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ABSTRACT2

Additive noise is known to tune the stability of nonlinear systems. Using a network of two3
randomly connected interacting excitatory and inhibitory neural populations driven by additive4
noise, we derive a closed mean-field representation that captures the global network dynamics.5
Building on the spectral properties of Erdös-Rényi networks, mean-field dynamics are obtained6
via a projection of the network dynamics onto the random network’s principal eigenmode. We7
consider Gaussian zero-mean and Poisson-like noise stimuli to excitatory neurons and show that8
these noise types induce coherence resonance. Specifically, the stochastic stimulation induces9
coherent stochastic oscillations in the γ-frequency range at intermediate noise intensity. We further10
show that this is valid for both global stimulation and partial stimulation, i.e. whenever a subset of11
excitatory neurons is stimulated only. The mean-field dynamics exposes the coherence resonance12
dynamics in the γ-range by a transition from a stable non-oscillatory equilibrium to an oscillatory13
equilibrium via a saddle-node bifurcation. We evaluate the transition between non-coherent14
and coherent state by various power spectra, spike-field coherence and information-theoretic15
measures.16

Keywords: coherence resonance, phase transition, stochastic process, excitable system, mean-field, random networks17

1 INTRODUCTION
Synchronisation is a well characterized phenomenon in natural systems [1]. A confluence of experimental18
studies indicate that synchronization may be a hallmark pattern of self-organisation [2, 3, 4]. While19
various mechanisms are possible, synchronization may emerge notably through an enhancement of internal20
interactions or via changes in external stimuli statistics. A specific type of synchronisation can occur due21
to random external perturbations, leading to a noise-induced coherent activity. Such a phenomenon is22
called coherence resonance (CR) and has been found experimentally in solid states [5], nanotubes [6]23
and in neural systems [7, 8]. Theoretical descriptions of CR have been developed for single excitable24
elements [9, 10, 9], for excitable populations [11] and for clustered networks [12].25
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Figure 1. Synchronisation dependent on noise intensity as a marker of coherence resonance. The top
panel shows the network average of V in Eq. (1) and the bottom panel provides the spike-field coherence
(SFC) in the Θ−(red), α−(green), β−(orange) and γ−(blue) frequency range. For low noise intensity
D1/τe there is no SFC, intermediate noise intensity yields strong SFC while large noise intensities diminish
SFC again. To gain the SFC values, we have integrated in time the model system with 104 time steps while
increasing the noise variance according to (7). For illustration reasons, the SFC-values have been averaged
by a sliding window of length ∆(D1/τe) = 0.004. Definitions are given in section 2 and parameters are
the same as in Fig. 4 with q = 1.

In general, stimulus-induced synchronisation is well-known in neural systems [2]. Synchronisation has26
been observed intracranially in the presence of noise between single neurons in specific brain areas [13, 14]27
and between brain areas [15, 16, 17]. The source of these random perturbations is still under debate. In this28
context, it is interesting to mention that [18] have found that the ascending reticular arousal system (ARAS)29
affects synchronisation in the visual cortex. The ARAS provides dynamic inputs to many brain areas30
areas [19, 20, 21]. It has thus been hypothesized that synchronisation in the visual system represents a CR31
effect triggered by ARAS-mediated drive. This hypothesis has been supported recently by [22] showing in32
numerical simulations that an intermediate intensity of noise maximises the interaction in a neural network33
of Hodgkin-Huxley neurons. Furthermore, recent theoretical work [21] has provided key insights on how34
human occipital electrocorticographic γ-activity (40-120Hz) commonly observed with open eyes [21] is35
closely linked to CR. Coherence resonance has further been associated with states of elevated information36
processing and transfer [22], which are difficult to assess in the absence of mean-field descriptions.37
For illustration, Fig. 1(upper panel) shows average network activity for increasing noise intensities D1 and38
one observes a jump from non-oscillatory to oscillatory activity. Moreover, the figure presents very low39
coherence in the network under study for weak and strong noise intensities D1, whereas high coherence40
emerges for intermediate noise intensities (bottom panel). In the present work, we will explain this41
noise-induced coherence by a mean-field description.42

To better understand the mechanisms underlying CR and its impact on information processing, we43
consider a simple two-population Erdös-Rényi network of interconnected McCullogh-Pitts neurons. Our44
goal is to use this model to provide some insight into the emergence of stimulus-induced synchronisation45
in neural systems and its influence on the neural network’s information content. The neural network under46
study has random connections, a simplification inspired from the lack structure neural circuits possess47
at microscopic scales. Previous studies [23] have shown that such systems are capable of noise-induced48
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CR. Building on these results, we here provide a rigorous derivation of a mean-field equation based on an49
appropriate eigenmode decomposition to highlight the role of the network’s connectivity - Erdös-Rényi50
more specifically - eigenspectrum in supporting accurate mean-field representations. We extend previous51
results by further considering both global (all neurons are stimulated) and partial (some neurons are52
stimulated) stochastic stimulation and its impact on CR similar to some previous studies [24, 25, 26].53
This partial stimulation is both more general and realistic than global stimulation as considered in most54
previous studies [23, 11, 27]. We apply our results to both zero-mean Gaussian and Poisson-like stochastic55
stimuli, and derive the resulting mean-field description. It is demonstrated rigorously that partial stochastic56
stimulation shifts the system’s dynamic topology and promotes CR, compared to global stimulation . We57
confirm and explore the presence of CR using various statistical measures.58

2 MATERIAL AND METHODS
We first introduce the network model under study, motivate the mean-field description, mentions the59
nonlinear analysis employed and provides details on the statistical evaluation.60

2.1 The network model61

Generically, biological neuronal networks are composed of randomly connected excitatory and inhibitory62
neurons, which interact through synapses with opposite influence on post-synaptic cells. We assume neural63
populations of excitatory E and inhibitory I neurons withN neurons in each population. Excitatory neurons64
in E excite each other through the connectivity matrix F , and excite inhibitory neurons in I through the65
connectivity matrix M . Similarly, neurons in I inhibit each other by F and inhibit excitatory neurons66
through the connectivity matrixM . Hence, F andM represent the intra-population and inter-population67
synaptic connections, respectively. Mathematically, such neural population interactions are described68
by a 2N -dimensional non-linear dynamical system governing the evolution of the state variable vectors69
V, W ∈ RN ,70

τe
dV

dt
= −V + FS1[V]−MS2[W] + eIe + ξe(t)

τi
dW

dt
= −W + MS1[V]− FS2[W] + eIi + ξi(t) .

