards, as input devices. We do not see any blocking
issue for porting our proposal to other graphical toolkits that
operates with object-oriented programming languages such
as Android or React as they rely on the same concepts as
Angular and JavaFX.

Regarding the extensibility of the proposal, UI developers
can develop new user interactions for Interacto implementa-
tions using the atomic UI events provided by the UI toolkit.
To do so, the developer has to create one class for the user
interaction and a second class for its FSM. The developer
may have to create another class for defining the data the
new user interaction will expose (if the existing interaction
data classes do not match the requirements). If a developer
has to support a new UI events, he has to create a new class
that represents a transition to be used in FSMs. The process
is the same for Angular and JavaFX. The companion web
page points to the code of a very simple example.

We think that these steps may take more time for a
developer than coding the classical assembly of UI events.

Regarding the integration of Interacto within guidelines
of UI toolkits, our implementations aim at following the
same programming style that the one proposed by the UI
toolkits. For example with Angular, Interacto works with
pre-configured Angular linters, leverages Angular standard
features (e.g., dependency injection, services, directives),
and regarding event processing permits both coding styles.
Moreover, style guides of UI toolkits mainly focus on design
choices to follow. For example, double-click interactions are
not allowed in Gnome applications.11 These guides have no
impact on Interacto since they do not discuss the way user
interactions are technically processed.

4.4 An empirical study with students
Five contributors developed the long-term use case we de-
tailed in Section 4.2. To overcome this threat of generalization
we now discuss the following research question:

8. https://github.com/INRIA/spoon/tree/master/
spoon-visualisation

9. https://github.com/arnobl/spoon-web/
10. https://github.com/interacto/example-angular
11. https://developer.gnome.org/hig/stable/

RQ5. To what extent beginners successfully use Interacto
for processing UI events compared to standard UI toolkits?

To study this research question we conducted an empiri-
cal study that involved students.

Objects. The object of the experiments is an Angular 9.1 Web
application we created for the experiment. This application
has a simple Angular service that stores data. This application
also has a single Angular component that uses this service.
The HTML document of this component contains several
widgets: undo/redo buttons; a div tag that contains text ; a
text area; an SVG document that contains one rectangle. The
Angular component does not contain any code related to the
processing of UI events produced by these widgets.

We duplicated the application to have two applications
for the experiment: a classical Angular application; the
same Angular application for which we added Interacto-
Angular 5.3.0 in its dependencies.

We focus on Angular (and the underlying native Web
API) and Interacto for two reasons: Interacto-Angular is im-
plemented in TypeScript and works with Angular; Angular
is a major Web application framework widely used in the
industry. It relies on major software engineering concepts,
in particular reactive programming through its data binding
features for overcoming the limits of the Observer pattern.

Subjects. The subjects of the study are 44 master students
in computer science with a strong focus on software en-
gineering. Studies [36], [37] showed that students can be
valid and well representative subjects for experiments and
development tasks. The subjects are all volunteers with a
background on Web development with Angular. Each subject
answered three questions regarding his/her expertise in:
programming in general (q1); Web programming in general
(q2); Web programming with Angular (q3). They have to
give a number between 1 and 10 included (1 meaning no
expertise and 10 very strong expert). We used their answers
to form two balanced groups of 22 students each: group G1
that performed the experiment with Interacto; group G2 that
used Angular. To form G1 and G2 we paired subjects that
provided similar answers to the three questions to obtain
22 pairs of subjects. G1 and G2 each contain one subject of
each pair to balance the two groups. Table 1 details the mean
values of the groups for the three questions.

TABLE 1: Expertise of each group of subjects (mean values)

Group q1 q2 q3

G1 6 3.8 4.1

G2 5.8 3.7 3.8

Sub Research Questions. To discuss RQ5, we formulate the
three following sub research questions:
RQ5.1 Does the use of Interacto improve the correctness to
process UI events on typical development tasks?

RQ5.2 Does the use of Interacto reduce the time on those
tasks?

RQ5.3 To what extent the students prefer using Interacto for
completing those tasks?

https://github.com/INRIA/spoon/tree/master/spoon-visualisation
https://github.com/INRIA/spoon/tree/master/spoon-visualisation
https://github.com/arnobl/spoon-web/
https://github.com/interacto/example-angular
https://developer.gnome.org/hig/stable/

15

Tasks. We designed three representative tasks that cover dif-
ferent UI development aspects, in particular user interaction
usages and undo/redo support. The three tasks use different
user interactions more or less complex to use or code. Each
group had to do the same three tasks (namely, T1, T2, T3). We
established a time limit for each task: if reached, they have to
stop working on their current task and commit the changes.
The total duration of the session was 95min.

T1. This task is composed of two sub-tasks T1.1 and T1.2.
The goal of T1.1 is to use a simple user interaction, the triple
click, that subjects can easily use in Angular and Interacto.
The subject had to use a triple-click on a given HTML div tag
to change its color (stored in an Angular service). The goal
of T1.2 is to support the undo/redo of this color change. The
time limit of T1 is 35min.

T2. This tasks focuses on the use of a more complex user
interaction. This interaction consists in typing text in a text
area. If the user stops writing after a delay of 1 second, the
text data stored in the Angular service must be updated. This
is a mainstream user interaction that text processing tools
use to limit the number of editing actions. The time limit of
T2 is 20min.

