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Abstract. Debugging concurrent programs is an interesting applica-
tion of reversibility. It has been renewed with the recent proposal by
Giachino et al. to base the operations of a concurrent debugger on a
causal-consistent reversible semantics, and subsequent work on CauDEr,
a causal-consistent debugger for the Erlang programming language. This
paper extends CauDEr and the related theory with the support for dis-
tributed programs. Our extension allows one to debug programs in which
processes can run on different nodes, and new nodes can be created at
runtime. From the theoretical point of view, the primitives for distributed
programming give rise to more complex causal structures than those aris-
ing from the concurrent fragment of Erlang handled in CauDEr, yet we
show that the main results proved for CauDEr still hold. From the prac-
tical point of view, we show how to use our extension of CauDEr to find
a non trivial bug in a simple way.

Keywords: Debugging · Actor model · Distributed computation · Re-
versible computing

1 Introduction

Debugging concurrent programs is an interesting application of reversibility. A
reversible debugger allows one to explore a program execution by going forward –
letting the program execute normally –, or backward – rolling back the program
execution by undoing the effect of previously executed instructions. Several works
have explored this idea in the past, see, e.g., the survey in [6], and reversible
debugging is used in mainstream tools as well [20]. It is only recently, however,
that the idea of a causal-consistent debugger has been proposed by Giachino et
al. in [9]. The key idea in [9] was to base the debugger primitives on a causal-
consistent reversible semantics for the target programming language. Causal
consistency, introduced by Danos and Krivine in their seminal work on reversible
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CCS [5], allows one, in reversing a concurrent execution, to undo any event
provided that its consequences, if any, are undone first. On top of a causal-
consistent semantics one can define a rollback operator [14] to undo an arbitrary
past action. It provides a minimality guarantee, useful to explore concurrent
programs which are prone to state explosion, in that only events in the causal
future of a target one are undone, and not events that are causally independent
but which may have been interleaved in the execution.

The CauDEr debugger [16,10,17] builds on these ideas and provides a re-
versible debugger for a core subset of the Erlang programming language [3].
Erlang is interesting for it mixes functional programming with a concurrency
model inspired by actors [1], and has been largely applied since its initial uses
by Ericsson3, to build distributed infrastructures.

This paper presents an extension of CauDEr to take into account distribution
primitives which are not part of the core subset of Erlang handled by CauDEr.
Specifically, we additionally consider the three Erlang primitives called start, to
create a new node for executing Erlang processes, node, to retrieve the identifier
of the current node, and nodes, which allows the current process to obtain a list
of all the currently active nodes in an Erlang system. We also extend the spawn
primitive handled by CauDEr to take as additional parameter the node on which
to create a new Erlang process.

Adding support for these primitives is non trivial for they introduce causal
dependencies in Erlang programs that are different than those originating from
the functional and concurrent fragment considered in CauDEr, which covers,
beyond sequential constructs, only message passing and process creation on the
current node. Indeed, the set of nodes acts as a shared set variable that can be
read, checked for membership, and extended with new elements. Interestingly,
the causal dependencies induced by this shared set cannot be faithfully repre-
sented in the general model for reversing languages introduced in [13], which
allows for resources that can only be produced and consumed.

The contributions of the current work are therefore as follows: (i) we ex-
tend the reversible semantics for the core subset of the Erlang language used
by CauDEr with the above distribution primitives; (ii) we present a rollback
semantics that underlies primitives in our extended CauDEr debugger; (iii) we
have implemented an extension of the CauDEr debugger that handles Erlang
programs written in our distributed fragment of the language; (iv) we illustrate
on an example how our CauDEr extension can be used in capturing subtle bugs
in distributed Erlang programs. Due to space constraints, we do not detail in this
paper our extended CauDEr implementation, but the code is publicly available
in the dedicated GitHub repository [8].

The rest of this paper is organized as follows. Section 2 briefly recalls the
reversible semantics on which CauDER is based [18]. Section 3 presents the Er-
lang distributed language fragment we consider in our CauDEr extension, its
reversible semantics and the corresponding rollback semantics. Section 4 briefly

3 erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-
mytopdogstatus.html
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module ::= fun1 . . . funn
fun ::= fname = fun (X1, . . . , Xn)→ expr

fname ::= Atom/Integer
lit ::= Atom | Integer | Float | [ ]

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2
pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Fig. 1. Language syntax

describes our extension to CauDEr, and presents an example that illustrates bug
finding in distributed Erlang programs with our extended CauDEr. Section 5 dis-
cusses related work and concludes the paper with hints for future work. Further
technical details are available in the appendix.

2 Background

We recall here the main aspects of the language in [18], as needed to understand
our extension. We refer the interested reader to [18] for further details.

2.1 The language syntax

Fig. 1 shows the language syntax. The language depicted is a fragment of Core
Erlang [2], an intermediate step in Erlang compilation. A module is a collection
of function definitions, a function is a mapping between the function name and
the function expression. An expression can be a variable, a literal, a function
name, a list, a tuple, a call to a built-in function, a function application, a
case expression, or a let binding. An expression can also be a spawn, a send, a
receive, or a self, which are built-in functions. Finally, we distinguish expressions,
patterns and variables. Here, patterns are built from variables, tuples, lists and
literals, while values are built from literals, tuples and lists, i.e., they are ground
patterns. When we have a case e of . . . expression we first evaluate e to a value,
say v, then we search for a clause that matches v. When one is found, if the guard
when expr is satisfied then the case construct evaluates to the clause expression,
otherwise the search continues with the next clause. The let X = expr1 in expr2
expression binds inside expr2 the fresh variable X to the value to which expr1
reduces.

As for the concurrent features, since Erlang implements the actor model,
there is no shared memory. An Erlang system is a pool of processes that interact
by exchanging messages. Each process is uniquely identified by its pid and has
its own queue of incoming messages. Function spawn (expr, [expr1, . . . , exprn])
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evaluates to a fresh process pid p. As a side-effect, it creates a new process with
pid p. Process p will apply the function to which expr evaluates to the arguments
to which the expressions expr1, . . . , exprn evaluate. As in [18], we assume that
the only way to introduce a new pid is through the evaluation of a spawn. Then,
expr1 ! expr2 allows a process to send a message to another one. Expression expr1
must evaluate to a pid (identifying the receiver process) and expr2 evaluates
to the content of the message, say v. The whole function evaluates to v and,
as a side-effect, the message will eventually be stored in the receiver queue.
The counterpart of message sending is receive clause1, . . . , clausen end. This
construct traverses the queue of messages searching for the first message v that
matches one of the n clauses. If no message is found then the process suspends.
Finally, self evaluates to the current process pid.

