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Abstract—The generation of speech, and more generally com-
plex animal vocalizations, by artificial systems is a difficult
problem. Generative Adversarial Networks (GANs) have shown
very good abilities for generating images, and more recently
sounds. While current GANs have high-dimensional latent spaces,
complex vocalizations could in principle be generated through
a low-dimensional latent space, easing the visualization and
evaluation of latent representations. In this study, we aim to test
the ability of a previously developed GAN, called WaveGAN,
to reproduce canary syllables while drastically reducing the
latent space dimension. We trained WaveGAN on a large dataset
of canary syllables (16000 renditions of 16 different syllable
types) and varied the latent space dimensions from 1 to 6. The
sounds produced by the generator are evaluated using a RNN-
based classifier. This quantitative evaluation is paired with a
qualitative evaluation of the GAN productions across training
epochs and latent dimensions. Altogether, our results show that
a 3-dimensional latent space is enough to produce all syllable
types in the repertoire with a quality often indistinguishable
from real canary vocalizations. Importantly, we show that the
3-dimensional GAN generalizes by interpolating between the
various syllable types. We rely on UMAP [1] to qualitatively show
the similarities between training and generated data, and between
the generated syllables and the interpolations produced. We
discuss how our study may provide tools to train simple models
of vocal production and/or learning. Indeed, while the RNN-
based classifier provides a biologically realistic representation
of the auditory network processing vocalizations, the small
dimensional GAN may be used for the production of complex
vocal repertoires.

Index Terms—Generative Adversarial Networks, Reservoir
Computing, sound generation, birdsong, canary, latent space,
low-dimensional.

I. INTRODUCTION

The acoustic variety of speech sounds across speakers,
rates and contexts makes speech composition difficult

to apprehend. Indeed, when different speakers produce the
same phonem, the acoustics (i.e. formant frequencies) vary [2],
making speech highly variable. Faster speech acoustics differ
from slower speech acoustics, and contexts variations can
determine a change in the acoustic features [3]. Behavioral
and neuroanatomical similarities between songbirds and hu-
mans [4][5] make songbirds a particularly tractable model
for a reduced version of the vocal learning process in hu-
mans, enabling to test basic mechanistic hypotheses and to
probe the underlying neural substrate [6]. Among the many
songbird species, canaries have a large repertoire and their
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songs are characterized by a complex syntax with long-
time dependencies [7]. These properties make canary songs a
reasonable middle ground between human and songbirds with
stereotypical songs (like zebra finches) to study vocal learning
and production.

The generation and classification of vocalizations are key
points to build models of vocal learning (for speech or bird-
song). Complex vocalizations (like human words or sentences)
are made of sequences of smaller canonical vocal units (such
as phonemes). Focusing on the generation of such vocal
units allows to concentrate on the faithful reproduction of
sounds, while allowing to later combine them to generate
complex vocalizations. The generated vocal units must then be
classified to be compared to recorded vocal units in order to
evaluate the generation process. Once classified, the generated
vocal units may undergo (1) a quantitative evaluation, e.g. to
compare different generators, and (2) a qualitative evaluation,
for instance to identify the structure and continuity of the
generated dataset (using dimension reduction methods such
as PCA or UMAP [1]). While good classifiers already exist
for speech, there is currently no fully automated software for
the classification of the vocal units in complex birdsongs like
those of canaries.

Generative models produce high-dimensional complex
datasets and can realistically reproduce real data such as
images or sounds with a diversity of outputs [8], including
elements not present in the training dataset [9]. The repre-
sentation of generated data in an intermediate layer of the
generative model called latent space provides information
about the structure of the produced dataset. Such a latent
space can have various properties (e.g. diversity of outputs,
continuous representation) that enables to obtain meaningful
representations of the underlying datasets. In the latent space,
nearby points have similar properties [9]. By interpolating be-
tween two points in the latent space associated with 2 different
outputs, a continuous set of intermediate realistic outputs can
be generated [10], [11]. Interestingly, Sainburg et al. [12] have
shown that birdsong vocalizations can be visualized in low-
dimensional representations using UMAP [1]. While current
GANs rely on generative networks with high-dimensional la-
tent space (usually 100-dimensional), birdsong vocal units may
thus be generated through very low-dimensional latent spaces.
A GAN low-dimensional latent space would (1) ease the direct
visualization of the space (without the need to use dimension
reduction methods), and (2) facilitate the comparison between
the structure of the real data space (e.g. spectrograms) and the
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structure of the latent space obtained.
An imitative agent (e.g. a child or a bird) aiming at