T3. This task is composed of two sub-tasks T3.1 and T3.2.
The goal of T3.1 is to use a complex user interaction, the DnD,
provided by Angular and Interacto. The subjects had to use
a DnD to move a rectangle. The Angular service stores the
rectangle data. A 2D SVG rectangle renders graphically these
data. Angular provides DnD features for moving objects
graphically by changing, for example, its graphical style
(its CSS). This Angular feature, however, does not modify
the possible data model a dragged object renders, here the
rectangle data.

Interacto provides a DnD interaction, but subjects had to
employ it to change the coordinates. The goal of T3.2 is to
support the undo/redo of this move. The time limit of T1 is
40min.

In this section we refer to T-UNDO as the tasks related to
undo/redo operations, namely: T1.2 and T3.2. We also refer
to T-UI as the tasks related to user interactions, namely: T1.1,
T2, and T3.1. The goal of these transversal tasks is to discuss
results by topics rather than tasks.

Dependent Variables. We collected or computed the follow-
ing variables:
• Average Time (TIME): measures the average time in

minutes the subjects spent to complete each question.
We computed this metric based on the time stamps of
the commits each subject made: we asked the subjects
to commit locally before and after each question.

• Correct Answer (CORR): measures the correctness of
each question answered by a subject. We measured
CORR by designing 10 UI tests: four tests for T1 and
T3 that test the user interaction, the data changes, the
undo, and the redo; two tests for T2 that test the user
interaction and the data changes. The result of a test
execution is a boolean value.

• Level of Difficulty (DIFF): measures the difficulty felt
by each subject for each task. After each task (or sub-
task), the subject gave the associated DIFF between 1
and 10 included where 1 is a very easy task and 10 a
very difficult one.

Experimental Protocol. The subjects had no knowledge
about Interacto before the experiment. They followed several
courses of Web development using Angular and may have
skills on Angular acquired during internships in the industry.
To reduce this knowledge gap the subjects followed one
practical session (95min) during which they worked on
an Angular application. This preliminary session contained
exercises on processing UI events using the native Web API,
Angular, and Interacto. We asked the subjects to answer the
three questions about their expertise after this session. We
asked the subjects not to talk to or help each other during
the session. The subjects were free to use any other resource
to perform the tasks (online documentation, etc.).

Results. The TIME, CORR, and DIFF results do not follow
a normal distribution. For all the statistical tests used in
this section we consider a 95% confidence level (i.e., p-
value<0.05).

TABLE 2: Total test results, effect size, and confidence of the
correctness results

Task Tests Tests Odds Ratio p-value
Interacto Angular
(pass/fail) (pass/fail)

1 64 / 16 55 / 27 1.95 0.076

2 32 / 12 22 / 22 2.63 0.048

3 19 / 35 35 / 39 0.61 0.206

Total 115 / 63 112 / 88 1.43 0.093

T-UNDO 31 / 15 26 / 42 3.3 0.004

T-UI 84 / 48 86 / 46 0.93 0.898

Table 2 reports the results regarding the correctness. The
columns ’Tests’ reported the total number of executed tests.
From the results of the tests executions we produced a 2× 2
contingency table. We thus used the Fisher Exact Test [34] to
study whether the results from G1 and G2 are independent.
To measure the size effect, we used the Odds Ratio [34]. We
did not consider the test results related to T1.2 or T3.2 for the
subjects that did not start working on each of these task.

The results of T1 tend to be in favor of Interacto, but
are not significant enough to draw conclusions. Regarding
T2, the results are in favor of Interacto (significant results)
with an odds ratio of 2.63: on T2, the odds that a student
achieves better correctness are increased by 163% using
Interacto compared to Angular. Regarding T3, the results
do not exhibit significant results. For T3.1, most G2 subjects
used the native DnD feature that permits to graphically move
objects: Using Interacto, G1 subjects had to use an Interacto
DnD to do such a move programmatically, which is a more
complex task. Similarly to T1, the total correctness tends to
be in favor of Interacto, but is not significant enough to draw
conclusions.

Regarding the transversal task T-UNDO the results are
in favor of Interacto (significant results) with an large effect
size (3.3): on undo/redo features, the odds that a student
achieves better correctness are increased by 230% using
Interacto compared to Angular. Regarding T-UI the results
are not significant enough to draw conclusions.

16

RQ5.1 conclusion. First, Interacto helped the subjects
in correctly adding undo/redo features to the application.
Second, we think that an entrance barrier may exist for
students to master Interacto usages. This may concern in
particular the use of complex user interactions such as the
DnD in T3.