(1)

This formulation is reminiscent of many rate-based models discussed previously [28], where it is as-71
sumed that neuronal activity is asynchronous and synaptic response functions are of first order. The state72
variables V and W represent excitatory and inhibitory dendritic currents, respectively. The terms ξe,i73
represent respective stochastic inputs from various sources, such as ion channel fluctuations, stochas-74
tic input from other brain areas or external stimuli not directly accounted for in the model [29].75
More specifically, we assume noise ξe,i ∈ RN , constant input Ie,i with e = (1, . . . , 1)t. The con-76
nectivity matrices are defined by F, M ∈ RN×N while the nonlinear transfer function is given by77
S1,2[u] ∈ RN with (S1[u])n = H0S(un), (S2[u])n = S(un), H0 > 0 and the scalar transfer function78
S(u) > 0 ∀u ∈ R. Specifically, we will consider the transfer function S(u) = Θ(u) with the Heaviside79
function Θ(u) = 0 ∀u < 0,Θ(u) = 1 ∀u ≥ 0. In addition, the synaptic time scales are τe,i.80

81

The present work considers directed Erdös-Rényi networks (ERN) with connection probability density82
c = 0.95, i.e. both neuron populations exhibit intra-population and inter-population non-sparse random83
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connections. Let us assume F = AF0, M = AM0 and A is the non-symmetric adjacency matrix of the84
ERN for which (A)nm = 0 with probability 1− c and (A)nm = 1/cN with probability c.85
At first, let A = S + U with the symmetric matrix S = (A + At)/2, the antisymmetric matrix86
U = (A−At)/2 and the eigenvalues λA and λS of the matrixA and S, respectively. ThenRe(λA) = λS ,87
i.e. the real part of the eigenvalue spectrum in the directed (i.e. non-symmetric) and non-directed (i.e.88
symmetric) random matrix A and S is identical. Moreover, for non-directed ERNs with symmetric89
adjacency matrix andN →∞ its edge spectrum contains the maximum eigenvalue λ1 = 1 with eigenvector90
v1 = (1, 1, . . . , 1)t[30, 31, 32, 33] and the bulk spectrum has the maximum eigenvalue91

λ2 =
2σ
√
N

cN

=
2
√

1− c√
cN

(2)

with the corresponding Bernoulli distribution variance σ2 = c(1 − c). It is obvious that λ2 � λ1 and92
λ2 ≈ 0 for large mean degree cN . SinceRe(λA) = λS , the finite-size non-symmetric connectivity matrix93
F (M ) has a maximum eigenvalue λ1 ≈ F0 and λn>1 ≈ 0 (λ1 ≈M0, λn>1 ≈ 0). If c decreases, then λ294
increases, i.e. the spectral gap decreases, and this approximation does not hold anymore. The Appendix95
illustrates the limits of this approximation in numerical simulations.96
Figure 2(A) shows the single maximum eigenvalue λ1 ofA representing the edge spectrum and the other97
very small eigenvalues of the bulk spectrum. Hence, the matrix F has maximum eigenvalue F0 and the other98
eigenvalues vanish. The same holds for matrixM = M0A with a maximum eigenvalue M0. Figure 2(B)99
shows the real and imaginary part of the eigenvectors. The eigenvectors of the bulk spectrum (i > 1)100
have uniformly distributed elements in good accordance with theory of symmetric ER networks [34]. The101
eigenvector of the edge spectrum is Φ1 = (1, . . . , 1)t, see Figure 2(C).102

Moreover, we assume that each noise process at inhibitory neurons (ηi)n = ηin at network node n is103
Gaussian distributed with zero mean, noise intensity D2 and uncorrelated in time104

〈ξin(t)ξim(τ)〉 = 2D2δnmδ(t− τ) .

Conversely each noise process at excitatory neurons ξen belongs to a certain class Gm,m = 1, . . . ,M of M105
classes [23]. Noise processes in a specific class Gm, i.e. n ∈ Gm, share their mean ξ̄em and variances Dm

1 ,106
i.e.107

〈ξek(t)ξil (τ)〉 = 2Dm
1 δklδ(t− τ) , k, l ∈ Gm .

In the following, we assume two classes M = 2 with ξ̄e1 6= 0, D1
1 = D1 and ξ̄e2 = 0, D2

1 = 0, i.e. only108
a subset of nodes n ∈ G1 are stimulated. Hence we consider a partial stimulation at number of nodes109
N1 = |G1|.110

In biological neural systems, the input to a neural population is well-described by incoming spike trains111
that induce dendritic currents at synaptic receptors. According to renewal theory, neurons emit spike trains112
whose interspike interval obeys a Poisson distribution [35]. Then incoming spike trains at mean spike113
rate r induce random responses at excitatory synapses with time constant τin. This random process Iin(t)114
has the ensemble mean E[Iin] = winrτin and ensemble variance Var[Iin] = w2

inrτin/2 [36] assuming the115
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Figure 2. Eigenvalue spectrum of an Erdös-Rényi adjency matrixA under study and its eigenbasis.
(A) The plot shows the eigenvalues in the complex plane demonstrating a clear spectral gap between the
first eigenvalue λ1 and the other eigenvalues λn>1. (B) The panels show the real (top) and imaginary
(bottom) part of all unit-normalized eigenvectors for illustration. They appear to be random reflecting
the random network topology. (C) The normalized eigenvector Φ1 ≈ (1, . . . , 1)/

√
N with maximum

eigenvalue λ1 ≈ 1 plotted in complex plane together with the eigenvector Φ2 of the second largest
eigenvalue λ2 = 0.015 + i0.0006. Each dot corresponds to a complex-numbered vector entry in the
complex plane. This result confirms the choice Φ1 ≈ (1, . . . , 1) in Eqs. (9).

synaptic coupling weight win. Since a Poisson distribution converges to a Gaussian distribution for large116
enough mean, we implement this input current as a Gaussian random process with mean E[Iin] and variance117
Var[Iin] while ensuring the validity of this approximation by a large enough input firing rate λin. It is118
important to point out that for Poisson noise, in contrast to the zero-mean Gaussian noise, both mean and119
variance are proportional to the input firing rate.120

121
2.2 Conventional Mean-Field Analysis122

To compare mesoscopic neural population dynamics to macroscopic experimental findings, it is123
commonplace to describe the network activity by the mean population response, i.e. the mean-field dynam-124
ics [37, 38, 39]. A naive mean-field approach was performed in early neuroscience studies [40, 41, 42], in125
which one blindly computes the mean network activity to obtain126

τe
dE[V ]

dt
= −E[V ] + fS1[V]−mS2[W] + eIe

τi
dE[W ]

dt
= −E[W ] + mS1[V]− fS2[W] + eIi

(3)
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with the network average E[x] =
∑

k xk/N and (f)k =
∑

l Flk/N, (m)k =
∑

lMlk/N assuming127
zero-mean external noise with

∑
k(ξ

e,i)k = 0. In addition, one may assume identical network interactions128
with (f)k = f0/N =const, (m)k = m0/N =const and the simplifying but questionable linear assumption129

E[S1,2(x)] = S1,2(E[x]) . (4)

Combined, these assumptions lead to mean-field equations130

τe
dE[V ]

dt
= −E[V ] + f0S1[E[V ]]−m0S2[E[W ]]

+ eIe

τi
dE[W ]

dt
= −E[W ] +m0S1[E[V ]]− f0S2[E[W ]]

+ eIi

(5)

In this approximate description, additive noise does not affect the system dynamics.131
The assumption (4) is very strong and typically not valid. In a more reasonable ansatz132

E [S1,2(x)]

= E

[
S1,2(x0) +

∞∑
n=1

1

n!
S
(n)
1,2 (x− x0)n

]

= S1,2(x0) +
∞∑
n=1

1

n!
S
(n)
1,2E [(x− x0)n]

= F(E[x], E[x2], E[x3], . . .)