2.2 The language semantics

This subsection provides key elements to understand the CauDEr semantics. We
start with the definition of process.

Definition 1 (Process). A process is denoted by a tuple 〈p, θ, e, q〉, where p
is the process’ pid, θ is an environment, i.e. a map from variables to their actual
value, e is the current expression to evaluate, and q is the queue of messages
received by the process.

Two operations are allowed on queues: v : q denotes the addition of a new
message on top of the queue and q\\v denotes the queue q after removing v (note
that v may not be the first message).

A (running) system can be seen as a pool of running processes.

Definition 2 (System). A system is denoted by the tuple Γ ;Π. The global
mailbox Γ is a multiset of pairs of the form (target process pid, message),
where a message is stored after being sent and before being scheduled to its re-
ceiver. Π is the pool of processes, denoted by an expression of the form

〈p1, θ1, e1, q1〉 | . . . | 〈pn, θn, en, qn〉

where ”|” is an associative and commutative operator. Γ ∪ {(p, v)}, where ∪ is
multiset union, is the global mailbox obtained by adding the pair (p, v) to Γ . We
write p ∈ Γ ;Π when Π contains a process with pid p.

We highlight a process p in a system by writing Γ ; 〈p, θ, e, q〉|Π. The presence
of the global mailbox Γ , which is similar to the ”ether” in [23], allows one to
simulate all the possible interleavings of messages. Indeed, in this semantics the
order of the messages exchanged between two processes belonging to the same
runtime may not be respected, differently from what happens in current Erlang
implementations. See [23] for a discussion on this design choice.

The semantics in [18] is defined in a modular way, similarly to the one pre-
sented in [4], i.e., there is a semantics for the expression level and one for the
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system level. This approach simplifies the design of the reversible semantics since
only the system one needs to be updated. The expression semantics is defined
as a labelled transition relation of the form:

{Env,Expr} × Label × {Env,Expr}

where Env represents the environment, i.e., a substitution, and Expr denotes
the expression, while Label is an element of the following set:

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a/n, [vn]), self(κ)}

The semantics , described in Appendix A.1 due to space constraints, is a
classical call-by-value semantics for a first order language. Label τ denotes the
evaluation of a (sequential) expression without side-effects, like the evaluation
of a case expression or a let binding. The remaining labels denote a side-effect
associated to the rule execution or the request of some needed information. The
system semantics will use the label to execute the associated side-effect or to
provide the necessary information. More precisely, in label send(v1, v2), v1 and v2
represent the pid of the sender and the value of a message. In label rec(κ, cln), cln
denotes the n clauses of a receive expression. Inside label spawn(κ, a/n, [vn]), a/n
represents the function name, while [vn] is the (possibly empty) list of arguments
of the function. Where used, κ acts as a future: the expression evaluates to κ,
then the corresponding system rule replaces it with its actual value.

For space reasons, we do not show here the system rules, which are available
in Appendix A.2. We will however show in the next section how sample rules
are extended to support reversibility.

2.3 A reversible semantics

The reversible semantics is composed by two relations: a forward relation ⇀ and
a backward relation ↽. The forward reversible semantics is a natural extension
of the system semantics by using a typical Landauer embedding [12]. The idea
underlying Landauer’s work is that any formalism or programming language
can be made reversible by adding the history of the computation at each state.
Hence, this semantics at each step saves in an external device, called history,
the previous state of the computation so that later on such a state can be re-
stored. The backward semantics allows us to undo a step while ensuring causal
consistency [5,15], indeed before undoing an action we must ensure that all its
consequences have been undone.

In the reversible semantics each message exchanged must be uniquely iden-
tified in order to allow one to undo the sending of the “right” message, hence
we denote messages with the tuple {λ, v}, where λ is the unique identifier and v
the message body. See [18] for a discussion on this design choice.

Due to the Landauer embedding the notion of process is extended as follows.

Definition 3 (Process). A process is denoted by a tuple 〈p, h, θ, e, q〉, where h
is the history of the process. The other elements are as in Def. 1. The expression



6 G. Fabbretti et al.

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh identifier

Γ ; 〈p, h, θ, e, q〉 |Π ⇀ Γ ; 〈p, spawn(θ, e, p′) : h, θ′, e′{κ 7→ p′}, q〉
| 〈p′, [ ], id, apply a/n(vn), [ ]〉 |Π

(Spawn) Γ ; 〈p, spawn(θ, e, p′) : h, θ′, e′, q〉 | 〈p′, [ ], id, e′′, [ ]〉 |Π ↽ Γ ; 〈p, h, θ, e, q〉 |Π

Fig. 2. An example of a rule belonging to the forward semantics and its counterpart.

op(. . .) : h denotes the history h with a new history item added on top. The ge-
neric history item op(. . .) can span over the following set.

{τ(θ, e), send(θ, e, {λ, v}), rec(θ, e, {λ, v}, q), spawn(θ, e, p), self(θ, e)}

Here, each history item carries the information needed to restore the previous
state of the computation. For rules that do not cause causal dependencies (i.e.,
τ and self) it is enough to save θ and e. For the other rules we must carry
additional information to check that every consequence has been undone before
restoring the previous state. We refer to [18] for further details.

Fig. 2 shows a sample rule from the forward semantics (additions w.r.t. the
standard system rule are highlighted in red) and its counterpart from the back-
ward semantics. In the premises of the rule Spawn we can see the expression-level
semantics in action, transitioning from the configuration (θ, e) to (θ′, e′) and the
corresponding label that the forward semantics uses to determine the associated
side-effect. When rule Spawn is applied the system transits in a new state where
process p′ is added to the pool of processes and the history of process p is en-
riched with the corresponding history item. Finally, the forward semantics takes
care of updating the value of the future κ by substituting it with the pid p′ of
the new process.

The reverse rule, Spawn, can be applied only when all the consequences of
the spawn, namely every action performed by the spawned process p′, have been
undone. Such constraint is enforced by requiring the history of the spawned
process to be empty. Since the last history item of p is the spawn, and thanks
to the assumption that every new pid, except for the first process, is introduced
by evaluating a spawn, we are sure that there are no pending messages for p′.
Then, if the history is empty, we can remove the process p′ from Π and we can
restore p to the previous state.