reproducing the sounds it perceives from consepcifics can
be modeled as a sensorimotor system. Such an agent has to
learn the inverse model that maps perceived sounds to the
corresponding motor commands. The imitation process can be
modeled in an artificial system through a vocal learning model.
Reducing the number of control parameters needed to generate
vocalizations is critical in such model to ease the learning: be-
cause lower output (control) dimension means less parameters
to be learned, and thus less training samples. A generative
model producing vocalizations with a low-dimensional latent
space would allow to reduce the number of control parame-
ters needed to generate vocalizations. Moreover, low control
dimension is useful to analyze the influence of each parameter
on the generated vocalization. Even if a greater number of
motor dimensions may not be a problem for motor babbling
exploration strategies (depending on the heterogeneity of the
redundancy) [13], learning the inverse kinematics is more
difficult when the degree of freedom of the motor space is
much higher than the number of controlled dimensions (i.e.
the number of possible sensory outputs) [14]. Altogether, a
low motor dimension should facilitate the learning when used
in sensorimotor models [15]. A generative network producing
complex vocalizations with a low-dimensional latent space
could therefore also serve as the basis for a future vocal
learning model.

Variational Autoencoders (VAEs) and Generative Adversar-
ial Networks (GANs) are two classes of generative models
that enable the construction of a low-dimensional latent space.
VAEs are composed of an encoder, that takes a real sample
as input and builds a lower-dimensional representation of it
(i.e. an element of the latent space), and a decoder (generative
model), that takes an element of the latent space as input
and generates back the original sample. GANs [8] are an
example of generative models which enable to represent high-
dimensional distributions in a latent space. The two main
components of a GAN are (i) a generator that tries to reproduce
a target distribution (e.g. images) given random inputs, and
(ii) a discriminator that estimates the probability that the
generated data is taken from the training dataset [8]. GANs
differentiate from, on the one hand, other generative models
like Wavenet [16] because they are not incremental models,
and, on the other hand, from VAEs because of the structure of
the latent representation. Indeed, the latent representation in
VAEs is common between the encoder and the decoder (i.e. it
is in the middle of the network). However, in GANs the latent
space representation of the generator (encoder) is initially
random and independent from the discriminator (decoder) part.
Although VAEs are easier to evaluate quantitatively, GANs
generate higher quality outputs with respect to VAEs [17].
GANs have already been used to produce complex datasets
such as images, music, speech, but on a lesser extent to
birdsongs [18]–[20]. Donahue et al. [20] trained their model,
called WaveGAN, on audio recordings of speech, drums,
piano, and vocalizations of several wild songbird species.
However, they trained WaveGAN on all species at once and
never on multiple vocalizations from a single bird specie.

Our choice to produce a large set of canary vocalizations
with the WaveGAN generator has been determined by (1) the
promising but noisy results obtained on a highly variable
dataset of birdsongs, and (2) the fact that the training is more
stable with respect to other GANs (WaveGAN is a Wesserstein
GAN [21]).

In this paper, we trained WaveGAN [20] on an adult canary
dataset [22]. The objective of this study is to test the ability of
WaveGAN to produce realistic canary syllables for different
conditions, varying the latent space dimension and the size
of the training dataset. On the one hand, we are interested in
finding the minimal latent space dimension to reproduce real-
istic and diverse vocalizations. On the other hand, we explore
the capability of the generator to produce a good output when
the network has been trained with datasets of limited size.
Indeed, having a lower amount of training data would speed
up the computational time to train the generator. Moreover,
we also explore the latent space to evaluate (quantitatively and
qualitatively) (1) the accuracy and diversity of the produced
syllables, (2) the continuity of the latent space (i.e. the ability
of the generator to generalize), and (3) the structure of the
latent representations.