(6)

with S(n)
1,2 = ∂Sn1,2(x)/∂xn computed at an arbitrary point x = x0 and a function F1,2 ∈ R. Hence the133

dynamics of the mean-field E[V ] depends on the higher-order statistical orders E[V n] via the nonlinear134
function E [S1,2(V )]. This is called the closure problem that is solvable in specific cases only [43].135

Motivated by previous studies on stochastic bifurcations [44, 45, 46, 47, 48, 49, 50, 51, 52, 53], in which136
additive noise may tune the stability close to the bifurcation point, the present work shows how additive137
noise strongly impacts the nonlinear dynamics of the system for arbitrary noise intensity and away from138
the bifurcation. Previous ad-hoc studies have already used mean-field approaches [23, 54, 55] which139
circumvents the closure problem (6) through a different mean-field ansatz. These motivational studies left140
open a more rigorous derivation. This derivation will be given in the present work: presenting in more141
detail its power and its limits of validity.142

2.3 Equilibria, stability and quasi-cycles143

The dynamic topology of a model differential equation system may be described partially by the number144
and characteristics of its equilibria. In general, for the non-autonomous differential equation system145

ż = Az +N (z) + I(t)

with state variable z ∈ RN , the driving force I ∈ RN , the nonlinear vector N ∈ RN and the matrix146
A ∈ RN×N , it is insightful to consider the equilibria of the corresponding autonomous system z0 with147
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parameter description value

τe exc. synaptic time constant 5ms
τi inhib. synaptic time constant 20ms
F0 intra-population conn. weight 2.17
M0 inter-population conn. weight 3.87
c connection probability 0.95
N number of network nodes 200
Ie constant exc. input 1.1
Ii constant inhib. input 0.4
D2 inhib. noise variance 0.2
win Poisson input weight 2.1
τin synaptic time scale of input 5ms
∆t numerical integration step 0.5ms

Table 1. Parameter set of model (1).

ż = 0 yielding the implicit condition148

Az0 = −N (z0) .

The stability of an equilibrium z0 is given by the eigenvalue spectrum of the corresponding Jacobian149

J = A+ ∇N0

where (∇N0)ij = ∂Ni(z)/∂zj computed at z0. The eigenvalues {λk} of J can be written as λk = ak +150
i2πνk with the damping ak and the eigenfrequency νk. Asymptotically stable equilibria have <(λk) < 0,151
e.g. stable foci have ak < 0, νk ∈ R. Linear response theory tells that noise-driven linear systems, whose152
deterministic dynamics exhibit a stable focus, exhibit quasi-cycles with a spectral power peak close to153
the eigenfrequency, see e.g. [51, 56, 57]. The smaller the noise intensity, the closer is the spectral peak154
frequency to the eigenfrequency. Hence, the eigenfrequency νk provides a reasonable estimate of the155
quasi-cycle spectral peak.156

2.4 Numerical simulations157

The Langevin equations (1) have been integrated over time utilizing the Euler-Maruyama scheme [58].158
Table 1 presents the parameters used. In certain cases, the noise variance has been changed over time t159
according to160

D1(t) = Dmin +
Dmax −Dmin

T
t (7)

with the maximum integration time T and the maximum and minimum noise variance values Dmax and161
Dmin, respectively.162

163

2.5 Numerical spectral data analysis164

Since prominent oscillations of the network mean activity indicates synchronised activity in the population,165
we have computed the power spectrum of the network mean activity V̄ (t) =

∑N
n=1 Vn(t)/N employing166
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the Bartlett-Welch method with overlap rate 0.8. To gain a power spectrum with frequency resolution ∆f ,167
the Bartlett-Welch segments were chosen to the length 1/∆f and the time series had a duration of 5s for168
the zero-mean Gaussian noise and 8s for the Poisson noise stimulation.169

In addition to the power spectrum, the synchronisation between single neuron spike activity and the170
dendritic current reflects the degree of coherence in the system. To this end, we have computed the Spike171
Field Coherence (SFC) [59]. To estimate the SFC, we have chosen a time window of 5s for zero-mean172
Gaussian stimulation and 8s for Poisson stimulation and computed the spike-triggered average and power173
spectra in these time windows to compute the SFC for each frequency. Then we have averaged the SFC in174
the Θ− (4Hz-8Hz), α− (8Hz-12Hz), β− (12Hz-20Hz) and γ− (25Hz-60Hz) frequency band to gain an175
average SFC in the corresponding band . This standard measure estimates the coherence between spikes,176
that occur if H[Vn](t) = 1, and their corresponding dendritic currents Vn(t) at the same cell averaged177
over all cells in the excitatory population. Significant differences of SFC at different noise intensities are178
evaluated by an unpaired Welch t-test with α = 0.05.179

180

2.6 Information measures181

Coherence quantifies the degree of mutual behavior of different elements. Interestingly, recent studies of182
biological neural systems have shown that synchronisation and information content are related [60, 61].183
For instance, under general anaesthesia asynchronous cortical activity in conscious patients is accompanied184
by less stored information and much available information whereas synchronous cortical activity in185
unconscious patients exhibits more stored information and less available information [62, 63, 19, 64, 20].186
We are curious how much information is stored and available in coherence resonance described in the187
present work. The result may indicate a strong link between coherence and information content. To this end,188
we compute the amount of stored information in the excitatory population as the predictable information189
and the amount of available information as the population’s entropy, cf. [64].190

The predictable information in the excitatory population is computed as the Active Information Storage191
AIS [65, 66] utilizing the Gaussian Copula Mutual Information (GCMI) estimation [67]. Assuming a single192
time series Vi(t)193

AISi = MI(Vi(t); V
(k)
i∆ ), V

(k)
i∆ = (Vi(t−∆), Vi(t− 2∆), . . . Vi(t− k∆)), (8)

where MI is the mutual information [64, 68], k is the embedding dimension and ∆ is the embedding delay.194
The value AISi describes how much the dendritic current Vi(t) in excitatory neuron i is influenced by its195
past. To gain an estimate of stored information in the excitatory population, we evaluate the average stored196
information in the population and its variance197

AIS =
1

N

N∑
i=1

AISi

σ2AIS =
1

N − 1

N∑
i=1

(AISi − AIS)2 .

with N = 200. Significant AIS differences at different noise intensities are evaluated by an unpaired Welch198
t-test with α = 0.05.199
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Moreover, we compute the available information in the excitatory cortex of the dendritic current Vi(t) at200
excitatory neuron i as its entropy Hi utilizing the GCMI estimation. Its population average and variance201
reads202