3 Distributed Reversible Semantics for Erlang

In this section we discuss how the syntax and the reversible semantics introduced
in the previous section have been updated to tackle the three distribution prim-
itives start, node and nodes. Lastly, we extend the rollback operator introduced
in [18,19], which allows one to undo an arbitrary past action together with all
and only its consequences, to support distribution.
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3.1 Distributed System Semantics

The updated syntax is like the one in Fig. 1, with the only difference that now
expr can also be start(e), node() and nodes(), and spawn takes an extra argument
that represents the node where the new process must be spawned.

Let us now briefly discuss the semantics of the new primitives. First, in
function start, e must evaluate to a node identifier (also called a nid), which is
an atom of the form ’name@host’. Then, the function, as a side-effect, starts a
new node, provided that no node with the same identifier exists in the network,
and evaluates to the node identifier in case of success or to an error in case of
failure. Node identifiers, contrarily to pids which are always generated fresh, can
be hardcoded, as it usually happens in Erlang. Also, function node evaluates to
the local node identifier. Finally, function nodes evaluates to the list (possibly
empty) of nodes to which the executing node is connected. A formalization of
the intuition above can be found in [7]. Here, we assume that each node has an
atomic view of the network, therefore we do not consider network partitioning.

Notions of process and system are updated to cope with the extension above.

Definition 4 (Process). A process is denoted by a tuple 〈nid, p, θ, e, q〉, where
nid is an atom of the form name@host, called a node identifier (nid), pointing
to the node on which the process is running. For the other elements of the tuple
the reader can refer to Def. 1.

The updated definitions of node and network follow.

Definition 5 (Node and network). A node is a pool of processes, identified
by a nid. A network, denoted by Ω, is a set of nids. Hence, nids in a network
should all be distinct.

Now, we can proceed to give the formal definition of a distributed system.

Definition 6 (Distributed system). A distributed system is a tuple Γ ;Π;Ω.
The global mailbox Γ and the pool of running processes Π are as before (but
processes now include a nid). Instead, Ω represents the set of nodes connected
to the network. We will use ∪ to denote set union.

3.2 Causality

To understand the following development, one needs not only the operational
semantics informally discussed above, but also a notion of causality. Indeed, back-
ward rules can undo an action only if all its causal consequences have been un-
done, and forward rules should store enough information to both decide whether
this is the case and, if so, to restore the previous state.

Thus, to guide the reader, we discuss below the possible causal links among
the distribution primitives (including spawn). About the functional and concur-
rent primitives, the only dependencies are that a message receive is a consequence
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of the scheduling of the same message to the target process, (see rule Sched in
Appendix A.3) which is a consequence of its send4.

Intuitively, there is a dependency between two consecutive actions if either
they cannot be executed in the opposite order (e.g., a message cannot be sched-
uled before having been sent), or by executing them in the opposite order the
result would change (e.g., by swapping a successful start and a nodes the result
of the nodes would change).

Beyond the fact that later actions in the same process are a consequence of
earlier actions, we have the following dependencies:

1. every action of process p depends on the (successful) spawn of p;

2. a (successful) spawn on node nid depends on the start of nid;

3. a (successful) start of node nid depends on previous failed spawns on the
same node, if any (if we swap the order, the spawn will succeed);

4. a failed start of node nid depends on its (successful) start;

5. a nodes reading a set Ω depends on the start of all nids in Ω, if any (as
discussed above).

3.3 Distributed forward reversible semantics

Fig. 3 shows the forward semantics of distribution primitives, which are described
below. The other rules are as in the original work [18] but for the introduction
of Ω , and can be found in Appendix A.4.

The forward semantics in [18] has just one rule for spawn, since it can never
fail. Here, instead, a spawn can fail if the node fed as first argument is not part
of Ω. Nonetheless, following the approach of Erlang, we always return a fresh
pid, independently on whether the spawn has failed or not. Also, the history
item created in both cases is the same. Indeed, thanks to uniqueness of pids,
one can ascertain whether the spawn of p′ has been successful or not just by
checking whether there is a process with pid p′ in the system: if there is, the
spawn succeeded, otherwise it failed. Hence, the unique difference between rules
SpawnS and SpawnF is that a new process is created only in rule SpawnS.

Similarly, two rules describe the start function: rule StartS for a successful
start, which updates Ω by adding the new nid nid′, and rule StartF for a start
which fails because a node with the same nid already exists. Here, contrarily
to the spawn case, the two rules create different history items. Indeed, if two
or more processes had a same history item start(θ, e, nid), then it would not be
possible to decide which one performed the start first (and, hence, succeeded).

Lastly, the Nodes rule aves, together with θ and e, the current value of Ω.
This is needed to check dependencies on the start executions, as discussed in
Section 3.2. The Node rule, since node is a sequential operation, just saves the
environment and the current expression.



Title Suppressed Due to Excessive Length 9

(SpawnS)
θ, e

spawn(κ,nid′,a/n,[vn])−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid nid′ ∈ Ω
Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′{κ 7→ p′}, q〉

| 〈nid′, p′, [ ], id, apply a/n(vn), [ ]〉 |Π;Ω

(SpawnF )
θ, e

spawn(κ,nid′,a/n,[vn])−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid nid′ /∈ Ω
Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′{κ 7→ p′}, q〉 |Π;Ω

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid′ /∈ Ω
Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀

Γ ; 〈nid, p, start(θ, e, succ, nid′) : h, θ′, e′{κ 7→ nid′}, q〉 |Π; {nid′} ∪Ω

(StartF )
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid′ ∈ Ω err represents the error

Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, start(θ, e, fail, nid′) : h, θ′, e′{κ 7→ err}, q〉 |Π;Ω

(Node)
θ, e

node(κ)−−−−→ θ′, e′

Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, node(θ, e) : h, θ′, e′{κ 7→ nid}, q〉 |Π;Ω

(Nodes)
θ, e

nodes(κ)−−−−−→ θ′, e′

Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀
Γ ; 〈nid, p, nodes(θ, e,Ω) : h, θ′, e′{κ 7→ list(Ω \ {nid})}, q〉 |Π;Ω

Fig. 3. Distributed forward reversible semantics

3.4 Distributed backward reversible semantics

Fig. 4 depicts the backward semantics of the distribution primitives, the other
rules are collected in Appendix A.4. The semantics is defined in terms of the
relation ↽p,r,Ψ , where:

– p represents the pid of the process performing the backward transition
– r describes which action has been undone
– Ψ lists the requests satisfied by the backward transition (the supported re-

quests are listed in Section 3.5)

These labels will come into play later on, while defining the rollback semantics.
We may drop them when not relevant.

As already discussed, to undo an action, we need to ensure that its conse-
quences, if any, have been undone before. When consequences in other processes
may exist, side conditions are used to check that they have already been undone.