TABLE 3: Means, effect size, and confidence of the time results

Task Mean Mean Means Diff. Â12 p-value
Interacto Angular (% (minutes))
(minutes) (minutes)

1.1 16.96 20.42 −16.9 % (−3.46) 0.59 0.442

1 27.27 31.97 −14.7 % (−4.7) 0.70 0.045

2 13.41 18.48 −27.4 % (−5.07) 0.81 < 0.001

3.1 38.64 19.3 +100.2 % (+19.34) 0.18 < 0.001

3 37.65 38.37 −1.9 % (−0.72) 0.44 0.484

Total 77.6 88.62 −12.4 % (−11.02) 0.85 < 0.001

T-UNDO 26.33 48.1 −82.6 % (−21.77) 0.71 0.029

T-UI 68.3 58.28 +17.2 % (+10.02) 0.40 0.097

Table 3 reports the results for the TIME variable. We
applied the Mann-Whitney test [34] as this test makes no
assumptions about the distributions of assessed variables.
We measure the effect size using the Vargha-Delaney Â (Â12)
measure [38], [39] following Â12 measure nomenclature [38]:
negligible: > 0.5 small: > 0.56, medium: > 0.64, large: >
0.71. With the TIME variable, the less subjects spent time the
better it is in favor of the used approach.

We did not report and discuss the results of T1.2 and
T3.2 as their values may be strongly biased by the time limit
of T1 and T2: One subject may start T1.2 (or T3.2) several
minutes before the limit affecting the relevance of studying
T1.2 (or T3.2) alone. The results of T1.2 and T3.2 are however
integrated in the results of T1 and T3.

When concatenating the TIME results of T1, T2, and T3,
the probability that the use of Interacto would take less time
than the use of Angular is 85% (significant result). This result
is in favor of Interacto and has a large effect size.

For T1, the probability that the use of Interacto would
take less time than the use of Angular is 70% (significant
result). This result is thus in favor of Interacto with a medium
effect size. The reason may be that using Interacto the use of
interactions is more direct. Also, the support of undo/redo is
native in Interacto so that subjects did not had to implement
their own undo/redo facilities.

For T2, the probability that the use of Interacto would take
less time than the use of Angular is 81% (significant result).
This result is thus in favor of Interacto and has a large effect
size. The G2 subjects had to deal with a widespread keyboard
interaction not supported by most of UI toolkits (Angular
included), which takes time to support manually. Similarly
with T3.1, the probability that the use of Interacto would take
less time than the use of Angular is 18% (significant result).
This result, in favor of Angular with a large effect size, has
the same origin: as we discussed with CORR, G2 subjects
used the native Angular DnD that moves objects graphically.
G1 subjects had to use the Interacto DnD to change data,
which may take more time.

For T3, the data do not show significant results in favor
of Interacto or Angular. If T3.1 required less time for G2 as
discussed in the previous paragraph, T3.2 required more
time to G2 for coding undo/redo facilities.

RQ5.2 conclusion. First, globally the use of Interacto has
a large positive impact of the time spent to do the three tasks
against Angular. Second, the results show that providing
developers with user interactions has a benefit (for Interacto
in T2 or Angular in T3.1) in terms development time.

TABLE 4: Means, effect size, and confidence of the difficulty
results

Task Mean Mean Means Diff. Â12 p-value
Interacto Angular (%)

1.1 3.27 3.95 −17.2 % (−0.68) 0.56 0.51

1.2 4.66 4.85 −3.9 % (−0.19) 0.56 0.54

2 4.08 5.76 −29.2 % (−1.68) 0.69 0.03

3.1 7.19 4.13 +74.1 % (+3.06) 0.26 < 0.01

3.2 6.16 7.53 −18.2 % (-1.37) 0.71 0.18

Table 4 reports the level of difficulty asked to each subject
for each sub-task. Similarly to RQ5.2 we applied the Mann-
Whitney test [34]. This table does not contain lines Total,
T-UNDO, and T-UI: since multiple subjects did not started
(and reported the level of) T1.2 or T3.2 we cannot sum the
results of the three tasks, contrary with TIME. With the DIFF
variable, the less subjects found a task hard the better it is in
favor of the used approach. The significant results concern
T2 and T3.1 and seem to be related to the use of predefined
user interactions: The probability that the subjects find the
task easier with Interacto is 69% for T2 and 26% for T3.1.

Regarding qualitative data for this sub-RQ, we now
discuss some of the written comments of the subjects.
We identified five categories of remarks, mainly from G1
(Interacto).

Pros of Interacto. Multiple subjects detailed that they liked
Interacto for several reasons. A subject from G2 wrote that
"after we’ve been taught a bit of Interacto it seems obvious that
it can help to do complex actions more easily than only with
Angular". Other subjects wrote that: "Interacto significantly
simplifies certain tasks"; "Interacto very easy to handle, very easy
to manage the undo/redo".

Cons of Interacto. "I do not like the fact I have to define
a ViewChild in the HTML, then a property in the Angular
component and then make the bind. I prefer the Angular system
where you just have to bind a function in the HTML". We
agree with this remark and already discussed it with RQ3 in
Section 4.2.

"I also find that for very simple things it can quickly make
the application heavier because it makes you write a lot of code."
Indeed, the coding of undoable classes in particular may take
time. A concrete benefit may appear when a developer reuses
the same undoable command for several user interactions,
which is a common case during the development of UIs (e.g.,
key shortcuts, menus).

Entrance barrier. "I think Interacto is very powerful, when
you know how to use it well". "Struggling to understand totally
dndBinder()". "Once we understand the principle of the different

17

Binder, the code is done without too much difficulty". "Knowing
what the variable i was in the routines was the most useful part
that I saw just at the end". All these remarks pointed out that
using Interacto requires learning its major concepts, which
can hardly be done in two practical sessions.