H =
1

N

N∑
i=1

Hi

σ2H =
1

N

N∑
i=1

(Hi − H)2 .

and entropy differences at different noise intensities are evaluated statistically by an unpaired Welch t-test203
with α = 0.05.204

In subsequent sections, we have computed AIS and H for embedding dimension k ∈ [1; 60] and205
∆ ∈ {∆t, 2∆t, 5∆t} with k∆ = 60 and find consistent significance test results. Specifically, we have206
chosen ∆ = ∆t and k = 1 in the shown results.207
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3 RESULTS
The subsequent section shows the derivation of the mean-field equations, before they are applied to describe208
network dynamics for two types of partial stimulation.209

3.1 Mean-field description210

To derive the final equations, we first introduce the idea of a mode projection before deriving the211
mean-field equations as a projection on the principal mode. The extension to partial stimuli extends the212
description.213

Mode decomposition214

In the model (1), the system activity V ∈ U in space U may be expanded into a mode basis {Φe
n}, n =215

1, . . . , N, Φe
n ∈ CN ,216

V =
N∑
n=1

anΦ
e
n

with complex mode amplitude an ∈ C and a biorthogonal basis {Ψe
n}, Ψe

n ∈ CN and217

Ψe†
k Φe

n = δkn , k, n = 1, . . . , N .

Here, † denotes the transpose complex conjugate. The same holds for W with the basis {Φi
n}, n =218

1, . . . , N, Φi
n ∈ CN ,219

W =
N∑
n=1

bnΦ
i
n

with the complex mode amplitude bn ∈ C and the biorthogonal basis {Ψi
n}, Ψi

n ∈ CN and220

Ψi†
k Φi

n = δkn , k, n = 1, . . . , N .

Projecting V, W onto the respective basis {Ψe
k} and {Ψi

k}, we obtain amplitude equations221

τe
dak
dt

= −ak + Ψe†
k FS1[V]−Ψe†

k MS2[W]

+Ie + Ψe†
k ξ

e(t)

τi
dbk
dt

= −bk + Ψi†
k MS1[V]−Ψi†

k FS2[W]

+Ii + Ψi†
k ξ

i(t) .

Now let us assume that Ψe
k,Φ

e
k are eigenvectors of F with eigenvalue λek ∈ C222

FΦe
k = λekΦ

e
k

Ψe†
k F = λekΨ

e†
k
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and Ψi
k,Φ

i
k are eigenvectors ofM with eigenvalue λikC223

MΦi
k = λikΦ

i
k

Ψi†
k M = λikΨ

i†
k .

Then224

λe1 = F0 , Φe
1 = e,Ψe

1 = e/N

λen ≈ 0, n = 2, . . . , N ,
(9)

cf. section 2.1, where we have utilized the bi-orthogonality of the basis. Equivalently,225

λi1 = M0 , Φi
1 = e, Ψi

1 = e/N

λin ≈ 0, n = 2, . . . , N .

We observe that Ψi†
1 = Ψe†

1 and Φe
1 = Φi

1.226
The vector space U can be decomposed into complement subspaces Z, Z⊥ with U = Z ⊕ Z⊥ and227
Ψe

1, Ψi
1 ∈ Z . Then Ψe

k>1, Ψi
k>1 ∈ Z⊥. Each vector Ψi

k>1 can be described in the basis Ψe
k>1 in Z⊥ and228

one gains229

Ψi†
k>1F =

N∑
n=2

cnΨ
e†
n F

=
N∑
n=2

cnλ
e
nΨ

e†
n

= 0

due to (9) and equivalently230

Ψe†
k>1M =

N∑
n=2

cnΨ
i†
nM

=
N∑
n=2

cnλ
i
nΨ

i†
n

= 0
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with some coefficients cn ∈ C. This yields231

τe
da1
dt

= −a1 +
λe1
N
etS1[V ]− λi1

N
etS2[W]

+Ie +me(t) (10)

τi
db1
dt

= −b1 +
λi1
N
etS1[V]− λe1

N
etS2[W]

+Ii +mi(t) (11)

τe
dak
dt

= −ak + Ψe†
k ξ

e(t) , k = 2, . . . , N (12)

τi
dbk
dt

= −bk + Ψi†
k ξ

i(t) , k = 2, . . . , N (13)

with me,i(t) = etξe,i(t)/N .232

The mean-field equations233

Equations (12), (13) describe an Ornstein-Uhlenbeck process with solution234

ak(t) =

∫ t

−∞
e−(t−τ)/τeΨe†

k ξ
e(τ)dτ

bk(t) =

∫ t

−∞
e−(t−τ)/τiΨi†

k ξ
i(τ)dτ

(14)

for t→∞. In Eqs. (10), (11) the terms V , W can be written as235

V =
N∑
n=1

an(t)Φe
n = a1Φ

e
1 +

N∑
n=2

an(t)Φe
n

W =
N∑
n=1

bn(t)Φi
n = b1Φ

i
1 +

N∑
n=2

bn(t)Φi
n .

(15)

Inserting expressions in Eqs. (14) into these expressions leads to236

N∑
n=2

an(t)Φe
n =

∫ t

−∞
e−(t−τ)/τe

N∑
n=2

Φe
nΨ

e†
n ξ(τ)dτ.

N∑
n=2

bn(t)Φi
n =

∫ t

−∞
e−(t−τ)/τi

N∑
n=2

Φi
nΨ

i†
n ξ(τ)dτ.

(16)

By virtue of the completeness of the basis, it is237

N∑
n=2

Φe
nΨ

e†
n = I−Φe

1Ψ
e†
1

N∑
n=2

Φi
nΨ

i†
n = I−Φi

1Ψ
i†
1
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with the unity matrix I ∈ RN×N . Then inserting these identities into (16)238

N∑
n=2

an(t)Φe
n =

∫ t

−∞
e−(t−τ)/τeξe(τ)dτ

−
∫ t

−∞
e−(t−τ)/τeΦe

1me(τ)dτ

N∑
n=2

bn(t)Φi
n =

∫ t

−∞
e−(t−τ)/τiξi(τ)dτ

−
∫ t

−∞
e−(t−τ)/τiΦi

1mi(τ)dτ .