Rule SpawnS is analogous to rule Spawn in Fig. 2. Rule SpawnF undoes a
failed spawn. As discussed in Section 3.2, we first need to undo, if any, a start of
a node with the target nid, otherwise the spawn will now succeed. To this end,
we check that nid′ /∈ Ω.

4 For technical reasons the formalization provides an approximation of this notion.
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(SpawnS)
Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′, q〉 | 〈nid′, p′, [ ], id, e′′, [ ]〉 |Π;Ω

↽p,spawn(p′),{s,spp′} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(SpawnF )

Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′, q〉 |Π;Ω
↽p,spawn(p′),{s,spp′} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

if nid′ /∈ Ω

(StartS)
Γ ; 〈nid, p, start(θ, e, succ, nid′) : h, θ′, e′, q〉 |Π;Ω ∪ {nid′}

↽p,start(nid′),{s,stnid′} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

if spawns(nid′, Π) = [ ] ∧ reads(nid′, Π) = [ ] ∧ failed starts(nid′, Π) = [ ]

(StartF )
Γ ; 〈nid, p, start(θ, e, fail, nid′) : h, θ′, e′, q〉 |Π;Ω
↽p,start(nid′),{s} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(Node) Γ ; 〈nid, p, node(θ, e) : h, θ′, e′, q〉 |Π;Ω ↽p,node,{s} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(Nodes)
Γ ; 〈nid, p, nodes(θ, e,Ω′) : h, θ′, e′, q〉 |Π;Ω ↽p,nodes,{s} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

if Ω = Ω′

Fig. 4. Extended backward reversible semantics

Then, we have rule StartS to undo the (successful) creation of node nid′.
Before applying it we need to ensure three conditions: (i) that no process is
running on node nid′; (ii) that no nodes has read nid′; and (iii) that no other
start of a node with identifier nid′ failed. The conditions, discussed in Section 3.2,
are checked by ensuring that the lists of pids computed by auxiliary functions
spawns, reads and failed starts are empty. Indeed, they compute the list of pids
of processes in Π that have performed, respectively, a spawn on nid′, a nodes
returning a set containing nid′, and a failed start of a node with identifier nid.
Condition (i) needs to be checked since nids are hardcoded, hence any process
could perform a spawn on nid′. The check would be redundant if nids would be
created fresh by the start function.

Rule StartF instead requires no side condition: start fails only if the node
already exists, but this condition remains true afterwards, since we do not have
primitives to stop a node. Rule Node has no dependency either.

To execute rule Nodes we must ensure that the value of Ω′ in the history
item and of Ω in the system are the same, as discussed in Section 3.2.

We now report a fundamental result of the reversible semantics. As most of
our results, it holds for reachable systems, that is systems that can be obtained
using the rules of the semantics from a single process with empty history.

Lemma 1 (Loop Lemma). For every pair of reachable systems, s1 and s2,
we have s1 ⇀ s2 iff s2 ↽ s1.

Proof. The proof that a forward transition can be undone follows by rule inspec-
tion. The other direction relies on the restriction to reachable systems: consider
the process undoing the action. Since the system is reachable, restoring the mem-
ory item would put us back in a state where the undone action can be performed
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again (if the system would not be reachable the memory item would be arbi-
trary, hence there would not be such a guarantee), as desired. Again, this can
be proved by rule inspection. ut

Note that, as exemplified above, this result would fail if we allow one to undo
an action before its consequences.

3.5 Distributed rollback semantics

Since undoing steps one by one may be tedious and unproductive for the devel-
oper, CauDEr provides a rollback operator, that allows the developer to undo
several steps in an automatic manner, while maintaining causal consistency. We
extend it to cope with distribution. Our definition takes inspiration from the for-
malization style used in [19], but it improves it and applies it to a system with
explicit local queues for messages. Dealing with explicit local queues is not triv-
ial. Indeed, without local queues, the receive primitive takes messages directly
from Γ . With local queues we use a rule called Sched to move a message from
Γ to the local queue of the target process, and the receive takes the message
from the local queue. A main point is that the Sched action does not create an
item in the history of the process receiving the message, and as a result it is
concurrent to all other actions of the same process but receive. A formalization
of rule Sched and of its inverse is in Appendix A.3 (Fig. 11 for the forward rule
and Fig. 12 for the backward one). When during a rollback both a Sched and
another backward transition are enabled at the same time one has to choose
which one to undo, and selecting the wrong one may violate the property that
only consequences of the target action are undone.

We denote a system in rollback mode by ddSee{p,ψ}, where the subscript
means that we wish to undo the action ψ performed by process p and every
action which depends on it. More generally, the subscript of ddee, often depicted
with Ψ or Ψ ′ (where Ψ can be empty while Ψ ′ cannot), can be seen as a stack
(with : as cons operator) of undo requests that need to be satisfied. Once the
stack is empty, the system has reached the state desired by the user. We consider
requests {p, ψ}, asking process p to undo a specific action, namely:

– {p, s}: a single step back;
– {p, λ⇓}: the receive of the message uniquely identified by λ;
– {p, λ⇑}: the send of the message uniquely identified by λ;
– {p, λsched}: the scheduling of the message uniquely identified by λ;
– {p, stnid}: the successful start of node nid′;
– {p, spp′}: the spawn of process p′.

The rollback semantics is defined in Fig. 5 in terms of the relation , selecting
which backward rule to apply and when. There are two categories of rules: (i)
U -rules that perform a step back using the backward semantics; (ii) rule Request
that pushes a new request on top of Ψ whenever it is not possible to undo an
action since its consequences need to be undone before.
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(U − Satisfy)
S ↽p,r,Ψ ′ S ′ ∧ ψ ∈ Ψ ′

ddSee{p,ψ}:Ψ  ddS ′eeΨ
(U − Sched)

S ↽p,r,{s,λ′sched} S ′ ∧ λ′sched 6= λsched

ddSee{p,λsched}:Ψ  ddS ′ee{p,λsched}:Ψ

(U − Unique) S ↽p,r,Ψ ′ S ′ ∧ ψ /∈ Ψ ′ ∧ ∀r′′, Ψ ′′ S ↽p,r′′,Ψ ′′ S ′′ ⇒ S ′ = S ′′

ddSee{p,ψ}:Ψ  ddS ′ee{p,ψ}:Ψ

(U −Act) S ↽p,r,Ψ ′ S ′ ∧ ψ /∈ Ψ ′ ∧ λsched /∈ Ψ ′ ∧ ψ 6= λsched ∀λ ∈ N
ddSee{p,ψ}:Ψ  ddS ′ee{p,ψ}:Ψ