Documentation issue. "The presentation of the Interacto docu-
mentation is not very intuitive." "The user community is not yet
very developed and therefore no help is available on the forums
or on the net in general". Related to the previous point, these
remarks stressed out that Interacto has no user community
compared to Angular so that it highly relies on its official
documentation.

RQ5.3 conclusion. First, the level of difficulty reported
by the subjects confirmed that the use of predefined user
interactions simplifies the coding activity. Second, the infor-
mal feedback are mainly positive regarding the benefits of
Interacto. The subjects, however, noticed various issues, in
particular the entrance barrier that may exist to use Interacto
correctly.

RQ5 conclusion. This experiment with students on
three representative user interaction development tasks
exhibits several points. First, the use of Interacto is
beneficial, in terms of time and correctness, for students
to add undo/redo features to the application. Second, the
use of predefined user interactions, from both Angular
and Interacto, is also beneficial in terms of time and
correctness. This give another path to explore to improve
Interacto: Interacto may also provide developers with pre-
defined yet partial Interacto binders to do standard actions,
similar to the Angular’s DnD. Third, an entrance barrier to
correctly use Interacto may exist. This barrier may concern
the understanding about how to use the API to turn the
execution of an interaction into a command. This is normal
for a novel technique and does not hamper the possible
adoption of Interacto since software engineers tend to
learn new frameworks regularly.

4.5 Threats to validity
External validity. This threat concerns the possibility to
generalize our findings. The real world use case we detailed
in Section 4.2 was developed by authors of this paper. To
mitigate this issue we conducted an experiment with 44
master students in computer science to discuss the pros and
cons of Interacto compared to the Web API/Angular.

Closely related, LaTeXDraw is developed in JavaFX.
To mitigate this issue, we discussed in Section 4.3 about
other use cases we developed in Angular and JavaFX. The
experiment conducted in Section 4.4 used Interacto-Angular
within an Angular application.

The benchmarks conducted in Section 4.2 concerns JavaFX
code. Claiming that the Angular implementation has no over-
head as well may require dedicated experiments. However,
we cannot identify any reason for having such a difference
between these two platforms as they rely on similar concepts.
Similarly, the experiment of Section 4.4 used an Angular
application. We selected Angular as it follows state-of-the-art
practices in terms of front-end development.

We design the experiment using three tasks representative
of what a UI developers can do to process user interactions.
The selected user interactions (keyboard interaction, simple

mouse interaction, DnD) are widespread user interactions.
These three tasks are of different difficulties and cover
different aspects of the processing of user interactions.

Regarding the population validity, all the subjects were
volunteers. We asked the subjects to fill a questionnaire before
the experiment on their knowledge in front-end development.
We used those data to design two balanced groups of subjects.

Construct validity. This threat relates to the perceived
overall validity of the experiments. Regarding tiredness,
the duration of the experiment was 95min. We chose this
duration as it is the standard duration of the practical sessions
that these students follow. The use of a time limit may
introduce a threat in the time results analysis. We consider
that not considering a time limit would lead to a more
problematic threat to validity: the tiredness as previously
discussed. We do not consider the use of a time limit with
students as an issue since by their current situation students
got accustomed to time limited exercises.

Regarding the learning gap, none of the subjects knew
Interacto. We conducted an initial practical sessions to intro-
duce Angular and Interacto-Angular concepts (data binding,
UI event processing). Despite this effort, we are aware
that subjects may feel more comfortable with Angular than
with Interacto-Angular. This issue is accentuated with the
documentation: we noted that G1 subjects (Interacto) strongly
relied on the Interacto documentation as the only source of
information. The G2 subjects could relied on various sources
of information (Angular website, Stack Overflow, etc.).

5 RELATED WORK

We grouped the related research work into three categories:
approaches related to reactive programming and complex
event processing; approaches related to UI event processing;
approaches that reify user interactions as first-class concepts.

5.1 Reactive programming and complex event process-
ing

Reactive Programming (RP) provides abstractions and mech-
anisms to use time-changing values in programs [5]. In a user
interface development context, RP is used for two purposes:
binding and transforming (user interface) data; processing
UI events, where UI events are processed as data streams.
Data binding is broadly used by recent graphical toolkits (e.g.,
Angular,12 WPF,13 and Android14) to update data on other
data changes following RP mechanisms. The use of RP to
process UI events brings several benefits compared to the use
of callback methods. First, it may reduce the size of the code
thanks to various stream operators. Second, it overcomes
the identified limits of the Observer pattern [8], [9], [10], [11].
We could use RP to code the user interactions that Interacto
provides, for example using the ReactiveX library [40], [41]
that Angular already provides and that also works within
JavaFX. However, using RP alone (i.e., not within Interacto) to
process UI events has the following drawbacks that Interacto
overcomes as discussed in this paper: UI event is still the

12. https://angular.io/guide/template-syntax
13. https://docs.microsoft.com/en-us/dotnet/framework/wpf/

data/data-binding-wpf
14. https://developer.android.com/topic/libraries/data-binding

https://angular.io/guide/template-syntax
https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/data-binding-wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/data-binding-wpf
https://developer.android.com/topic/libraries/data-binding

18

core concept and developers have to assemble events to build
user interactions; developers still have to write glue code
to transform UI events into commands. The rest of this sub-
section discusses the main RP approaches related to user
interface development.