(17)

We define ηe,i(t) = ξe,i(t) − ξe,i0 , etηe,i(t) = Nρe,i(t) with ρe,i ∼ N (0, D1,2/N) and temporally239

constants ξe,i0 , i.e. ρe,i are finite size fluctuations with variance D1,2/N and ρe,i → 0 for N →∞. With240
the definitions241

we,i(t) =

∫ t

−∞
e−(t−τ)/τe,iηe,i(τ)dτ (18)

se,i(t) = τe(ξ
e,i
0 − eξ̄0

e,i
)

−e
∫ t

−∞
e−(t−τ)/τe,iρe,i(τ)dτ (19)

with ξ̄e,i0 =
∑N

n=1 ξ
e,i
0,n/N and inserting Eq. (17) into Eqs. (15)242

V (t) = a1(t)e+ se(t) +we(t)

W (t) = b1(t)e+ si(t) +wi(t)
(20)

and the mean-field equations can the be written as243

τe
da1
dt

= −a1 +
F0

N
etS1 [a1(t)e+ se(t) +we(t)]

− M0

N
etS2 [b1(t)e+ si(t) +wi(t)]

+ Ie + ξ̄e0 + ρe(t)

τi
db1
dt

= −b1 +
M0

N
etS1 [a1(t)e+ se(t) +we(t)]

− F0

N
etS2 [b1(t)e+ si(t) +wi(t)]

+ Ii + ξ̄i0 + ρi(t)

(21)

By virtue of the finite-size fluctuations over time ρe,i(t) the system’s mean-field obeys stochastic dynamics.244
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Equations (14) describe an Ornstein-Uhlenbeck process of mode k and thuswe,i(t) describes a multivari-245
ate Ornstein-Uhlenbeck process over time. In addition,we,i(t) is stationary over time and, since all modes246
k share identical properties, it is stationary over the network. Consequently, the process is ergodic and the247
stationary probability density function p(we,i) of we,i can be computed over the network yielding248

1

N
etS1 [xe+w] =

1

N

N∑
n=1

S[x+ wn]

≈
∫ ∞
−∞

S(x+ w)pe(w)dw (22)

= G1(x),

where the approximation is good for large N . Specifically, for Gaussian zero-mean uncorrelated noise ξe249
with variance D [69]250

pe(w) =
1√
2πσ

e−w
2/2σ2 , σ2 = D/τe .

Similarly,251

1

N
etS2 [xe+w] ≈

∫ ∞
−∞

S(x+ w)pi(w)dw

= G2(x) (23)

Moreover, if the mean input is ξe,i0 = αe,ie and N →∞, then se,i = 0 and ρe,i = 0 and consequently252
the mean-field equation253

τe
da1
dt

= −a1 + F0G1(a1)−M0G2(b1) + Ie + αe

τi
db1
dt

= −b1 +M0G1(a1)− F0G2(b1) + Ii + αi
(24)

obeys deterministic dynamics. However, the above formulation depends implicitly on the additive noise254
through the convolution of the transfer function.255

q=1.0 q=0.5

0 10 20-10 0 10 20-10

0.3

0.50.5

0.04

x x

G
(x
)

G
(x
)

p
(x
)

p
(x
)

0

0 0

0

Figure 3. The probability density function p (26) and the resulting transfer function G (27). For
q = 1.0 D1/τe = 0.15 and for q = 0.5 D1/τe = 0.5.
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Partial stimuli256

Each noise baseline stimulus at inhibitory neurons (ξi)n = ξin at network node n is Gaussian distributed257
with zero mean and variance D2 (cf. section 2.1). Then ξ̄i0 = 0, si(t) = ρ̄i(t) ∼ N (0, D2/τiN) and,258
considering Eq. (18), the corresponding probability density function in Eq. (23) is pi(w) = N (0, D2/τi).259
Here N (0, σ2) denotes a normal distribution with zero mean and variance σ2.260
Additionally, stochastic stimuli driving excitatory neurons in class G1 are ergodic (cf. section 2.1). Then261
the mean and variance of class G1 is262

ξ̄e1 =
1

N1

∑
n∈G1

ξen

D1 =
1

N1

∑
n∈G1

(ξen)2 .

(25)

Using Eq. (18) and Eq. (19) and assuming N →∞, then263

we(t) + se(t) =

∫ t

−∞
e−(t−τ)/τe(ηe(τ) + ∆ξ)dτ

whose probability density function pe(w) is [23]264

pe(w) =
2∑

m=1

qmN (ξ̄em, D
m
1 /τe)

= qN (ξ̄e1, D1/τe)[w] + (1− q)δ(w)

(26)

with q = N1/N , q1 = q, q2 = 1− q. Here, ∆ξ = (1− q, 1− q, . . . ,−q,−q)ξe1 with terms 1− q of number265
N1 and assuming that the nodes n = 1, . . . , N1 receive stochastic input. In addition the constant input in266
the mean-field equation is ξ̄e0 = qξe1.267

Then, utilizing Eqs. (22), (23) and specifying S to a step function (cf. section 2.1), the mean-field transfer268
functions in Eq. (24) read269

G1(a1) =
H0q

2

[
1− erf

(
− a1 − ξe1√

2D1/τe

)]
+ (1− q)Θ(a1)

G2(b1) =
1

2

[
1− erf

(
− b1√

2D2/τi

)]
.

(27)

Here, Θ(·) denotes the Heaviside step function. Figure 3 shows examples for pe and G1.270
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Figure 4. Enhanced zero-mean Gaussian noise induces phase transitions in spatiotemporal dynam-
ics. The panels show the network activity V(t) according to Eqs. (1) with temporally increasing noise
variances D1/τe for different stimulus ratios q.

Essentially, the mean-field obeys271

τe
da1
dt

= −a1 + F0G1(a1)−M0G2(b1) + Ie

+ ρe(t)

τi
db1
dt

= −b1 +M0G1(a1)− F0G2(b1) + Ii

+ ρi(t)

(28)

utilizing (27).272

3.2 Zero-mean Gaussian partial stimulation273

At first, we consider the case of a partial noise stimulation with zero network mean, i.e. etξ̄e = 0 and274
se(t) ∼ N (0, D1/τeN1) and ξe1 = ξ̄e0 = 0. Then D1 parametrizes the noise intensity only. Figure 4 shows275
the network evolution of V (t) for increasing noise intensities, cf. Eqs. (7). Starting from a high activity276
state, increasing the noise intensity yields a phase transition of the system to a network state at lower277
activity. This occurs for global (q = 1.0) and partial stimulation (q = 0.8, q = 0.6 and q = 0.5). Please278
re-call that, for instance, q = 0.5 reflects a stimulation where 50% of the network nodes are stimulated.279
These stimulated network nodes have been randomly chosen from a uniform distribution.280

Figure 5 shows the respective power spectra of the network mean V (t), which provides insights about the281
system’s synchronisation at low and high noise intensity. High noise intensity induces strong oscillations282
in the γ-frequency band, whereas the low noise intensity states does not - in contrast, this state shows a283
decaying low-pass power spectral density that is expected from a non-oscillatory stochastic process.284
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Stronger power spectral density at a given frequency is the signature of a coherent network, as seen in285
Fig. 5. Since the neurons in our network model emit spikes and exhibit synaptic input currents, noise-286
induced coherence may be visible in the coherence between spiking and synaptic activity as well. In fact,287
in Fig. 6(A) one observes a significant strongly enhanced spike-field coherence at high noise intensities for288
both global and partial stimulation. Hence, in sum the system exhibits coherence resonance in the sense289
that strong noise induces coherent oscillations that are not present at low noise intensities.290

