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Abstract. Background. Industrial software increasingly relies on open
source software. Therefore, industrial practitioners need to evaluate the
quality of a specific open source product they are considering for adop-
tion. Automated tools greatly help assess open source software quality,
by reducing the related costs, but do not provide perfectly reliable in-
dications. Indications from tools can be used to restrict and focus man-
ual code inspections, which are typically expensive and time-consuming,
only on the code sections most likely to contain faults. Aim. We inves-
tigate the extent of the effectiveness of static analysis bug detectors by
themselves and in combination with code smell detectors in guiding in-
spections. Method. We performed an empirical study, in which we used
a bug detector (SpotBugs) and a code smell detector (JDeodorant). Re-
sults. Our results show that the selected bug detector is precise enough
to justify inspecting the code it flags as possibly buggy. Applying the
considered code smell detector makes predictions even more precise, but
at the price of a rather low recall. Conclusions. Using the considered
tools as inspection drivers proved quite useful. The relatively small size
of our study does not allow us to draw universally valid conclusions, but
our results should be applicable to source code of any kind, although
they were obtained from open source code.

Keywords: Defect prediction · code smell · static analysis.

1 Introduction

Software inspections [12, 5, 13, 6] are one of the main techniques that have been
proposed for discovering defects in code, to prevent defective software from being
released. Software inspections are often performed with the help of checklists,
i.e., lists of recurrent issues that usually lead to software failure.

Software bug detectors based on static analysis were developed to automat-
ically recognize code patterns that are generally associated with defects. Bug
detectors perform a sort of “automated” inspection, as opposed to the “man-
ual” inspection performed by developers. Unfortunately, static analysis cannot
in general provide conclusive evidence of defects. Since many properties related
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to software defects are undecidable, the indications provided by bug detectors
must be verified by developers. In practice, developers have to manually inspect
the portions of code that are flagged as possibly defective by tools. Because of
their high cost, manual inspections are usually performed only on the sections
of code that are considered particularly important or very error-prone. In this
sense, bug detectors may be very effective, since they indicate which parts of the
code are worth inspecting manually.

The concept of “code smell” was introduced to describe a code structure that
is likely to cause problems [36, 8, 16]. The original introduction of the concept of
code smell was based on the manual examination of the source code, as witnessed
by a few indications. First, Fowler et al. [16] provided only informal descriptions
of code smells, since code smells are expected to be easily recognized as inad-
equate code structures by professional software coders. Second, they did not
intend to provide any precise measurement-based definition of code smells (“In
our experience no set of metrics rivals informed human intuition” [16]). Third,
no additional evidence was required that code smells actually have detrimental
effects on software. The very same act of code analysis by which a developer
recognizes a code smell also lets him/her recognize its harmfulness, hence a sit-
uation that is not deemed dangerous is not classified as a code smell, even when
the code structurally matches the definition of a code smell.

However, manual code smell detection involves the same type of costs as man-
ual inspections. Therefore, to reduce development costs [23], researchers have
developed tools for automatically detecting code smells [28, 9, 43, 29, 50, 44]. Au-
tomation was made possible by precise definitions of code smells, generally based
on static measures of source code [27].

Even though automatic code smell detectors have been available for a few
years, there is little evidence that automatically detected code smells are actu-
ally associated with quality issues: there are both reports that support and do
not support the association of the presence of code smells with software qual-
ity issues. For instance, Olbrich et al. [30] and Palomba et al. [31] reported
findings supporting the hypothesis that god class hinders maintainability, while
Schumacher et al. [38], Sjøberg et al. [40] and Yamashita et al. [48] reported
findings not supporting the hypothesis. Some articles even report cases in which
an improvement of software quality in presence of code smells was observed [17].

Other papers studied the correlation between code smells and some struc-
tural problems reported by FindBugs, without checking manually whether the
detected structural problems correspond to actual defects [11, 51, 41]. In our
view, code sections that are classified as smelly by automated detectors should
be considered as code sections that need to be manually inspected, to check
whether the conditions that could hamper software quality are satisfied.