ReactiveUI15 is a RP framework dedicated to the user
interface development. This framework considers commands
as first-class concepts. Developers can process UI events by
producing commands thanks to specific routines. ReactiveUI,
however, still consider UI events as first-class concepts.

[42] propose the use of RP to develop user interfaces. In
particular, UI events are considered as data streams that can
be processed. UI events, however, are still first-class concepts
in this approach.

Ur/Web is a programming language for the Web [43]. RP is
used in this approach for rendering graphical objects. Event
callbacks are still used to control interactive objects.

[44] propose a programming paradigm for developing
interactive event-driven systems. This approach is not spe-
cific to UIs. When applied to user interfaces, it focuses on the
rendering of graphical objects and UI data binding.

Mobl is a declarative language for programming mobile
web applications [45]. Mobl implements the Model-View
pattern: no controller is used to link views to data models.
The processing of low-level UI events and the data bindings
are moved to the View. One goal of Mobl is to reduce the
boilerplate code written in controllers to synchronize data
models and views. Mobl promotes separation of concerns by
supporting the separation of user interface and data model,
which is a corner-stone of user interface engineering. Mobl
provides reactive behavior mechanisms to be used directly
in views to update them. Interacto is not tied to a specific
architecture: it requires accesses to the interactive objects
that compose the user interface to process their events. The
current implementations of Interacto, however, cannot work
with the Model-View pattern as views are usually described
in an XML dialect.

Elm is a functional RP framework for programming
user interfaces [26]. When used to develop user interfaces,
Elm focuses on two aspects: building and layouting user
interfaces; processing UI events. Similarly to the other RP
approaches, Elm considers UI low-level events only. Elm does
not consider the concept of command.

Scala.React is a Scala RP framework that aims at overcom-
ing the limits of the Observer pattern [8]. This paper takes
as example the development of user interfaces. UI events,
however, are still first-class concepts and commands are not
considered.

Flapjax is a programming language for Web applica-
tions [46]. Flapjax provides, on the top of JavaScript, reactive
programming features to tackle various web development
problems. As most of the languages or frameworks discussed
in this section Flapjax can be used to develop user interac-
tions. For example, the authors illustrate parts of Flapjax by
developing a DnD. The authors notice that building user
interactions bring benefits for developers: "by separating the
DnD event stream from action of moving the element, we have
enabled a variety of actions". Commands, undo/redo, and the
associated glue code, however, are not considered.

15. https://reactiveui.net

[11] discuss some challenges of programming user
interfaces, in particular the data synchronization and update.
The authors highlight the complexity of understanding the
spaghetti code provoked by the use of handlers to update
data. The authors propose an approach to overcome this
problem. This work focus in data binding and did not target
UI event processing.

Complex Event Processing (CEP) tackles the problem of
analyzing data to detect event pattern [47]. User interactions
could be developed using CEP. For example, a DnD may
match the event-based pattern press-drag+-release. The main
drawback is that a pattern is matched when all the required
events are processed. User interactions may require to
process its events all along its execution.

5.2 UI event processing approaches
The Garnet system [48] provides developers with a set of
predefined, reusable, and customizable sets of behavioral
interactive objects called interactors. Interactors aim at
hiding the UI event processing from developers. Following
this work, the author of Garnet then proposed the use of
(undoable) commands with interactors [49]. These work
are certainly the closest ones that inspired Interacto. They,
however, follow a different philosophy than Interacto. Inter-
actors are interactive objects predefined (yet customizable)
for specific actions. For example, the predefined move-grow
interactor aims at moving or changing the size of an object.
Interacto promotes the concept of user interaction as a first-
class concern to replace the current usage of UI events.
By using Interacto, developers are free to use a given user
interaction to produce various commands.

More recently, InterState is an approach for defining user
interface behavior [7], [50]. The authors motivate the limits of
the current UI event-callback model to then propose the use
of FSMs to describe different parts of a user interface behavior.
Concretely, InterState is a new programming language and
environment for helping developers in coding and reusing
UI code. With Interacto we do not want developers to use
another language or environment. We aim at proposing
developers with a technique that seamlessly works within
their UI toolkits. InterState does not consider UI commands.
Moreover, with InterState, the states of a user interaction are
directly bound to properties of a data object to change. This
makes the job of developers more complex when they have
to replace the current user interaction with another one.

Based on the work of [48], [51] propose an approach
for developing interactive graphical objects. This approach
proposes a DSL (Domain-Specific Language) embedded in Scala
to develop interactors. This work shares several ideas with
the concept of Interacto: low-level UI events are hidden from
developers, to use predefined and customizable interactors,
similarly to [48]. These interactors can be controlled with
some routines close to the ones that form the Interacto
fluent API, such as when. This approach, however, focuses on
defining view templates. It also does not propose a process
to automatically transform user interactions into commands
since commands are not first-class concepts in this approach.

