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Abstract—This invited paper presents two tools developed by
the authors. Their purpose is to help the user in writing proofs
regarding computer arithmetic, e.g., certifying a bound on a
round-off error, while aiming at a high level of guarantee. Flocq is
a library of mathematical definitions and theorems for the Coq
proof assistant; Gappa is meant to compute bounds of values
and errors, while producing the corresponding formal proof. We
describe here these tools, how they interact and how they fit in
a larger verification process.

Index Terms—Floating-point; Round-off error; Formal meth-
ods; Coq

I. INTRODUCTION

Programs and circuits for computer arithmetic are far from
being exempt of bugs, in part due to the quirkiness of floating-
point arithmetic. Thus comes the question of the trust one can
put in such algorithms, and how to increase it (i.e., detect bugs
before production). There is a wide set of methods that can
be put to use, but they can be classified along two axes.

The first axis would characterize the depth of the analysis
the developer is willing to perform. At one end, we have the
safety bugs (access out of bounds, division by zero, etc). When
looking for such bugs, the developer does not have to specify
anything about the program or the circuit; tools will work
in a fully automated way. In a similar category, but more
specific to computer arithmetic, the developer might want to
know how the computed value differs from the infinitely-
precise value (unstable branching, round-off errors, etc). Then,
as we move along this axis, the developer starts to express
what the program or circuit is actually supposed to compute
(which might not be apparent from the code). This might be
a black box such as an MPFR-based function that computes
the ideal value, e.g., the limit of a converging sequence. This
might also be a white box, such as a reference circuit for an
arithmetic block. Eventually, one might need the full language
of mathematics to precisely describe the expected properties
of the computed values. The more exotic the specification is,
the less automated the tools are, to the point where one might
have to fall back to a pen-and-paper proof.

The second axis would be the level of trust we end up
with. In an ideal world with unlimited resources, one would
just validate the program or circuit (or combination thereof)
for every input. This is actually possible in some cases, e.g.,
checking a function with a single binary32 argument. But in
general, we have to turn to other approaches. So, at one end of
the axis, we use validation, but by randomly testing a subset
of the inputs only. Then some methods make it possible to

increase the trust, that is, to reduce the chance bugs occur for
some untested inputs. One might use stochastic arithmetic or
other fault-injection methods to encompass as many potential
behaviors as possible in a single run. One might also guide
testing by code coverage or machine learning. But short of
testing all the inputs, the trust cannot rise past a certain point.
So, instead of validation, one might turn to verification, i.e.,
mathematically proving that a program or circuit is correct for
all the inputs, even those that were not tested. A wide range
of approaches can then be put to use: abstract interpretation,
model checking, deductive verification, and so on. But we are
faced with a dilemma: To which extent can we trust a tool
that claims that our algorithm is bug-free? As with the first
axis, the further we go along the axis of trust, the more work
might be needed from the developer.

In this invited paper, we present our work at the far end of
both axes, that is, deductive verification using mechanically-
checked proofs. This opens the way to the most expressive
specifications with the highest level of trust, as exemplified
by the Flocq formalization of floating-point arithmetic for the
Coq proof assistant [1]. But this comes at a large verification
cost for the user, which we try to alleviate with automated
tools like Gappa.

II. FLOCQ

The starting point of any verification of algorithms in
computer arithmetic is the formal definition of all the basic
blocks, i.e., formats, rounding, and so on. Flocq [2] is a Coq
library developed for this purpose, with enough results so that
both automation and hand-writing proofs are possible. We
describe here our main design choices. More details can be
found in [3].

A. Formats

Let us start with fixed- and floating-point formats, i.e., the
sets of representable numbers. At their simplest, they are just
subsets of R (type R -> Prop in Coq), as this allows an
easy interaction with real numbers. But that is a bit too vague
to have meaningful properties, so we constrained them further
using a function ϕ : Z → Z and an integer radix β. A real
number x belongs to a format characterized by ϕ when

∃m ∈ Z, x = m× βϕ(ex),

where ex = blog |x|/ log βc + 1, so that |x| ∈ [βex−1;βex).
The equivalent Coq definition is

x = Ztrunc
(
xβ−ϕ(ex)

)
× βϕ(ex)



with Ztrunc(m) being bmc when m is positive and dme
otherwise.