Coherence resonance is supposed to be linked to information processing in neural systems. Thus291
we investigate the relationship between stimulus noise intensity and information in the system across292
frequency bands. Figure 6(B) shows how much information is stored in the networks (AIS) and how293
much information is available (H). We observe that significantly more information is stored (AIS) and294
available (H) at high noise intensities for global stimulation q = 1.0, whereas high noise partial stimulation295
with q = 0.8 diminishes the stored active information and available information significantly. For more296
sparse stimulation with q = 0.6 the finding in information measures is heterogeneous and no interpretation297
consistent with the results for larger q is possible.298

To understand this noise-induced coherence, we take a closer look at the dynamic topology of the mean-299
field equations (28). Their equilibria (cf. section 2.3) for negligible finite-size fluctuations ρe,i(t) << 1300
are shown in Fig. 7 together with simulated mean-field activity V̄ (t) for illustrative purposes. Low noise301
intensity induces a bistable regime with a stable node as upper equilibrium and a focus as lower equilibrium.302
For global stimulation (q = 1.0), this lower focus is unstable at very low noise intensity and stable at303
larger noise intensities. Moreover, the lower equilibrium is a stable focus at all noise intensities for partial304
(q < 1.0) stimulation. The center branch is always a saddle node. For larger noise intensity, the upper305
equilibrium branch merges with the center branch via a saddle-node bifurcation and the lower stable focus306
is preserved as noise is further increased. This finding remains valid for both global (q = 1.0) and partial307
(q < 1.0) stimulation as shown in Fig. 7 for q ranging within the interval 0.5 ≤ q ≤ 1.0. One can see308
that for smaller q (i.e. less excitatory neurons are stimulated) the bifurcation point moves to larger noise309
intensities. Hence thinning out the stimulation of excitatory neurons increases the noise intensity interval at310
which bistability occurs. Moreover, we point out that the bifurcation points predicted by the mean-field311
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Figure 5. Enhanced noise yields strong power of the global mode V̄ (t) in the γ-frequency range.
The panels show the power spectra of V̄ for the stimulus ratios q = 0.5 (D1/τe = 0.35 (black) and
D1/τe = 0.55 (red)), q = 0.6 (D1/τe = 0.25 (black) and D1/τe = 0.33 (red)), q = 0.8 (D1/τe = 0.20
(black) and D1/τe = 0.25 (red)) and q = 1.0 (D1/τe = 0.15 (black) and D1/τe = 0.20 (red)). Power
spectra at lower noise intensities are computed on the respective upper branch of the bistable system.
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description and shown in Fig. 7 show very good accordance to the values of D1/τe in Fig. 4, where the312
system transitions from the upper to the lower state.313

The mean-field solution involves finite-size fluctuations that affect the solutions principal oscillation314
frequency and magnitude. By construction, these mean-field solutions converge to the network average for315
increasing network size N . Figure 8 compares the time series of mean-field solutions and network averages316
for increasing network sizes and affirms the convergence and thus the validity of the mean-field description.317
It is interesting to note that, besides the mean-field dynamics, the network’s dynamical properties change318
with increasing N as well. Figure 8 provides the principal oscillation frequencies for both solutions for319
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the given network size: the network speeds up with increasing size and its frequency converges to the320
mean-field principal frequency that remains about the same value. However, we point out that the mean-321
field solution remains still slightly different even for very large N since it implies the approximation of322
negligible connectivity matrix bulk spectra.323
Figure 9 affirms this finding by comparing simulation trials of the transitions from the non-oscillatory to324
the oscillatory coherent state. We observe that the transition values of D1/τe of the network mean and325
the mean-field are closer to each other for larger network size. The mean-field description (28) with (27)326
assumes vanishing finite-size fluctuations and these are reduced for larger network size N , i.e. the effective327
noise level (the finite-size fluctuations) is reduced and thus deterministic mean-field and stochastic network328
activity transition are closer to each other.329

The frequency range of oscillations observed for steady states located within the lower branch (see330
Fig. 7) is a consequence of both network connectivity and neuronal properties - and is further tuned331
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Figure 8. Comparison of network average and mean-field solution for different network sizes. The
network average (black) and mean-field solutions (red) resembles more and more the larger the network
of size N . This holds for the magnitude and frequency (provided in panels) of both solutions. The initial
value of the mean-field activity has been chosen to the initial value of the network average. Simulations
consider zero-mean Gaussian simulations with q = 1 and D1/τe = 0.2.
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size N . This is explained by reduced finite-size fluctuations for larger networks. The initial value of the
mean-field activity has been chosen to the initial value of the network average. Simulations consider
zero-mean Gaussian simulations with q = 1.
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by additive noise. Figure 10 shows the maximum eigenvalue real part for the upper (A) and the lower332
branch (B, top opanel) and the eigenfrequency (cf. subsection (2.3)) of the equilibrium at the lower branch333
(B, lowel panel). We observe that increasing noise intensity decreases slightly the eigenfrequency in the334
γ−frequency range and decreases the negative maximum eigenvalue real part. This means that additive335
noise increases the damping of the response of the system to perturbations - including noise. This increased336
noise-induced damping leads to magnitude changes in quasi-cycle solutions - which is manifested in337
the power spectral density distribution. Indeed, the power spectral density distribution widens as noise338
intensity increases, leading to the spectra as seen in Fig. 10(C). This broad spectral power distribution is339
the signature of suppressed coherence. As a corollary, our analysis demonstrates that coherent band-limited340
oscillations emerge for intermediate noise intensities only. This is a known feature of coherence resonance.341
For additional illustration, Fig. 1 shows the typical bell-shape of coherence (here spike-field coherence) in342
different frequency bands. We observe that the coherence effect is strongest in the γ−frequency range.343

3.3 Poisson partial stimulation344

Synaptic receptors respond to afferent Poisson-distributed input spike trains, whose properties differ345
substantially from the Gaussian noise processes we considered so far. To generalize our results to more346
physiological stimuli statistics, we considered a partial Poisson noise stimulation with dependent mean and347
variance. Specifically, afferent spike trains at spike rate rin induce random responses at excitatory synapses348
with time constant τin and synaptic weight win. Then349

se(t) = τe∆ξ + ρ̄e(t)

ξe1 = winrinτin

D1 = winξ0/2

ξ̄e0 = qξe1

and finite-size fluctuations ρ̄e(t) ∼ N (0, D1/N1). Figure 11(A) illustrates the temporal network activity350
for a low and high stimuli firing rates rin. Increasing rin induces a transition from a high-activity to a351
low activity state for both global and partial stimulation - similarly as in the Gaussian noise case. The352
high-activity state is non-oscillatory while the low-activity state is oscillatory, with frequency found in353
the γ−frequency range (Fig. 11(B)). In addition, the low-activity state induced by high Poisson input rate354
exhibits a strong spike-field coherence in contrast to the high-activity state (Fig. 11(C)). Moreover, high355
stimulation noise increases the stored information and the available information for global stimulation with356
q = 1.0, cf. Fig. 11(D). Information measures for partial stimulation (q = 0.6) are heterogeneous and an357
interpretation of results for AIS and H is difficult.358