5.3 User interactions as objects
Reifying user interactions as first-class concerns is not new
and largely admitted in the HCI community. [23] propose

https://reactiveui.net

19

to code user interactions as FSMs instead of using low-level
UI events. This approach, however, fully focuses on user
interactions and do not consider separation of concerns, code
reuse, and UI commands.

[25] propose the use of Petri nets to model the behavior
of user interfaces, user interactions included. This approach,
however, does not propose any user interaction processing
model.

[24], [52] propose an architectural design pattern where
user interactions are modeled as FSMs. This design pattern
also suggests the separation of concerns between user inter-
actions and UI commands. No detail, however, is provided
on a user interaction processing mechanism to transform
such user interactions into commands.

Various UI modeling approaches aim at focusing on
software interactivity. Task modeling approaches, such as
ConcurTaskTrees (CTT) [53], aim at expressing user’s activities
by describing tasks that users can do. These approaches
thus focus at a high level of abstraction on UI commands.
The Interaction Flow Modeling Language (IFML) [54] aims at
specifying UIs. IFML has an events specification and an event
transition specification perspectives that detail the events (UI
events included) that change the state of the UI and their
impacts on this last. UsiXML [55] is a multi-level approach
for building multi-platform and adaptive UIs. The top level
of UsiXML concerns task modeling with the same goals than
CTT. Finally, improving the interactivity or more generally
the user experience of model-driven approaches and environ-
ments is a major concern [56], [57]. For example, [58] propose
to complete generative DSL environment approaches with
models dedicated to UIs and user interactions for improving
the user experience.

5.4 UI Toolkits
Several UI toolkits provide developers with features for
coding (undoable) UI commands. For example, Java Swing
already proposed to associate UI commands to simple
widgets (e.g., buttons) and provides a linear undoable history.
These features are now part of JavaFX. WPF has a similar
feature for binding commands to simple widgets. To the
best of our knowledge, Angular and Android rely on event
handlers for processing UI events and do not have command
features such as the ones provided by WPF. Interacto is
inspired by these features and brings facilities (algorithms, a
dedicated API, run-time optimizations, object-oriented prop-
erties, etc.) that help developers in coding how executions of
a user interaction can produce command instances. Interacto
improves: 1/ the expressiveness of the use of UI commands
with simple widgets with the above-mentioned facilities and
with multiple binder routines (when, log, consume, etc.) to
customize the command creation; 2/ the support of more
complex user interactions in their usages for producing
commands.

Several UI toolkits have reuse facilities: Angular has
Directives,16 WPF has Behaviors,17 and Android has Slices.18

These features are interesting as they permit developers
to extend the behavior of widgets with new features and

16. https://angular.io/api/core/Directive
17. https://github.com/Microsoft/XamlBehaviorsWpf/wiki
18. https://developer.android.com/guide/slices

new properties. However even when using these features, a
developer still has to handle low-level UI events to produce
commands and gets no specific support for turning user
interaction executions into commands as in Interacto. These
UI toolkits features can however be very useful for imple-
menting Interacto. For example, our Angular implementation
of Interacto partly relies on Angular directives as a reuse
mechanism. We believe that a port of Interacto to WPF or
Android might similarly rely on Behavior and Slice objects.

Regarding the testability of commands and of the pro-
duction of command instances, core testing and UI testing
frameworks (e.g. TestFX for JavaFX, Expresso for Android,
or Mocha/Jasmine/Protractor for Angular) provide core
features that enable us to write more complex test assertions
and test frameworks: based on and complementary to these
frameworks, Interacto proposes dedicated testing oracles
implemented in tools for easing the writing of tests for
commands and production of commands. Our implemented
testing tool both generate skeletons of test classes and also
provides a framework for helping in writing UI command
tests and for testing the production of commands.

Finally, several UI toolkits try to overcome the problem of
relying on basic UI events only by providing supplementary
UI events. For example, the HTML API provides the dragstart,
drag, and dragend events that respectively represent the
starting, the running, and the ending of a DnD. If such
UI are a progress towards the support of complex user
interactions, they still rely on the UI event processing model
and its limits: they do not help developer in turning UI
events into commands, while Interacto notably provides
algorithms, a dedicated API, run-time optimizations, object-
oriented properties, for this purpose.

6 CONCLUSION

This paper presents Interacto, a novel user interaction process-
ing model. Based on software engineering good practices,
Interacto aims at better engineering UIs. Instead of providing
developers with low-level UI event processing, Interacto
reifies user interactions and UI commands as first-class
concerns. The two implementations of Interacto, Interacto-
JavaFX and Interacto-Angular, show that the proposal is not
tied to a specific language or UI platform.

The long term experiment shows that the proposal scales
for one very interactive and widely-used software system.
The experiment conducted with students exhibited several
pros and cons of the proposal. The use of Interacto is
beneficial, in terms of time and correctness, for students
to add undo/redo features to the application. The use of
predefined user interactions is also beneficial in terms of time
and correctness. However, an entrance barrier to use correctly
Interacto may exist.