The paper is organized as follows. Section II-A describes
the preprocessing of the data. Section II-B contains a brief
introduction to the architecture of WaveGAN. In section II-C,
we present the training dataset and detail the different Wave-
GAN training conditions we used. Section II-E introduces
the metrics used to evaluate the performance of the gen-
erator. The tools used to evaluate the model are described
in Sections II-D and II-F. Section III-A applies quantitative
and qualitative analyses on the training dataset. Section III-B
shows the analyses we carried out to evaluate the ability of
the generator to reproduce the whole repertoire. Section III-C
shows the organization of the latent space. Section III-D
and Section III-E show the quantitative analyses presented in
Section III-B applied to compare the generator performances
when using different conditions on the latent space dimension
or on the training dataset size. Section IV summarizes the
results obtained, and details the advantages and the limitations
of our approach. Moreover, we discuss how such a generator
model could be used in future work within the framework of
vocal learning models.

All the details of the implementation are available at
https://github.com/spagliarini/low-dimensional-canary-GAN.

II. METHODS

A. Data pre-processing

Canaries sing sequences of syllables organized in phrases: a
phrase is a short segment of the song where the same syllable
is repeated many times [7]. The initial dataset was composed
of a repertoire of 27 classes of syllables organized in labeled
phrases (i.e. each phrase was already assigned to a specific
class), manually sorted from a set of recordings at 44100Hz
from an adult canary [22]. Among the 27 classes, we focused
on 16 classes that had the highest number of samples labeled
as: A;B1; B2; C;D;E;H; J1; J2; L;M;N;O;Q;R; V . For
each recorded phrase, we performed the following steps:
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1) We downsampled the signal to a rate of 16000 Hz.
2) We reduced low-frequency noise using a high-pass filter

of order 5 with a cutting frequency of 700 Hz.
3) We selected three parameters for syllable detection:

the amplitude threshold, the minimal duration of the
syllable, and the duration of the gap (i.e., the silence
between two consecutive syllables).

Figure 15 in the supplementary material shows a summary
of the selection procedure for syllable J2. The automatic
selection based on an amplitude threshold, the duration of
the syllable and the duration of the gap, could fail to select
correctly the syllable. We performed a visual inspection after
selection to reject misclassified and miscut elements. The
resulting dataset contains 72; 155 syllables from the 16 classes.
In supplementary material, Figures 16 and 17 show 100
examples of samples that have been selected from each class
after the pre-processing.

B. WaveGAN

WaveGAN architecture is based on the architecture of
DCGAN [10], initially used for image synthesis. DCGAN [10]
generator is a CNN where transposed convolution is used to
upsample low-resolution feature maps into a high-resolution
image. As for DCGAN, the generator and the discriminator
of WaveGAN are CNNs. To process audio signals, a larger
receptive field is introduced in WaveGAN. This is similar to
what Van den Oord et al. [23] did in WaveNet, where dilated
convolutions has been used to increase the effective receptive
field of the model.

Donahue et al. [20] used WGAN-GP[24] strategy during
training. The role of the discriminator has changed: it is not
making a direct choice to assess whether a sample is real or
fake. Instead, the discriminator acts as a critic and allows it to
be trained until it reaches an optimum. An advantage of the
critic is that it can’t saturate, whereas the classic discriminator
could learn too quickly, becoming unreliable [21]. The loss
(i.e., the objective function that is optimized during training)
is based on the computation of Wasserstein distance, which
gives stability to the GAN [19]. Finally, the introduction of
a gradient penalty term in the loss function (driven by the
hyperparameter �), enables a faster training and less param-
eter tuning [24]. Please refer to the supplementary material
(see Figure 18) for further details about the architecture of
WaveGAN.

C. Experimental setup

We selected a balanced training dataset in order to consider
the same number of samples per syllable type. Among all
the selected syllables, we used a subset of 16k syllables:
1k syllables per class. From now on, we will refer to this
balanced dataset as the training dataset. Each syllable has been
padded with silence to obtain recordings having a length of
exactly 1s, to create a dataset resembling the speech dataset
that was originally used to train WaveGAN [20]. We used the
balanced training dataset to train the classifier (described in
Section II-D) and the network (described in Section II-B).

We used the original WaveGAN [20] setup to train the
network. We kept the original network architecture with gra-
dient penalty option, with � = 10 and Adam optimizer in the
training phase. We used a batch size of 64 samples and we
trained the discriminator 5 times more than the generator.