(Request)
S = Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ∧ S 6↽p,r,Ψ ′ ∧ {p′, ψ′} = dep(〈nid, p, h, θ, e, q〉,S)

ddSee{p,ψ}:Ψ  ddS ′ee{p′,ψ′}:{p,ψ}:Ψ

Fig. 5. Rollback semantics

dep(< , , send( , , p′, {λ, v}) : h, , , >, ; ; ) = {p′, λsched}
dep(< , , nodes( , , Ω) : h, , , >, ;Π; {nid} ∪Ω′) = {parent(nid,Π), stnid} if nid /∈ Ω
dep(< , , spawn( , , , p′) : h, , , >, ;Π; ) = {p′, s} if p′ ∈ Π
dep(< , , spawn( , , nid′, ) : h, , , >, ;Π; ) = {parent(nid′, Π), stnid′} if p′ /∈ Π
dep(< , , start( , , succ, nid′) : h, , , >, ;Π; ) = {fst(reads(nid′, Π)), s} if reads(nid′, Π) 6= [ ]
dep(< , , start( , , succ, nid′) : h, , , >, ;Π; ) = {fst(spawns(nid′, Π)), s} if spawns(nid′, Π) 6= [ ]
dep(< , , start( , , succ, nid′) : h, , , >, ;Π; ) = {fst(failed start(nid′, Π)), s}

Fig. 6. Dependencies operator

Let us analyse the U -rules. During rollback, more than one backward rule
could be applicable to the same process. In our setting, the only possibility is
that one of the rules is a Sched and the other one is not. It is important to select
which rule to apply, to ensure that only consequences of the target action are
undone.

First, if an enabled transition satisfies our target, then it is executed and
the corresponding request is removed (rule U − Satisfy). Intuitively, since two
applications of rule Sched to the same process are always causally dependent, if
the target action is an application of Sched , an enabled Sched is for sure one of
its consequences, hence it needs to be undone (rule U − Sched). Dually, if the
target is not a Sched and a non Sched is enabled, we do it (rule U − Act). If a
unique rule is applicable, then it is selected (rule U − Unique).

Rule Request considers the case where no backward transition in the target
process is enabled. This depends on some consequence on another process of
the action on top of the history. Such a consequence needs to be undone before,
hence the rule finds out using operator dep in Fig. 6 both the dependency and
the target process and adds on top of Ψ the corresponding request.

Let us discuss operator dep. In the first case, a send cannot be undone since
the sent message is not in the global mailbox, hence a request has to be made
to the receiver p′ of undoing the Sched of the message λ.

In case of multiple dependencies, we add them one by one. This happens,
e.g., in case nodes, where we need to undo the start of all the nodes which are in
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{nid′} ∪Ω′ but not in Ω. Adding all the dependencies at once would make the
treatment more complex, since by solving one of them we may solve others as
well, and thus we would need an additional check to avoid starting a computation
to undo a dependency which is no more there. Adding the dependencies one by
one solves the problem, hence operator dep nondeterministically selects one of
them. Notice also that the order in which dependencies are solved is not relevant.

In some cases (e.g., send) we find a precise target event, in others we use just
s, that is a single step. In the latter case, a backward step is performed (and its
consequences are undone), then the condition is re-checked and another back-
ward step is required, until the correct step is undone. We could have computed
more precise targets, but this would have required additional technicalities.

Function parent(nid′, Π), used in the definition of dep, returns the pid of the
process that started nid′ while function fst(·) returns the first element of a list.

An execution of the rollback operator corresponds to a backward derivation,
while the opposite is generally false.

Theorem 1 (Soundness of rollback). If ddSeeΨ ′  ∗ ddS ′eeΨ then S ↽∗ S ′
where ∗ denotes reflexive and transitive closure.

Proof. The rollback semantics is either executing backward steps using the back-
ward semantics or executing administrative steps (i.e., pushing new requests on
top of Ψ), which do not alter the state of the system. The thesis follow. ut

In addition, the rollback semantics generates the shortest computation sat-
isfying the desired rollback request.

Theorem 2 (Minimality of rollback). If ddSeeΨ  ∗ ddS ′ee∅ then the backward
steps occurring as first premises in the derivation of ddSeeΨ  ∗ ddS ′ee∅ form the
shortest computation from S satisfying Ψ derivable in the reversible semantics.

A precise formalization and proof of this result is quite long, hence for space
reasons we refer to [7, Theorem 3.2].

4 Distributed CauDEr

CauDEr [16,10,17] is the proof-of-concept debugger that we extended to support
distribution following the semantics above. Notably, CauDEr works on Erlang,
but primitives for distribution are the same in Core Erlang and in Erlang, hence
our approach can be directly applied. CauDEr is written completely in Erlang
and bundled up with a convenient graphical user interface to facilitate the inter-
action. The usual CauDEr workflow is the following. The user selects the Erlang
source file, then CauDEr loads the program and shows the source code to the
user. Then, the user can select the function that will act as entry point, specify
its arguments, and the node identifier where the first process is running. The user
can either perform single steps on some process (both forward and backward),
or perform n steps in the chosen direction in an automatic manner (a scheduler
decides which process will perform each step), or use the rollback operator.
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Fig. 7. A screenshot of CauDEr.

The interface (see Fig. 7) is organized as follow: CauDEr shows the source
code on the top left, the selected process’ state and history (log is not considered
in this paper) on the bottom left, and information on system structure and
execution on the bottom right. Execution controls are on the top right.

We illustrate below how to use CauDEr to find a non-trivial bug.

Finding distributed bugs with CauDEr. Let us consider the following sce-
nario. A client produces a stream of data and wants to store them in a distributed
storage system. A server acts as a hub: it receives data from the client, forwards
them to a storage node, receives a confirmation that the storage node has saved
the data, and finally sends an acknowledgement to the client. Each storage node
hosts one process only, acting as node manager, and has an id as part of its
name, ranging from one to five. Each node manager is able to store at most m
packets. Once the manager reaches the limit, it informs the server that its capac-
ity has been reached. The server holds a list of domains and an index referring
to one of them. Each domain is coupled with a counter, i.e., an integer, and
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each domain can host at most five storage nodes. Each time the server receives a
notification from a node manager stating that the node maximum capacity has
been reached, it proceeds as follows. If the id of the current storage manager is
five it means that such domain has reached its capacity. Then, the server selects
the next domain in the list, resets its counter and starts a new node (and a
corresponding storage manager) on the new domain. If the id of the node is less
than five then the server increases its counter and then starts a new node (and
storage manager) on the same domain, using the value of the counter as new id.
Each node should host at most one process.