In our future work, we will investigate how to provide
developers with predefined yet partial Interacto binders
to do standard actions, similar to the Angular’s DnD that
moves objects graphically. Second, we will investigate how
to help HCI designers in designing and testing novel user
interactions, and how to produce concrete user interactions
for integration in Interacto. Finally, Interacto may also help
the design of dynamic and static code analyzing techniques
for the producing of UI tests, in the continuation of the test
generation technique we propose.

https://angular.io/api/core/Directive
https://github.com/Microsoft/XamlBehaviorsWpf/wiki
https://developer.android.com/guide/slices

20

REFERENCES

[1] Z. Mijailovic and D. Milicev, “A retrospective on user interface
development technology,” IEEE Software, vol. 30, pp. 76–83, 2013.

[2] M. Green, “A survey of three dialogue models,” ACM Trans. Graph.,
vol. 5, no. 3, pp. 244–275, 1986.

[3] M. Beaudouin-Lafon, “Designing interaction, not interfaces,” in
Proc. of AVI ’04. ACM, 2004, pp. 15–22.

[4] G. E. Krasner, S. T. Pope et al., “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,”
Journal of object oriented programming, vol. 1, no. 3, pp. 26–49, 1988.

[5] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx,
and W. d. Meuter, “A survey on reactive programming,” ACM
Computing Surveys (CSUR), vol. 45, no. 4, p. 52, 2013.

[6] B. A. Myers, “Separating application code from toolkits: Eliminat-
ing the spaghetti of call-backs,” in Proc. of UIST’91. ACM, 1991,
pp. 211–220.

[7] S. Oney, B. Myers, and J. Brandt, “Interstate: Interaction-oriented
language primitives for expressing GUI behavior,” in Proc. of UIST
’14. ACM, 2014, pp. 10–1145.

[8] I. Maier and M. Odersky, “Deprecating the observer pattern with
scala. react,” EPFL, Tech. Rep., 2012.

[9] G. Salvaneschi and M. Mezini, “Towards reactive programming
for object-oriented applications,” Trans. on AOSD, vol. 8400, pp.
227–261, 2014.

[10] G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini, “An empirical
study on program comprehension with reactive programming,” in
Proc. of FSE 2014. ACM, 2014, pp. 564–575.

[11] G. Foust, J. Järvi, and S. Parent, “Generating reactive programs
for graphical user interfaces from multi-way dataflow constraint
systems,” in Proc. of GPCE’2015. ACM, 2015, pp. 121–130.

[12] A. Blouin, V. Lelli, B. Baudry, and F. Coulon, “User Interface Design
Smell: Automatic Detection and Refactoring of Blob Listeners,”
Information and Software Technology, vol. 102, pp. 49–64, 2018.

[13] Oracle, 2018. [Online]. Available: https://openjfx.io
[14] G. Bierman, M. Abadi, and M. Torgersen, “Understanding type-

script,” in Proc. of ECOOP’14, 2014, pp. 257–281.
[15] Google, 2019. [Online]. Available: https://angular.io
[16] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[17] M. Potel, “MVP: Model-View-Presenter the Taligent programming

model for C++ and Java,” Taligent Inc, 1996.
[18] J. Smith, 2009. [Online]. Available: https://docs.

microsoft.com/en-us/archive/msdn-magazine/2009/february/
patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern

[19] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Communications of the ACM, vol. 15, no. 12, pp.
1053–1058, 1972.

[20] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, no. 2,
pp. 131–183, 1992.

[21] R. E. Johnson, “Frameworks = (components + patterns),” Commun.
ACM, vol. 40, no. 10, pp. 39–42, 1997.

[22] A. Apaolaza and M. Vigo, “Wevquery: Testing hypotheses about
web interaction patterns,” Proc. ACM Hum.-Comput. Interact., vol. 1,
no. EICS, pp. 4:1–4:17, Jun. 2017.

[23] C. Appert and M. Beaudouin-Lafon, “Swingstates: Adding state
machines to java and the swing toolkit,” Software: Practice and
Experience, vol. 38, no. 11, pp. 1149–1182, 2008.

[24] A. Blouin and O. Beaudoux, “Improving modularity and usability
of interactive systems with Malai,” in Proc. of EICS’10, 2010.

[25] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “ICOs: A model-
based user interface description technique dedicated to interactive
systems addressing usability, reliability and scalability,” ACM Trans.
on CHI, vol. 16, no. 4, pp. 1–56, 2009.

[26] E. Czaplicki and S. Chong, “Asynchronous functional reactive
programming for guis,” in Proc. of PLDI ’13, 2013, pp. 411–422.

[27] P. Baudisch, E. Cutrell, D. Robbins, M. Czerwinski, P. Tandler,
B. Bederson, A. Zierlinger et al., “Drag-and-pop and drag-and-
pick: Techniques for accessing remote screen content on touch-and
pen-operated systems,” in Proc. of Interact’03, 2003, pp. 57–64.

[28] C. Appert, O. Chapuis, and E. Pietriga, “Dwell-and-spring: undo for
direct manipulation,” in Proc. of CHI’12. ACM, 2012, pp. 1957–1966.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

[30] A. Prakash and M. J. Knister, “A framework for undoing actions in
collaborative systems,” Trans. on CHI, vol. 1, pp. 295–330, 1994.

[31] Y. Yoon and B. A. Myers, “Supporting selective undo in a code
editor,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 223–233.

[32] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical
user interface (gui) testing: Systematic mapping and repository,”
Information and Software Technology, pp. 1679–1694, 2013.