We tested various conditions for the latent space dimension
(indicated as ld), varying it from ld = 6 to 1. In the following,
we will refer to one of these conditions using, for instance,
6-dimensional WaveGAN to refer to a GAN trained with a
6-dimensional latent space. We also varied the size of the
training dataset. We first trained WaveGAN with the complete
dataset, then reduced it by a factor of 2 (8k syllables) and
finally by a factor of 4 (4k syllables).

We first trained 5 instances per latent space condition
(keeping the dataset size fixed) and dataset size condition
(keeping the latent space dimension fixed), to observe the
performance of the generator. In Figure 10 and Figure 14,
we selected the best instance for each parameter set (no or
late overtraining). We compared the results to choose the
optimal combination of latent space dimension and dataset
size. We then trained 10 instances of WaveGAN with the
training dataset introduced at the beginning of this Section. For
all the instances, we trained the network until epoch � 1000,
saving the model every � 15 epochs. After training, we used
the generator to produce new syllables at every saved epoch.
We evaluated the generated data using both a quantitative and
a qualitative measure, as described in Sections II-E1 and II-E2.

D. Classifier

To characterize the original dataset as well as the production
of our WaveGAN, we initially trained classifiers to recognize
the syllable classes present in the original dataset. The two
classifiers (classifier-REAL and classifier-EXT) used during the
evaluation phase (described in Section II-E) are Echo State
Networks (ESNs) [25], a type of artificial recurrent neural
network (RNN). ESNs are part of the Reservoir Computing
paradigm) [26] that use random RNNs and train only the
output layer. ESNs are often considered as temporal Support
Vector Machines (SVMs): they work in a similar way by
embedding input data into a high-dimensional space using
non-linear transformations. However, unlike SVMs, ESNs
are designed to manipulate sequential data and are relevant
candidates for sound classification [27], [28].

The classifiers were fed with Mel-Frequency Cepstral Co-
efficients (MFCCs) representations of the syllables, a low
dimensional spectral representation of sound. We extracted
20 MFCCs features per time step, one time step being de-
fined as the result of a spectral analysis window of 64ms,
using a Hanning window (often called window width; param.
win length in librosa library) applied to the 16kHz audio
signal, with a 32 ms jump between each frame (often called
frame stride; param. hop length). Because the GAN generated
syllables tend to have higher amplitude than the real ones, we
used only the first and the second derivative of the extracted
MFCCs to remove any influence of the signal amplitude in
the representations. Otherwise, the amplitude difference would
bias the classifiers decisions, as it would be artificially easier
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to separate real samples from generated samples only by
comparing the average power of the signals. First and second
derivatives of the MFCC signal are also known to be good
representations of vocal signals, as they give relevant clues on
the temporal dynamics of the vocalizations.

The ESNs trained on the classification tasks [27] are built
using RerservoirPy Python library [29], [30]1 and are de-
scribed by the following equations:


x(n) = (1� �)x(n� 1)

+� tanh (Winu(n) +Wx(n� 1))

y(n) = Woutx(n)

(1)

where u(n), x(n) and y(n) are respectively the input
features, the internal state of the network and the output vector
at time step n. Win stores the connection weights between the
inputs and the units of the network. These weights are sampled
from a discrete bi-modal distribution, i.e. are randomly chosen
from the set f1;�1g. The proportion of non-zero connection
weights is fixed to 10%. Win is defined in RN�I , where N
is the number of recurrent units and I is the dimension of
the input. In our case I = 41, with input features being 20
derivatives of MFCCs, 20 second derivatives of MFCCs, and
a constant bias equal to 1. Each set of features is scaled by
multiplying the corresponding connection weights in Win by
a constant. The first derivatives and the bias are scaled by a
factor 1, and the second derivatives are scaled by a factor 0:7.
W stores the connection weights of the recurrent units. These
weights are sampled from a standard normal distribution, with
a proportion of non-zero connections between neuronal units
fixed to 10%. W is defined in RN�N , with N equal to 1000.
W is scaled using a factor equal to a fixed spectral radius
of 0:5 divided by the largest absolute eigenvalue of W . The
� parameter, called leaking rate, is set to 0:05. It controls
the time constant of the ESNs and allows information from
past internal states to be fed to future internal states. All
connection weights defined in Win and W are fixed during the
training phase of the ESNs, as opposed to machine learning
algorithms using gradient descent. Only the Wout 2 RN�V

readout matrix is learned during training, where V is the
output dimension corresponding to the vocabulary size used
to classify the input features, i.e. V = 16 for classifier-
REAL and V = 21 for classifier-EXT. The readout weights
are learned using a linear regression between all the internal
states x generated from the inputs and all the expected values
of the output y. A L2 regularization coefficient of value 10�8

is applied during the linear regression: thus this corresponds
to a ridge regression.