Now let us focus on the format function ϕ. There are a few
requirements for it to characterize a reasonable format (see [2],
[3] for details) that are fulfilled by the following examples. The
fixed-point format with lsb emin corresponds to the constant
function ϕFIX(e) = emin. Then, as expected, a number x is in
the format when ∃m ∈ Z, x = m × βemin . An unbounded
floating-point format with a precision of p digits corresponds
to ϕFLX(e) = e − p. A floating-point format with precision
p and a minimal exponent (the smallest positive normalized
number is βemin+p−1) with gradual underflow corresponds to
ϕFLT(e) = max(e− p, emin).

The canonical exponent of the floating-point number (that
is ϕ(ex)) allows an easy definition of the ulp, and then the
definition and properties of the predecessor and successor. For
instance,

x 6∈ F ⇒4(x) = 5(x) + ulp(x).

B. Axiomatic Rounding

A rounding may be defined as a relation between a real and
a floating-point value, given a format. For instance, f is the
rounding of x toward −∞ in the format F if

(f ∈ F ) ∧ (f ≤ x) ∧ (∀g ∈ R, g ∈ F ⇒ g ≤ x⇒ g ≤ f) .

Similar definitions exist for rounding toward +∞, to zero,
and to nearest. Note that the latter requires a tie-breaking rule.
There is a subtlety when breaking ties to even, as it requires
that, among two successive floating-point numbers, one and
only one is even. It is not the case for instance when using
a floating-point format with no subnormals (flush-to-zero) as
the successor of 0 is βp−1+emin which has an even mantissa
βp−1 when the radix β is even. These axiomatic roundings
are useful for verifying properties of algorithms.

The IEEE-754 standard, however, follows a different ap-
proach to characterize floating-point operators. So, Flocq also
expresses rounding as functions from R to R that provide re-
sults with the aforementioned format properties. For instance,
let ex = blog |x|/ log βc + 1 as before, then the rounding of
x toward −∞ is:

5(x) = bxβ−ϕ(ex)c × βϕ(ex).

Flocq provides all the necessary lemmas to relate the relational
and functional points of view. It also provides many lemmas,
such as bounds on the error:

|◦τ (x)− x| ≤ 1
2ulp(◦τ (x))

with ◦τ being a rounding to nearest with an arbitrary tie-
breaking rule.

Several theorems of Flocq are dedicated to exact computa-
tions, such as Sterbenz’ lemma, or when rounding a number
already in the format. Here is another example: If two numbers
x and y are in an FLT format (format with a fixed precision
and a minimal exponent) and |x + y| ≤ βp+emin , then x + y
is a floating-point number in the same format. Similarly, we

have proved the existence of error-free transformations for
addition and multiplication. But we have also proved that the
remainder of division and square root is representable. In other
words, assuming x and y are two floating-point numbers in the
FLX format (unbounded exponent range) and � is a rounding
function, then

x−� (x/y) · y

is representable in the FLX format. When p > 1,

x− ◦τ
(√
x
)2

is representable in the FLX format.
A more intricate case of lossless computation is the re-

mainder of the integer division, where we have the following
generic theorem. Consider a format described by a monotone
function ϕ, a valid integer rounding rnd : R → Z, and
two numbers x and y representable in the format such that
|x/y| < 1

2 ⇒ rnd(x/y) = 0 (which holds whenever rnd
rounds toward zero or to nearest). Then x − rnd (x/y) · y is
representable in the format.

Flocq also characterizes cases where double rounding is
innocuous [4], from which one can get for example a property
of double rounding for floating-point division. Consider two
FLT formats with precisions p and p′ and minimal exponents
emin and emin

′ such that emin
′ ≤ emin − p − 2 and 2p ≤ p′,

and two arbitrary tie-breaking rules. Consider x and y 6= 0 in
the smaller FLT format (p, emin), then

◦τ1p
(
◦τ2p′ (x/y)

)
= ◦τ1p (x/y) .

This easily proves that double rounding for division is innocu-
ous in the case of binary64 and binary32.

Flocq provides several other theorems about double round-
ing: accuracy, faithfulness, and, when the first rounding is to
odd, correctness. In the context of the CompCert C compiler,
where the semantics of floating-point operations is built on top
of Flocq, these theorems made it possible to formally verify
the correctness of the generated assembly code that converts
integers to floating-point numbers and vice versa [5].