Let us now consider the program distributed storage node.erl, available in the
GitHub repository [8], which shows a wrong implementation of the program
described above. In order to debug the program one has to load it and start the
system. Then, it is sufficient to execute about 1500 steps forward to notice that
something went wrong. Indeed, by checking the Trace box (Fig. 7) one can see a
warning: a start has failed since a node with the same identifier already existed.
Then, since no check is performed on the result of the start, the program spawns
a new storage manager on a node with the same identifier as the one that failed
to start. Hence, now two storage managers run on the same node.

To investigate why this happened one can roll back to the reception of the
message {store, full} right before the failed start. Note that it would not be easy
to obtain the same result without reversibility: one would need to re-run the
program, and, at least in principle, a different scheduling may lead to a different
state where the error may not occur. After rolling back one can perform forward
steps on the server in manual mode since the misbehavior happened there. After
receiving the message, the server enters the case where the index of the storage
manager is 5, which is correct because so far we have 5 storage nodes on the
domain. Now, the server performs the start of the node (and of the storage
manager) on the selected domain and only afterwards it selects the new domain,
whereas it should have first selected a new domain and then proceeded to start
a new storage node (and a new storage manager) there. This misbehavior has
occurred because a few lines of code have been swapped.

5 Related work and conclusion

In this work we have presented an extension of CauDEr, a causal-consistent
reversible debugger for Erlang, and the related theory. CauDEr has been first
introduced in [16] (building on the theory in [18]) and then improved in [10]
with a refined graphic interface and to work directly on Erlang instead of Core
Erlang. We built our extension on top of this last version. CauDEr was able
to deal with concurrent aspects of Erlang: our extension supports also some
distribution primitives (start, node and nodes). We built the extension on top of
the modular semantics for Erlang described in [18,10]. Monolithic approaches
to the semantics of Erlang also exist [21], but the two-layer approach is more
convenient for us since the reversible extension only affects the system layer.
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Another work defining a formal semantics for distributed Erlang is [4]. There
the emphasis is on ensuring the order of messages is respected in intra-node
communications but not in inter-node communications (an aspect we do not
consider). Similarly to us, they have rules to start new nodes and to perform
remote spawns, although they do not consider the case where these rules fail.

In the context of CauDEr also replay has been studied [19]. In particular
CauDEr supports causal-consistent replay, which allows one to replay the exe-
cution of the system up to a selected action, including all and only its causes.
This can be seen as dual to rollback. Our extension currently does not support
replay, we leave it for future work.

To the best of our knowledge causal-consistent debugging has been explored
in a few settings only. The seminal paper [9] introduced causal-consistent de-
bugging in the context of the toy language µOz. Closer to our work is Acto-
verse [22], a reversible debugger for the Akka actor model. Actoverse provides
message-oriented breakpoints, which allow the user to stop when some condi-
tions on messages are satisfied, rollback, state inspection, message timeline and
session replay, which allows one to replay the execution of a program given the
log of a computation, as well as the capacity to go back in the execution. While
many of these features will be interesting for CauDEr, they currently do not
support distribution.

Reversible debugging of concurrent programs has also been studied for imper-
ative languages [11]. However, differently from us, they force undoing of actions
in reverse order of execution, and they do not support distribution.

As future work it would be interesting to refine the semantics to deal with
failures (node crashes, network partitions). Indeed, failures are unavoidable in
practice, and we think reverse debugging in a faulty context could be of great
help to the final user. Also, it would be good to extend CauDEr and the related
theory to support additional features of the Erlang language, such as error han-
dling, failure notification, and code hot-swapping. Finally, it would be good to
experiment with more case studies to understand the practical impact of our
tool.
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Var
θ,X

τ−→ θ, θ(X)
Tuple

θ, ei
`−→ θ′, e′i

θ, {v1,i−1, ei, ei+1,n}
`−→ θ′, {v1,i−1, e′i, ei+1,n}

List1
θ, e1

`−→ θ′, e′1

θ, [e1|e2]
`−→ θ′, [e′1|e2]

List2
θ, e2

`−→ θ′, e′2

θ, [v1|e2]
`−→ θ′, [v1|e′2]

Let1
θ, e1

`−→ θ′, e′1

θ, let X = e1 in e2
`−→ θ′, let X = e′1 in e2

Let2
θ, let X = v in e

τ−→ θ[X 7→ v], e

Case1
θ, e

`−→ θ′, e′

θ, case e of cl1; ...; cln end
`−→ θ′, case e′ of cl1; ...; cln end

Case2
match(θ, v, cl1, ..., cln) = 〈θi, ei〉

θ, case v of cl1; ...; cln end
τ−→ θθi, ei

Call1
θ, ei

`−→ θ′, e′i i ∈ {1, ..., n}
θ, call op(v1,i−1, ei, ei+1,n)

`−→ θ, call op(v1,i−1, e′i, ei+1,n)

Call2
eval(op, v1, ..., vn) = v

θ, call op(v1, ..., vn)
τ−→ θ, v

Apply1
θ, ei

`−→ θ′, e′i i ∈ {1, ..., n}
θ, apply a/n(v1,i−1, ei, ei+1,n)

`−→ θ′, apply a/n(v1,i−1, e′i, ei+1,n)

Apply2
µ(a/n) = fun(X1, ..., Xn)→ e

θ, apply a/n(v1, ..., vn)
τ−→ θ ∪ {X1 7→ v1, ..., Xn 7→ vn}, e

Fig. 8. Standard semantics: evaluation of sequential expressions.

A Semantics

This section contains the various semantics that due to space reasons we could
not fit in the paper. It is intended as a help for the reader providing auxiliary
information locally but should not be considered a complete discussion, indeed,
for the sake of brevity, we omit some details and we do not discuss some of the
simplest scenarios. For a complete discussion about the concurrent aspects of
the semantics we refer the reader to [18] and to [7] for an extensive discussion
of the distributed aspects.

A.1 Expression level semantics

The expression level semantics is defined in terms of the labeled transition rela-
tion:

{Env,Expr} × Label × {Env,Expr}
where Env represents the domain of environments, Expr represents the domain
of expressions while Label is an element of the following set:

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a/n, [vn]), self(κ)}
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Send1
θ, e1

`−→ θ′, e′1

θ, e1 ! e2
`−→ θ′, e′1 ! e2

Send2
θ, e2

`−→ θ′, e′2

θ, v1 ! e2
`−→ θ′, v1 ! e′2

Send3
θ, v1 ! v2

send(v1,v2)−−−−−−−→ θ, v2

Receive

θ, receive cl1; ...; cln end
rec(κ,cln)−−−−−−→ θ, κ

Spawn1
θ, ei

`−→ θ′, e′i i ∈ {1, ..., n}
θ, spawn(a/n, [v1,i−1, ei, ei+1,n])

`−→ θ′, spawn(a/n, [v1,i−1, e′i, ei+1,n])

Spawn2
θ, spawn(a/n, [vn])

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ, κ

Self
θ, self()

self(κ)−−−−→ θ, κ

Fig. 9. Concurrent semantics: evaluation of concurrent expressions.