The classifiers then output a vector ŷ(n) of dimension V
representing its activation for each time step n and for each
category of syllable in the vocabulary. Then, these output
activities are summed up over the whole sequence of MFCC
frames. A softmax operation finally provides a probability
distribution representing the chance for the syllable to belong
to one of the classes of the vocabulary. A further analysis of the
robustness of the classifiers can be found in Appendix III-B.

1https://github.com/reservoirpy/reservoirpy

E. Evaluation

We evaluated the performance of the generator across
epochs and across training conditions. As explained in Sec-
tion II-C, after training, we used the generator to produce
new syllables every 15 epochs and we used the classifier
described in Section II-D to identify the generated syllables
as elements of one class of the vocabulary. The vocabulary
is the set of classes known to the classifier. The vocabulary
includes all syllable types and may include additional types of
generations (see below). First, we used the balanced training
dataset to train a classifier able to provide the probability of
each sample belonging to each class of a vocabulary composed
by the 16 classes of the repertoire. We refer to this model as
classifier-REAL. Then, we trained a classifier able to provide
the probability of each syllable belonging to 21 classes: the
16 classes of the repertoire, a white noise (WN) class, an
overtraining (OT) class, and three EARLY classes, respectively
obtained from epochs 15, 30 and 45. To train the classifier
to recognize the alternative unknown classes, in addition to
the usual training dataset, we used three additional sets of
generated samples. In summary, to train the classifier we used:

� EARLY 15: 1k samples of early generations, obtained
after � 15 epochs using two different instances of a 3-
dimensional WaveGAN (500 samples per instance);

� EARLY 30: 1k samples of early generations, obtained
after � 30 epochs using two different instances of a 3-
dimensional WaveGAN (500 samples per instance);

� EARLY 45: samples of early generations, obtained after
� 45 epochs using two different instances of a 3-
dimensional WaveGAN (500 samples per instance);

� OT: 1k samples obtained when two instances of a 3-
dimensional WaveGAN reach overtraining (500 samples
per instance);

� WN: 1k samples of artificial white noise.
The two different instances used to define the classes above
are instances Ex 0 and Ex 1 (where Ex stands for example)
in Figure 34. We will refer to this classifier as classifier-
EXT (where EXT stands for extended).

For simplicity, we will call the set of unknown classes X.
We define a class x 2 X as a class representing either white
noise, or samples containing a lot of noise and, in general,
resembling early productions of the generator (i.e., belonging
to EARLY15, EARLY30, EARLY45, OT and WN).

1) Quantitative evaluation: For GANs, quantitative evalu-
ations allow to probe if the model is able to reproduce a wide
enough variety of samples [31], and provide a preliminary
measure of whether or not the generated data resembles the
training data. To monitor the generator’s performance across
time we quantified how many different classes it produces
and how many syllables are produced in each class. Thereby,
we can compared the performance and stability of WaveGAN
across different instances of training. We also computed the
Inception Score (IS) at several epochs of the training, observed
its evolution and compared it with the IS obtained from
the training dataset. The IS provides a method of objective
evaluation for GANs performance [20][24][32]. IS has been
proposed by Salimans et al. [18] as a quantitative measure to



5

evaluate GANs: a pre-trained deep learning neural network
model for image classification provides the probability of
each image belonging to each class. This information is then
summarized in the IS, which is defined as follows:

IS = exp(E(KL(p(yjx)jjp(y)))); (2)

where KL stands for Kullback-Leibler divergence. Given a
problem with N classes, IS 2 [1; N ]. IS provides both a
measure of the quality of generated samples and of the entropy
of the generations, indicating the generator ability to produce
a wide set of new data [18].