C. Effective Computations
The previous rounding functions are quite abstract, as they

are meant to round arbitrary real numbers. This is useful
in proofs, but not so much for performing computations.
When the inputs of a floating-point operation are numbers
of the form m · βe, we can write actual algorithms and
even perform effective computations inside the logic of Coq.
Flocq provides verified operators for floating-point addition,
subtraction, multiplication, but also division and square root.

This is especially useful in the context of the CompCert
compiler, where the effective operators are used for parsing
and output of floating-point literals and for performing opti-
mizations such as constant propagation [5]. These operators
also serve as a reference implementation in the CoqInterval
library, making it possible to perform proofs by computing
with arbitrary-precision floating-point numbers inside Coq [6].
They are also the basis for performing native binary64 com-
putations inside formal proofs [7].



III. GAPPA

Gappa is a tool meant to help the user analyze and ver-
ify fixed- and floating-point algorithms [8]. Given a logical
formula over real numbers, it tries to fill any hole (e.g., a
bound on some round-off error) and generates a formal proof
of the resulting proposition. Without losing much generality,
a formula given to Gappa can be interpreted as follows:

∀x1, . . . , xk ∈ R, e1 ∈ I1 ∧ . . . ∧ en ∈ In ⇒ e ∈ ?©.

The expressions e1, . . . , en, e are arithmetic over some real
numbers x1, . . . , xk. As in Flocq, these expressions can also
mention rounding operators, so as to express properties of
floating-point numbers. So, given some interval enclosures of
e1, . . . , en, Gappa computes an enclosure of e (or verify it if
given by the user) and generates a proof of it, which can be
checked using Coq.

While only simple enclosures are usually encountered in
user propositions, Gappa internally supports a wider range
of properties over real numbers. For example, a proof might
critically rely on the fact that some real number is a multiple
of a given power of two or that it does not need more than a
given number of bits to be represented. These properties are
supported by the following predicates:

FIX(x, n) , ∃m ∈ Z, x = m · 2n,
FLT(x, n) , ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2n.

While Gappa’s FIX predicate is related to Flocq’s FIX format,
Gappa’s FLT predicate is actually related to Flocq’s FLX
format, due to historical reasons. To express the FLT format of
Flocq, one should instead mix Gappa’s FLT (for the floating-
point precision) and Gappa’s FIX (for the minimal exponent).

Another important predicate is REL. Indeed, while the
absolute error between x̃ and x can easily be expressed as
an enclosure x̃ − x ∈ ?©, the relative error (x̃ − x)/x is a
bit more tedious to handle due to a potential division by zero.
The REL relation avoids this division as follows:

REL(x̃, x, I) , x̃ = x · (1 + ε) ∧ ε ∈ I.

Gappa contains a database of theorems about the above
predicates (and a few others, less important). For example,
theorems inspired from interval arithmetic tell the tool how
to combine two properties u ∈ I and v ∈ J to obtain a new
property u � v ∈ ?©. Gappa saturates over its database of
theorems, starting from the properties e1 ∈ I1, . . . , en ∈ In
and computing until it can no longer deduce anything new. At
that point, it returns the best enclosure of e it found. It also
keeps track of all the theorems that lead to this enclosure and
generates a formal proof from them.

A special case of the above process is when Gappa en-
counters a contradiction, e.g., an expression is proved to be
enclosed in two disjoint intervals. In that case, anything can be
deduced, so Gappa directly returns a formal proof. This might
happen when an algorithm contains multiple conditionals and
the conjunction of some of them is impossible. This might also
happen if the user has explicitly provided an enclosure e ∈ I

rather than letting I unspecified. Indeed, in that case, Gappa
assumes that e 6∈ I holds and tries to derive a contradiction,
which might be faster than trying to blindly prove e ∈ I .

Now let us go back to the database of theorems. They are
meant to emulate the kind of reasoning a user would perform
in a pen-and-paper proof. As mentioned earlier, some theorems
are inspired by interval arithmetic; from some enclosures of
two expressions u and v, they are able to deduce an enclosure
of u � v. We denote such a theorem as follows:

BND(u) ∧ BND(v)⇒ BND(u � v).

where intervals are hidden for the sake of readability. Simi-
larly, we will just omit the last argument of the predicates FIX,
FLT, and REL, when mentioning their theorems. For example,
Gappa knows how to compose relative errors:

REL(u, v) ∧ REL(v, w)⇒ REL(u,w).