We use ` to spawn over labels.

We divide the expression rules in two sets, the first one being the set of
sequential expressions, depicted in Fig. 8, and the second one being the set of
concurrent expressions, depicted in Fig. 9 (by abuse of notation we put self in
the second set). As it is in Erlang, we consider that the order of evaluation of
the arguments is fixed from left to right.

The sequential expressions define the behavior of some constructs of the
language without side-effects, like the case construct, the let binding or the call
of a function. Moreover, these rules define the evaluation of an expression inside
the data structures of the language (lists and tuples). We label the evaluation
of sequential expressions with τ since they can be considered ’silent’ operations
and we do not need to distinguish them in the system semantics.

A function in a program can be either defined by the user or built-in. In
the former case we exploit rule Apply, where µ maps a function name a/n to
its body, in the latter case we apply rule rule Call, where eval evaluates the
function.

The only tricky situation in the sequential rules arises in rule Case2, where
the auxiliary function match is used. Given an environment θ, a value v, and cln
clauses the function match searches the first clause cli such that v matches pati
and the guard holds.

Now, let us move to the concurrent expressions. Here, we gathered the rules
that define the semantics of concurrent operations at the expression level. We can
categorize these rules depending on whether we locally know or not to what they
reduce. Rules Send1, Send2, Send3 and Spawn1 belong to the first category,
indeed we do not need any of the information available at the system level to
evaluate them. On the contrary, to evaluate rules Receive, Spawn2 and Self we
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Seq
θ, e

τ−→ θ′, e′

Γ ; 〈p, θ, e, q〉 |Π ↪→ Γ ; 〈p, θ′, e′, q〉 |Π

Send
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ ; 〈p, θ, e, q〉 |Π ↪→ Γ ∪ (p′′, v); 〈p, θ′, e′, q〉 |Π

Receive
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, v)

Γ ; 〈p, θ, e, q〉 |Π ↪→ Γ ; 〈p, θ′θi, e′{κ 7→ ei}, q\\v〉 |Π

Spawn
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid

Γ ; 〈p, θ, e, q〉 |Π ↪→ Γ ; 〈p, θ′, e′{κ 7→ p′}, q〉 | 〈p′, [ ], id, apply a/n(vn, [ ]〉 |Π

Self
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, θ, e, q〉 |Π ↪→ Γ ; 〈p, θ′, e′{κ 7→ p}, q〉 |Π

Sched
Γ ∪ {(p, v)}; 〈p, θ, e, q〉 |Π ↪→ Γ ; 〈p, θ, e, v : q〉 |Π

Fig. 10. Standard semantics: system rules.

need information available only at the system level. To tackle the problem, each
of these expressions returns a fresh variable κ, which acts like a future, then the
system level is in charge of binding κ to its proper value (e.g., the pid of the new
process).

A.2 System level semantics

Fig. 10 depicts the rules of the system semantics, which is defined in terms of
the relation ↪→. The system semantics defines the behavior of the system, here
intended as the global mailbox Γ and the pool of processes Π. Each rule defines
how the system can transit from one state to another in a forward manner.

We can see how the system semantics relies on the expression semantics
for the evaluation of the concurrent expressions and then how it performs the
corresponding action. The corresponding action can be the substitution of κ with
its actual value, the application of the appropriate side-effect or both.

Let us consider the case of rule Spawn. In rule Spawn the system level relies
on the expression level to evaluate the spawn expression, then it chooses a fresh
identifier p as the pid of the new process, replaces κ with p and finally adds to
Π the new process.

Now, let us discuss more in detail rule Receive, as it may not be of immediate
understanding. The receive construct traverses the queue of messages, from the
oldest to the newest, searching for the first message that matches one of the n
clauses. If one is found then the receive evaluates to the expression relative to
the matching clause, otherwise the process suspends itself. Here, the auxiliary
function matchrec, given an environment, a list of clauses, and a queue of mes-
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(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, h, θ, e, q〉 |Π ⇀ Γ ; 〈p, τ(θ, e) : h, θ′, e′, q〉 |Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identifier

Γ ; 〈p, h, θ, e, q〉 |Π ⇀ Γ ∪ (p′′, {λ, v}); 〈p, send(θ, e, p′′, {λ, v}) : h, θ′, e′, q〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q = (θi, ei, {λ, v})
Γ ; 〈p, h, θ, e, q〉 |Π ⇀ Γ ; 〈p, rec(θ, e, {λ, v}, q) : h, θ′θi, e′{κ 7→ ei}, q\\{λ, v}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh identifier

Γ ; 〈p, h, θ, e, q〉 |Π ⇀ Γ ; 〈p, spawn(θ, e, p′) : h, θ′, e′{κ 7→ p′}, q〉
| 〈p′, [ ], id, apply a/n(vn), [ ]〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, h, θ, e, q〉 |Π ⇀ Γ ; 〈p, self(θ, e) : h, θ′, e′{κ 7→ p}, q〉 |Π

(Sched)
Γ ∪ {(p, {λ, v})}; 〈p, h, θ, e, q〉 |Π ⇀ Γ ; 〈p, h, θ, e, {λ, v} : q〉 |Π

Fig. 11. Forward reversible semantics.

sages, searches for the first message v that matches one of the patterns. When
one is found it returns the corresponding environment and expression alongside
with the matched message v. Then, the system semantics updates the process’
environment with the new variables introduced by the selected branch, replaces
κ with the corresponding expression, and removes v from the process’ queue.

Then, rule Send and rule Sched are the rules that respectively send and
schedule a message. More precisely, we apply rule Send every time a process
performs a send and, as a side-effect, we update the value of Γ by adding the
pair (p′′,m), where p′′ is the pid of the intended receiver and m is the message.
Whereas, by applying rule Sched nondeterministically we remove a message from
Γ and we add it to its receiver queue. The fact that rule Sched chooses the pair
nondeterministically allows to model every possible interleaving of the messages.

Finally, rule Seq denotes a silent operation without side-effects and Self the
call of function self by process p.