2) Qualitative evaluation: First, we based our qualita-
tive analysis on spectrogram analysis. Then, we explored
the latent space to study its structure and the continuity of
the generations. On the one hand, we computed the mean
spectrogram of the generated data, and we compared it with
the mean spectrogram of the dataset and with the reper-
toire. To obtain the mean spectrogram, for each class, we
first aligned the syllables’ envelope, then we computed the
mean of the spectrograms of all the syllables belonging to
that class. We observed the spatial organization of the data
using Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) [1]. We applied UMAP to
the spectrograms of the samples. Further details about the
algorithm can be found in Section II-F. On the other hand,
we compared the spectrogram space with the latent space to
observe the organization of the latent vectors with respect to
the syllables they produce. We generated syllables for each
small variation of the latent vector.

� One component variation. We selected a random latent
vector z � R3([�1; 1]) to generate a baseline syllable
using a 3-dimensional WaveGAN after training. Then,
we moved one by one the components of the vector
by a variation step equal to vstep = 0:05. To explore
critical points (i.e., where a bigger variation arises a
sudden non-smooth change between two syllables), we
moved one by one the components of the vector by a
variation step equal to vstep = 0:01 and vstep = 0:001.
We compared the generations obtained by each variation
(one per component of the latent vector) with a set of
16k generated data from the same epoch.

� Interpolation between two syllables. We first selected 2
syllables s1 and s2 and their correspondent latent vectors
z1 and z2, where z1; z2 2 R3([�1; 1]). Then, we moved
in the latent space from z1 to z2 using a variable step
depending on the distance between the components of z1

and z2. That is, the step applied to each component i is:

step[i] =
jz1[i]� z2[i]j

Nstep
(3)

where Nsteps is the number of steps. We used Nsteps =
1000. We used classifier-EXT to identify the syllables and
see which class is assigned to the transition between s1

and s2. We compared the variations with a bigger set of
generated data in the spectrogram syllable space obtained
using UMAP [1].

Finally, we used human judgment to provide an additional
qualitative evaluation. We asked two humans to participate in
a syllable recognition test organized as described below.

� Human training phase. Recognition of a sample of
100 syllables from the training dataset: for the first 50
the person is authorized to look at the repertoire to
classify the syllables. After each guess, the person can
also look at the correct answer to continue learning to
classify syllables. Then, the last 50 syllables have to
be recognized. No help is allowed here, and no correct
answer can be seen. In the training phase, the available
classes are the 16 classes of the repertoire.

� Human testing phase. Recognition of a sample of 200
syllables generated after training, without the possibility
to look at the repertoire. In the testing phase, the available
classes are the 16 classes of the repertoire plus a general X
class which, ideally, represents the alternative unknown
classes (three EARLY classes, OT class and WN class)
recognized by the classifier.

Then, we computed the proportion of agreement beyond the
chance agreement (i.e. percentage of agreement that would
have occurred anyway) using Cohen’s kappa coefficient [33],
[34]. If �Cohen = 0, then the agreement is equal to chance
agreement. Alternatively, �Cohen 2 (0; 1] represents a positive
agreement and �Cohen = 1 represents a perfect agreement
between two judges [33]. We computed �Cohen between the
participants and the classifier-EXT and between participants.

F. Uniform Manifold Approximation and Projection for Di-
mension Reduction (UMAP)

Similarly to t-SNE, Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP) [1] is a dimen-
sion reduction technique. It can be used to perform non-
linear dimension reduction. With respect to t-SNE, it has a
higher computational power (i.e., it is faster). Moreover, it has
the advantage of not being local (i.e. it takes into account
the distance between points that are far in the space). This
enables a synthetic, clear and simple representation of the
original manifold. The power of using UMAP [1] to reduce
the complexity of songbirds spectrograms has first been shown
by Sainburg et al. [12]: an exhaustive set of representations
show how UMAP helps in representing not only the repertoire
of a single species but also different species at the same time.
The result is a two-dimensional representation. The axis are
not meaningful to identify a discriminant feature (i.e., they do
not represent, for example, the pitch of the syllable, or another
syllable-related feature). Instead, they are hyperparameters that
well represent the given dataset: for instance, the size of the
neighborhood used to estimate the manifold structure of the
data and the minimum distance apart that points are allowed
to be. The tuning of these hyperparameters allows to obtain
a more or less local representation of the data (where a
higher size of the neighborhood translates in a more local
representation) and to pack or not pack together the points
in the clusters (where a higher distance allows a more sparse
representation).
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III. RESULTS