It also knows how the relative error behaves when expres-
sion are multiplied and divided. For summed expressions, the
behavior of relative errors is slightly more complicated, as it
depends on potential cancellations:

REL(ũ, u)∧REL(ṽ, v)∧BND(u/(u+v))⇒ REL(ũ+ṽ, u+v).

This is not the only theorem mixing different predicates. For
example, when both an enclosure and a power-of-two divisor
are known, Gappa can deduce how many bits are needed for
an expression:

BND(u) ∧ FIX(u)⇒ FLT(u).

In addition to the theorems about arithmetic operators,
there are also theorems about rounding operators. Let us
denote ◦(u) the rounding of u to a given format. Gappa
knows how to deduce FIX(◦(u)), FLT(◦(u)), BND(◦(u)−u),
REL(◦(u), u), from other facts, e.g., BND(|u|).

There are also numerous theorems that are just conse-
quences of equality between expressions. For example, while
we already mentioned a dedicated theorem for the relative
error of the sum, Gappa reasons about the absolute error of
the sum using the following equality:

(ũ+ ṽ)− (u+ v) = (ũ− u) + (ṽ − v).

When looking for an enclosure of the left-hand side, Gappa
first tries to obtain an enclosure of the right-hand side.

These equalities are also the way the user can bring some
extra intelligence to the tool. Indeed, while Gappa knows
about 200 theorems, some algorithms might still elude it.
For example, consider a Newton iteration for computing the
multiplicative inverse of a:

δn ← ◦(1− a · yn),

yn+1 ← ◦(yn + yn · δn).

Gappa does not know that such an iteration converges quadrat-
ically. So, the user can help the tool by providing the following
equality as a premise of the logical formula:

(ȳn+1 − a−1)/a−1 = −ε2n



with ȳn+1 = yn + yn · (1− a · yn) and εn = (yn− a−1)/a−1.
Note that this equality mathematically holds since ȳn+1 con-
tains no rounding operator; it can be easily verified using
any computer algebra system (or Coq). Thanks to its known
theorems and this user equality, Gappa is able to relate yn+1

to ȳn+1 and then to deduce the relative error between yn+1

and a−1 from the relative error between yn and a−1.
Gappa can be used either as a standalone tool, e.g., to

analyze some algorithm by filling holes ?© in logical formulas
describing it. It can also be invoked directly from Coq as a
tactic to automatically and formally discharge goals. In that
case, the logical formulas contain no hole.

IV. CONCLUSION

We have shown two tools that help the user design al-
gorithms and prove their correctness with the highest level
of trust. Formal methods, and in particular the Coq proof
assistant, play a crucial role. Proofs may be done automatically
when possible and interactively when needed (especially when
the precision is generic).

We have proved basic blocks with several kind of correct-
ness specification. For instance, we have proved round-off
error bounds for algorithms computing an order-2 discriminant
and the area of a triangle. We have verified the correct-
ness of algorithms that compute error-free transformations:
FastTwoSum and TwoSum, which compute the error of an
floating-point addition, as well as an algorithm that computes
the error of an FMA.

We have also verified an integer division based on floating-
point computations, and a correctly-rounded average. For all
these examples and many more, we refer the reader to [3] for
details.

A larger example comes from applied mathematics: a simple
numerical scheme (the three-point scheme) that solves the 1D
wave equation. Its verification relies on Gappa for overflow
proofs and for bounding the round-off error of one step
while Flocq is used to prove the propagation and partial
compensation of these errors and to guarantee a small final
round-off error. This example also shows that the correctness
of a program might not lie only in its accuracy. Sometimes,
mathematics come into play and we need results from analysis
for a full correctness. It may be a Taylor expansion for approx-
imations or the stability of a numerical scheme. If one wants to
keep the highest level of guarantee, then mathematics need to
be formally verified too. We have developed appropriate Coq
libraries and tactics for that purpose. First, Coquelicot [9] is a
library for (mostly real) analysis, more convenient than Coq’s
standard library; it comes with a few tactics for derivative and
integration. CoqInterval [6] is a Coq tactic that automatically
proves inequalities on real numbers, relying both on interval
arithmetic and Taylor models.
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