A.3 A reversible semantics

The forward reversible semantics, depicted in Fig. 11 and defined by the relation
⇀, is the natural extension of the system semantics where each process has
been endowed with a history of its previous configurations. More precisely, each
time a process performs a forward step, the current configuration and possibly
additional pieces of information are saved in the history, then the process transits
in a new state.
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(Seq) Γ ; 〈p, τ(θ, e) : h, θ′, e′, q〉 |Π ↽ Γ ; 〈p, h, θ, e, q〉 |Π

(Send) Γ ∪ {(p′′, {λ, v})}; 〈p, send(θ, e, p′′, {λ, v}) : h, θ′, e′, q〉 |Π ↽ Γ ; 〈p, h, θ, e, q〉 |Π

(Receive) Γ ; 〈p, rec(θ, e, {λ, v}, q) : h, θ′, e′, q\\{λ, v}〉 |Π ↽ Γ ; 〈p, h, θ, e, q〉 |Π

(Spawn) Γ ; 〈p, spawn(θ, e, p′) : h, θ′, e′, q〉 | 〈p′, [ ], id, e′′, [ ]〉 |Π ↽ Γ ; 〈p, h, θ, e, q〉 |Π

(Self ) Γ ; 〈p, self(θ, e) : h, θ′, e′, q〉 |Π ↽ Γ ; 〈p, h, θ, e, q〉 |Π

(Sched)
Γ ; 〈p, h, θ, e, {λ, v} : q〉 |Π ↽ Γ ∪ {(p, {λ, v})}; 〈p, h, θ, e, q〉 |Π

if the topmost rec(...) item in h (if any) has the
form rec(θ′, e′, {λ′, v′}, q′) with q′\\{λ′, v′} 6= {λ, v} : q

Fig. 12. Backward reversible semantics.

The history serves two purposes: it is used to check that all the consequences
of the action, if any, have been undone and to travel back in the process’ com-
putation.

The only difference, beyond the history, between the forward reversible se-
mantics and the system semantics is that in the former each message is uniquely
identified by an id, usually denoted by λ or λ′. The need to uniquely identify
each message arise from the necessity to identify a precise point in the past of a
process’ computation.

Let us consider the following example to clarify such need.

Example 1. Let us consider three processes p1, p2 and p3; p1 sends a message v
to p2, then p3 sends the same message v to p2. Now, if we desire to undo the
send of message v sent by p1 we first need to undo the receive of p2 and to do so
we need to be able to precisely identify the moment in p2’s computation when
it received the message. If the only information available in the process’ history
is the content of the message it would be impossible to determine who is the
sender of two identical messages.

The problem described in the previous example does not arise if each message
is paired with a unique identifier. Indeed, in that case it is sufficient to undo the
computation of the receiver up to the receive of the message with the desired
identifier. We refer to [18] for a more detailed discussion of the problem.

The uncontrolled backward semantics is depicted in Fig. 12 and defined in
terms of the relation ↽. The backward semantics restores previous states of a
process’ computation if all of the consequences of the target action have been
undone. In some cases, e.g., rule Seq, since the action does not have conquences
we can simply restore the computation without performing any checks. In other
cases, e.g., rule Spawn, before undoing a step we need to perform additional
checks.
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(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, τ(θ, e) : h, θ′, e′, q〉 |Π;Ω

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identifier

Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω
⇀ Γ ∪ {(p′′, {λ, v})}; 〈nid, p, send(θ, e, p′′, {λ, v}) : h, θ′, e′, q〉 |Π;Ω

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, {λ, v})
Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

⇀ Γ ; 〈nid, p, rec(θ, e, {λ, v}, q) : h, θ′θi, e
′{κ 7→ ei}, q\\{λ, v}〉 |Π;Ω

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, self(θ, e) : h, θ′, e′{κ 7→ p}, q〉 |Π;Ω

(Sched)
Γ ∪ {(p, {λ, v})}; 〈nid, p, h, θ, e, q〉 |Π;Ω ⇀ Γ ; 〈nid, p, h, θ, e, {λ, v} : q〉 |Π;Ω

Fig. 13. Missing rules of the extended forward reversible semantics

Rules Receive and Sched are the most complicated cases of the semantics,
hence let us discuss them in detail. Transitions derived using rules Sched and
Receive (applied to the same process) do not commute. In other words, to ensure
causal consistency, we must undo them in reverse order of execution. The fact
that two applications of rule Sched do not commute is ensured by the fact that
we undo a Sched only when the target message is on top of the queue q, hence q
is forcing the order. Applications of rule Receive do not commute because we can
undo a Receive only when the corresponding item is on the top of the process
history. Finally, applications of rules Sched and Receive do not commute thanks
to the side condition of rule Sched and since we apply rule Receive only when
the queue is the same as when the forward step has been performed.

The other rules are more straightforward. Rule Send can be applied when the
message is in Γ because in this case we are sure that each of its consequences has
been undone already. Rule Spawn can be applied when the child has an empty
history. Finally, rules Seq and Self can always be applied since they never have
consequences.

A.4 A distributed reversible semantics

Fig. 13 and Fig. 14 show the missing rules of the semantics depicted in Fig. 3
and Fig. 4. The behavior defined by the rules depicted in the two figures is the
same as the one described in Section A.3.
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(Seq) Γ ; 〈nid, p, τ(θ, e) : h, θ′, e′, q〉 |Π;Ω ↽p,seq,{s} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(Send)
Γ ∪ {(p′′, {λ, v})}; 〈nid, p, send(θ, e, p′′, {λ, v}) : h, θ′, e′, q〉 |Π;Ω

↽p,send(λ),{s,λ⇑} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(Receive)
Γ ; 〈nid, p, rec(θ, e, {λ, v}, q) : h, θ′, e′, q\\{λ, v}〉 |Π;Ω

↽p,rec(λ),{s,λ⇓} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(Self ) Γ ; 〈nid, p, self(θ, e) : h, θ′, e′, q〉 |Π;Ω ↽p,self,{s} Γ ; 〈nid, p, h, θ, e, q〉 |Π;Ω

(Sched)

Γ ; 〈nid, p, h, θ, e, {λ, v} : q〉 |Π;Ω
↽p,sched(λ),{λsched} Γ ∪ {(p, {λ, v})}; 〈nid, p, h, θ, e, q〉 |Π;Ω

if the topmost rec(...) item in h (if any) has the
form rec(θ′, e′, {λ′, v′}, q′) with q′\\{λ′, v′} 6= {λ, v} : q

Fig. 14. Missing rules of the extended backward reversible semantics