A. Analysis of the training dataset

This section describes the training dataset and highlights
the performance of our evaluation metrics on it. Virtually
all the samples group into 16 well segregated and mostly
non-overlapping clusters (Figure 1a) in the Uniform Mani-
fold Approximation and Projection for Dimension Reduction
(UMAP) [1] representation (see Section II-F). Besides, the
representation shows similarities between syllables B1 and
B2, syllables J1 and J2: the clusters of syllables B1 (cream
cluster) and B2 (light orange cluster), the clusters of syllables
J1 (dark green cluster) and J2 (light brown cluster) lie very
close. These similarities can be noticed also in the spectro-
gram representation (Figure 1b). For this reason, in further
representations using UMAP syllables B1 and B2, J1 and J2
have been grouped, respectively, into syllable B (keeping the
light orange color to represent the cluster) and J (keeping the
dark green color to represent the cluster). Each template shown
in Figure 1a can be compared with the correspondent mean
spectrogram (Figure 1b).

The level of confidence of the classifier in making the
correct assignment can be represented using the confusion
matrix relative to the predictions (see Figure 2). The confu-
sion matrix for classifier-EXT (Figure 2) reveals the possible
misclassification of syllables B1=B2 and J1=J2. Indeed, as
syllables B1 and B2 (or syllables J1 and J2) differ the
rate at which their are sung more than in frequency content,
these syllables may be incorrectly classified when identified
individually. The confusion matrix obtained from classifier-
REAL can be found in the supplementary material (Figure 19).

We compute the Inception Score (IS) of the training dataset
based on Eq. 2 to quantify the variety of sounds present in
the data. As there are 16 classes of syllables in the dataset,
the range of the IS is IS 2 [1; 16]. The labeling of all single
syllables of the training dataset with classifier-REAL leads to
an in ception score of IStrain = 15; 92, reflecting on the clear
distinction between classes and their diversity.

B. Evaluation of the model

We trained WaveGAN over the dataset described in Sec-
tion II-A, to study the ability of the generator to reproduce
the various classes of syllables present in the dataset and
their variability within a given class. We saved the model
every � 15 epochs until epoch � 1000. At the beginning
of training (epoch 0 in Figure 3), the generator produces for
all the classes a noisy output which does not resembles a
real syllable. At epoch 15, the generator starts to produce a
sound which is coherent in duration but remains noisy and
unclear. The resemblance increases over time (at epoch 45,
106 and 514), and finally, at epoch 984 the generator produces
syllables showing spectrograms similar to with the training
data syllables (Figure 1). An example for each class of the
repertoire is provided in Figure 23 (supplementary material).

Quantitative evaluation
We used the classifier described in Section II-E1 to ob-

tain a quantitative analysis of the model’s production across

(a) UMAP representation and template.

(b) Mean spectrogram.

Fig. 1. Repertoire. (a) Spectrogram syllable space of the training dataset. This
representation has been obtained using UMAP [1]. Each cluster represents a
class of the repertoire and a template syllable of each class is highlighted
with the corresponding spectrogram (an arrow connects each cluster to the
corresponding template). Syllables B1 (cream cluster) and B2 (light orange
cluster), syllables J1 (dark green cluster) and J2 (light brown cluster) lie very
close, indeed the syllables are very similar and correspond to different speed
of repetitions when embedded within a canary phrase. They will be merge
in the following experiments. (b) Mean spectrogram computed after envelope
alignment of the waveforms. To obtain the spectrogram syllable space and the
mean spectrogram we used 1k syllables per class (i.e., the training dataset)
and their real labels. No classifier has been applied to assign each syllable to
the correct class.

learning. Every 15 epochs, we generated 1k samples and we
used classifier-EXT to calculate the probability distribution of
the produced syllables to belong to the 16 syllable classes.
Figure 4 shows the distribution obtained from the classifier at 4
example epochs: epochs 15, 106, 212, 318, 514 and 984. Each
columns represents one of the 21 classes of the vocabulary:
the 16 classes of the repertoire and 5 alternative unknown
classes x 2 X (i.e., three classes of EARLY generations, the
overtraining (OT) class, and the artificial white noise (WN)).
These results have been obtained from an instance of training