These results can be understood by taking a closer look at the dynamic topology of the system. Figure 12359
reveals that, for global stimulation (q = 1.0), the system has two unstable equilibria and one stable360
equilibrium at lower noise intensities. The top branch is a stable node, the center branch a saddle node361
and the lower branch an unstable focus. There is a very small noise intensity interval at which the top and362
bottom branch are both stable. Increasing the Poisson stimuli firing rate leads to a sudden suppression363
of high-activity equilibria through a saddle-node bifurcation. Consequently, the transition observed in364
Fig. 11(A) is a jump from the stable node on the top bifurcation branch to the stable focus on the bottom365
branch similar to the effect shown in Fig. 4. For partial stimulation (q = 0.6), the lower branch exhibits366
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Figure 10. Eigenvalues at the top and bottom branch in Fig. 7 and corresponding power spectra. (A)
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r + i2πν (top panel) and the corresponding eigenfrequency frequency ν. The numbers denote the values
of the stimulus ratio q in all panels. (C) Power spectra of V (t) about the lower branch for q = 0.6 for
different noise intensities D1/τe.

a stable focus for much lower input firing rates. The saddle-node bifurcation is delayed, leading to an367
increased noise intensity interval of bistability. Hence, the system exhibits coherence resonance for Poisson368
noise as well.369

4 DISCUSSION
This study presents a rigorous derivation of mean-field equations for two nonlinearly coupled non-sparse370
Erdös-Rényi networks(ERN) that are stimulated by additive noise. This mean field representation is made371
possible through spectral separation: the eigenspectrum of ERN networks exhibits a large spectral gap372
between the eigenvalue with largest real part and the rest of the spectrum. We show that the projection of373
the network dynamics onto the leading eigenmode represents the mean-field. Its dynamics are shaped by374
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eigenmodes located in the complement subspace spanned by non-leading eigenmodes. In our model, the375
subspace dynamics are governed and influenced by additive noise statistics and they obey an Ornstein-376
Uhlenbeck process.377

We extended the mean-field derivation to various types of additive noise, such as global and partial noise378
stimuli (i.e. when only a fraction of the excitatory neurons are stimulated) and for both zero-mean Gaussian379
and Poisson-like noise. Collectively, our analysis shows that additive noise induces a phase transition from380
a non-oscillatory state to an oscillatory coherent state. Such noise-induced coherence is known as coherence381
resonance (CR). This phase transition has been shown to occur not only for Gaussian zero-mean noise but382
also for Poisson-like noise. To the best of our knowledge, CR has not been found yet for such Poisson-like383
noise. The general underlying mechanism is a noise-induced multiplicative impact of additive stimulation384
via the nonlinear coupling of different modes. This multiplicative effect modifies the net transfer function385
of the network and thus enlarges its dynamical repertoire. This resembles the impact of additive noise in386
stochastic bifurcations [51, 52, 70, 71]387

Embedding into literature388

Our results build on previous studies from the authors [23, 54, 55] to provide a rigorous derivation of the389
mean-field description, whereas previous work have motivated heuristically the mean-field reduction and,390
e.g., failed to show in detail whether the mean-field equation is the only solution for any given additive391
stimuli. Several other previous studies have presented mean-field descriptions in stochastically driven392
systems. For instance, Bressloff et al. [28] have derived rigorously mean-field equations for stochastic393
neural fields considering, inter alia, finite-element fluctuations by utilizing a Master equation and van394
Kampen’s volume expansion approach. We note here that we also took into account finite-size fluctuations395
resulting from a non-negligible variance of statistical mean values. Moreover, [28] do not specify the396
network type and results in a rather opaque description, whereas we assume an ERN and thus exploit its397
unique eigenspectrum structure. This yields directly to a mean-field description, whose dependence of398
stochastic forces is obvious and avoids its implicit closure problem known from mean-field theories [43].399
This is possible since the ERN considered share many properties with Ising models, that are known to400
permit an analytically treatable solution of the closure problem, see e.g. [72].401

Moreover, several technical analysis steps in the present work have been applied in previous studies in402
a similar context. In a work on stochastic neural mean-field theory, Faugeras and colleagues [27] have403
assumed that the system activity fluctuations obey a normal probability distribution and have derived an404
effective nonlinear interaction in their Proposition 2.1 similar to our Eq. (22). Further, the authors have405
shown how the fluctuation correlation function, i.e. the system activity’s second moment, determine the406
mean-field dynamics. This is in line with our result (22) showing how the mean and variance of the additive407
noise tunes the system’s stability. However, the authors have not considered in detail the random nature408
of the system connectivity, whereas we have worked out the interaction of external stimulation and the409
ERN. This interaction yields directly the mean-field and its dependence of the external stimulus that is410
not present in [27]. Moreover, the present work also shows how the mean-field fluctuations affect the411
mean-field dynamics by deriving the fluctuation’s probability density function that describes all higher412
moments.413

Noise-induced synchronization has been found recently in a system of stochastically-driven linearly414
coupled FitzHugh-Nagumo neurons by Touboul and colleagues [73]. The authors have found a minimum415
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Figure 11. Poisson noise induces transitions from a non-oscillatory to an oscillatory state for both
global and partial stimulation. (A) Network activity Vn(t) for low input firing rate (r = 0.04 for q = 1.0
and r = 0.09 for q = 0.6) and high input firing rate (r = 0.14 for q = 1.0 and r = 0.19 for q = 0.6). For
the low (high) input rate the system evolves about an upper (lower) state. (B) Power spectra of the network
mean V̄ (t) showing γ−activity for the large input rate. (C) The high input firing rate (grey-colored) induces
a state of large spike-field coherence compared to the state for low input firing rate (black-colored) for both
global and partial stimulation (p < 0.01). (D) For global stimulation (q = 1.0), high input firing induces a
state of significantly enhanced stored active information (AIS) and available information (H). This is not
consistent to results for partial stimulation (q = 0.6). Here is p < 0.01.

ratio of activated neurons that are necessary to induce global oscillatory synchronization, i.e. CR in the416
sense presented in our work. This question has been considered in the present work as well by asking how417
the mean-field dynamics, and thus how noise-induced synchronization, changes when modifying the ratio418
of stimulated excitatory neurons q while retaining the stimulation of inhibitory neurons. We find that global419
stimulation, i.e. stimulation of all excitatory neurons, yields a finite critical noise intensity below which the420
system is bistable and exhibits CR. Partial stimulation shifts this critical noise intensity to larger values and421
enlarges the bistability parameter space - and thus promotes CR.422