[33] V. Lelli, A. Blouin, and B. Baudry, “Classifying and Qualifying GUI
Defects,” in Proc. of ICST’15, 2015, pp. 1–10.

[34] D. J. Sheskin, Handbook Of Parametric And Nonparametric Statistical
Procedures, Fourth Edition. Chapman & Hall/CRC, January 2007.

[35] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Sein-
turier, “Spoon: A Library for Implementing Analyses and Trans-
formations of Java Source Code,” Software: Practice and Experience,
vol. 46, pp. 1155–1179, 2015.

[36] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives
of professionals in software engineering experiments?” in Proc. of
ICSE’15, vol. 1. IEEE, 2015, pp. 666–676.

[37] M. Svahnberg, A. Aurum, and C. Wohlin, “Using students as
subjects-an empirical evaluation,” in Proc. of ESEM’08, 2008.

[38] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,”
Journal of Educational and Behavioral Statistics, pp. 101–132, 2000.

[39] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[40] E. Meijer, “Reactive extensions (rx): curing your asynchronous
programming blues,” in ACM SIGPLAN Commercial Users of
Functional Programming. ACM, 2010, p. 11.

[41] A. Maglie, ReactiveX and RxJava. Apress, 2016, pp. 1–9.
[42] A. Courtney and C. Elliott, “Genuinely functional user interfaces,”

in Haskell workshop, 2001, pp. 41–69.
[43] A. Chlipala, “Ur/web: A simple model for programming the web,”

in Proc. of POPL ’15. ACM, 2015, pp. 153–165.
[44] A. Milicevic, D. Jackson, M. Gligoric, and D. Marinov, “Model-

based, event-driven programming paradigm for interactive web
applications,” in Proc. of Onward! 2013. ACM, 2013, pp. 17–36.

[45] Z. Hemel and E. Visser, “Declaratively programming the mobile
web with Mobl,” in Proc. of OOPSLA ’11. ACM, 2011, pp. 695–712.

[46] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi, “Flapjax: A programming
language for ajax applications,” in Proc. of OOPSLA ’09, 2009.

[47] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, 2002.

[48] B. A. Myers, “A new model for handling input,” ACM Trans. Inf.
Syst., vol. 8, no. 3, pp. 289–320, Jul. 1990.

[49] B. A. Myers and D. S. Kosbie, “Reusable hierarchical command
objects,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’96. ACM, 1996, pp. 260–267.

[50] S. Oney, B. Myers, and J. Brandt, “ConstraintJS: programming
interactive behaviors for the web by integrating constraints and
states,” in Proc. of UIST’12. ACM, 2012, pp. 229–238.

[51] O. Beaudoux, M. Clavreul, A. Blouin, M. Yang, O. Barais, and J.-M.
Jézéquel, “Specifying and Running Rich Graphical Components
with Loa,” in Proc. of EICS’12, 2012, pp. 169–178.

[52] A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers, and J.-M.
Jézéquel, “Combining Aspect-Oriented Modeling with Property-
Based Reasoning to Improve User Interface Adaptation,” in Proc. of
EICS’11, 2011.

[53] F. Paterno, C. Mancini, and S. Meniconi, “Concurtasktrees: A
diagrammatic notation for specifying task models,” in Human-
computer interaction INTERACT’97. Springer, 1997, pp. 362–369.

[54] M. Brambilla and P. Fraternali, Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML.
Morgan Kaufmann, 2014.

[55] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and
V. López-Jaquero, “Usixml: A language supporting multi-path
development of user interfaces,” in Proc. of Interact’04, 2004.

[56] A. Blouin, N. Moha, B. Baudry, H. Sahraoui, and J.-M. Jézéquel,
“Assessing the Use of Slicing-based Visualizing Techniques on the
Understanding of Large Metamodels,” Information and Software
Technology, vol. 62, no. 0, pp. 124 – 142, 2015.

[57] S. Abrahão, F. Bourdeleau, B. Cheng, S. Kokaly, R. Paige, H. Stöerrle,
and J. Whittle, “User experience for model-driven engineering:
Challenges and future directions,” in Proc. of MODELS’2017. IEEE,
2017, pp. 229–236.

[58] V. Sousa, E. Syriani, and K. Fall, “Operationalizing the integration of
user interaction specifications in the synthesis of modeling editors,”
in Proc. of SLE’19, 2019, pp. 42–54.

https://openjfx.io
https://angular.io
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern

	1 Introduction
	2 Background and Motivations
	2.1 Definitions
	2.2 Motivating Example
	2.3 Limitations of the UI event processing model

	3 The user interaction processing model
	3.1 Approach overview
	3.2 User interaction
	3.3 Undoable UI command
	3.4 Interacto binding behavior
	3.5 Interacto binder syntax
	3.6 Interacto binder Properties
	3.7 Testing Interacto bindings

	4 Evaluation
	4.1 Implementations
	4.2 A real world use case: LaTeXDraw
	4.3 Scope of the proposed model
	4.4 An empirical study with students
	4.5 Threats to validity

	5 Related Work
	5.1 Reactive programming and complex event processing
	5.2 UI event processing approaches
	5.3 User interactions as objects
	5.4 UI Toolkits

	6 Conclusion
	References