Several previous studies of mean-field dynamics in neural systems have applied the master equation423
formalism [74, 75, 76]. This works nicely in completely irregular networks and the asynchronous activity424
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Figure 12. Equilibria of the mean-field V̄ (t) for the Poisson partial stimulation. For global stimulation
q = 1.0, the system is always monostable with three equilibria at low input firing rates and a single
equilibrium at large input firing rates. Increasing the input firing rate from low to large firing rates, the
system jumps from the upper stationary state (stable node) to a stable focus on the lower stationary state via
a saddle-node bifurcation. For partial stimulation q = 0.6, the system is monostable with three equilibria at
low input firing rates. For larger input rates, the system is bistable and passes a saddle-node bifurcation
inducing a transition from a stable node to an stable focus at enhanced input firing rate r. Solid (dashed)
lines mark stable (unstable) states, black- and blue-colored lines denote equilibria for global and partial
stimulation, respectively. The bifurcation diagram of the mean-field W̄ (t) is equivalent.

regime and has been applied successfully to neural populations considering biological neuron models [77,425
78, 79, 80]. However, the analysis of more regular networks will be very difficult to develop with the426
Master equation since the implicit integration over system states would be more complex. Conversely, our427
presented approach may consider regular structures by a corresponding matrix eigenvalue decomposition.428

At last, we mention the relation to the Master stability function [81, 82]. This function describes the429
stability of identical synchronisation of complex networks in a synchronisation manifold and this manifold430
corresponds to the mean-field in our study. Although the Master stability function has been proven to be431
powerful, to the best of our knowledge it does not allow to reveal coherence resonance as the current work.432

Limits and outlook433

The present work proposes to describe mean-field dynamics in a topological network by projection434
onto the networks eigenmodes. This works well for non-sparse random ERN with large connectivity435
probability. This network does not exhibit a spatial structure. However, less connected ERN networks show436
different dynamics, cf. the Appendix. Moreover, biological networks are not purely random but may exhibit437
distance-dependent synaptic weights [83] or spatial clusters [84]. Our specific analysis applies for networks438
with a large spectral gap in their eigenspectra and it might fail for biological networks with smaller spectral439
gaps (as shown in the Appendix). Future work will attempt to utilize the presented approach to derive440
mean-field dynamics for heterogeneous networks that exhibit a smaller spectral gap, such as scale-free441
networks [84].442

Moreover, the single neuron model in the present work assumes a simple static threshold firing dynamics443
(McCullough-Pitts neuron) while neglecting somatic dynamics as described by Hodgkin-Huxley type444
models or the widely-used FitzHugh-Nagumo model [11, 73]. Future work will aim at reinforcing the445
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biological relevance of neurons coupled through ERN. This will be possible by extending the trivial transfer446
function from a step function to sigmoidal shapes for type I or type II neurons [85, 86, 76]447

Our results show that noise-induced CR emerges in the γ−frequency range. This frequency band is448
thought to play an important role in visual information processing [13, 14, 15, 16, 17]. Experimental449
studies have shown that the degree of this γ-synchronization in primary cortical areas may be modulated450
by attention [87, 88, 59, 89]. Since attention is known to affect the ARAS activity [90] and specifically the451
brain stem as part of the ARAS [91] and ARAS, in turn, provides input to the cortex [92]. We conclude452
that it is possible that attention modulates the cortical input activity, i.e. the Poisson firing rate in our model.453
In this picture, attention-modulated enhanced ARAS activity induces γ−coherence and may enhance454
stored information [93], as shown in Figs. 6 and 11. Future more detailed brain models including the455
cortico-thalamic feedback and cortical interactions [57, 21] will provide further evidence whether coherence456
resonance is present in visual processing.457

Frontiers 25



Hutt et al. Coherence resonance by partial stimulation

REFERENCES

[1] Pikovsky A, Rosenblum M, Kurths J. Synchronization: A universal concept in nonlinear sciences458
(Cambridge University Press) (2001).459

[2] Singer W. The brain as a self-organising system. Eur. Arch. Psychiatry Neurol. Sci. 236 (1986) 4–9.460
[3] Witthaut D, Wimberger S, Burioni R, Timme M. Classical synchronization indicates persistent461

entanglement in isolated quantum systems. Nat. Commun. 8 (2017) 14829.462
[4] Hutt A, Haken H, editors. Synergetics (Springer-Verlag, New York) (2020).463
[5] Mompo E, Ruiz-Garcia M, Carretero M, Grahn H, Zhang Y, Bonilla L. Coherence resonance and464

stochastic resonance in an excitable semiconductor superlattice. Phys. Rev. Lett. 121 (2018) 086805.465
[6] Lee C, Choi W, Han JH, Strano M. Coherence resonance in a single-walled carbon nanotube ion466

channel. Science 329 (2010) 1320–1324. doi:10.1126/science.1193383.467
[7] Gu H, Yang M, Li L, Liu Z, Ren W. Experimental observation of the stochastic bursting caused by468

coherence resonance in a neural pacemaker. Neuroreport 13 (2002) 1657–1660.469
[8] Ratas I, Pyragas K. Noise-induced macroscopic oscillations in a network of synaptically coupled470

quadratic integrate-and-fire neurons. Phys. Rev. E 100 (2019) 052211.471
[9] Pikovsky A, Kurths J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78472

(1997) 775–778.473
[10] Gang H, Ditzinger T, Ning C, Haken H. Stochastic resonance without external periodic force. Phys.474

Rev. Lett. 71 (1993) 807–810.475
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[33] Füredi Z, Komlos J. The eigenvalues of random symmetric matrices. Combinatorica 1 (1981)523
233–241.524

[34] O’Rourke S, Vu V, Wang K. Eigenvectors of random matrices: A survey. Journal of Combinatorial525
Theory, Series A 144 (2016) 361–442. doi:https://doi.org/10.1016/j.jcta.2016.06.008. Fifty Years of526
the Journal of Combinatorial Theory.527

[35] Koch C. Biophysics of Computation (Oxford University Press, Oxford) (1999).528
[36] Ross S. Stochastic processes (Probability and Mathemati- cal Statistics) (Wiley) (1982).529
[37] Wright J, Kydd R. The electroencephaloggram and cortical neural networks. Network 3 (1992)530

341–362.531
[38] Nunez P. Toward a quantitative description of large-scale neocortical dynamic function and EEG.532

Behav. Brain Sci. 23 (2000) 371–437.533
[39] Nunez P, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG (Oxford University534

Press, New York - Oxford) (2006).535
[40] Wilson H, Cowan J. Excitatory and inhibitory interactions in localized populations of model neurons.536

Biophys. J. 12 (1972) 1–24.537
[41] Gerstner W, Kistler W. Spiking Neuron Models (Cambridge University Press, Cambridge) (2002).538
[42] Bressloff PC, Coombes S. Physics of the extended neuron. Int. J. Mod. Phys. B 11 (1997) 2343–2392.539
[43] Kuehn C. Moment-closure - a brief review. Schöll E, Klapp S, Hövel P, editors, Control540
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