Given that bug detectors have proved to work reasonably well in detecting
real bugs [52, 45, 24], and that manual inspections are expensive, it would be im-
portant for software developers to know how well automated bug detectors work
by themselves and in combination with code smell detectors. In fact, practition-
ers who have a given budget for inspections must decide how they should spend
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it most effectively. Should they favor the indications by bug detectors? Should
they inspect the code flagged by automated smell detectors? Or maybe should
they proceed to modify the code without inspecting it at all, based exclusively
on the indications by the tools? In this paper, we address these questions by
investigating the extent of the effectiveness of static analysis as bugs detector by
itself and in combination with code smells in guiding inspections. These ques-
tions are important especially when developers reuse software written by other
developers, as is usually the case with Open Source Software (OSS) [26, 25].

We illustrate an empirical study concerning the OSS products incorporated
in two B2C web portals developed by an industrial organization. Our study
provides some early findings on the effectiveness of bug detectors aiming at
problem detection and automated code smell detection tools. Specifically, we
used one tool per category: respectively, SpotBugs [4] and JDeodorant [2]. We
applied them to the set of OSS products incorporated in two B2C web portals.
We first applied SpotBugs and noted the subset of most important warnings
that it issued. We then proceeded to manually check whether those warnings
corresponded to actual bugs. Finally, we subjected the code sections related to
the warnings to JDeodorant and recorded the smells found.

The main contributions of the paper are the following:

– Given the constant evolution of tools, our study provides some up-to-date
evidence about their practical usefulness in software development.

– In our empirical study, we found that the precision of the tools in detecting
problematic code sections is reasonably high, despite the fact that they do
not consider the dynamic behavior of the software under analysis.

– For the first time—to the best of our knowledge—a quantitative evaluation
of using bug detectors in combination with code smell detectors is provided.

– We provide some quantitative performance indicators to developers who need
to decide how to evaluate the quality of the OSS they are using, or could
use, as part of their software.

The results presented in this paper were obtained by applying a process that is
close to the one used by practitioners. So, our results are expected to be directly
applicable in software development practice.

The remainder of the paper is organized as follows. Section 2 describes the
concepts, processes and tools that are the subject of the study. Section 3 describes
our empirical study and illustrates the results we obtained. Section 4 discusses
the threats to the validity of the study. Section 5 reports about the previous
work that aimed at evaluating bug detectors based on static analysis and code
smells. Section 6 draws some conclusions.

2 Bug Detectors and Code Smell Detectors

Several tools exist that can be used to reduce inspection costs.
We used two static analysis tools in our empirical study: SpotBugs to auto-

matically detect potential bugs in a software program, and JDeodorant to detect
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potential code smells and suggest refactoring strategies to improve the source
code. These tools were selected because of their characteristics and their diffu-
sion in research and practice. Both tools have very active communities. Both
tools are also available as plug-ins, such as for Eclipse or SonarQube platforms.

2.1 A Bug Detector: SpotBugs

SpotBugs [4] is a static analysis tool that looks for bugs in Java source code.
The tool is free software, distributed under the GNU Lesser General Public
License. SpotBugs inherits all of the features of its predecessor FindBugs [19,
1] and checks more than 400 bug patterns. SpotBugs checks for bug patterns
such as—among others—null pointer dereferencing, infinite recursive loops, bad
uses of the Java libraries, and deadlocks. SpotBugs is available as an Eclipse
plugin at [spotbugs.github.io/eclipse/] or as a standalone program and can be
downloaded from [spotbugs.github.io].

In SpotBugs, bug patterns are classified by means of several variables, such
as: the type of violation, its category, the rank of the bug, and the confidence of
the discovering process.

Ten categories are defined [3], such as “Bad Practice” (i.e., violations of
recommended and essential coding practice, like hash code and equals prob-
lems, cloneable idiom, dropped exceptions, Serializable problems, and misuse
of finalize), “Correctness” (i.e., probable bug - an apparent coding mistake re-
sulting in code that was probably not what the developer intended), or “Mul-
tithreaded correctness” (i.e., code flaw issues having to do with threads, locks,
and volatiles). The complete list of bug descriptions can be found at [spot-
bugs.readthedocs.io/en/latest/bugDescriptions.html].

The rank of each warning concerns the severity of the potential bug, and
spans from 1 (most severe) to 20 (least severe). Four rank levels are also defined:
“scariest” (1 ≤ rank ≤ 4), “scary” (5 ≤ rank ≤ 9), “worrying” (10 ≤ rank ≤
14), “of concern” (15 ≤ rank ≤ 20).

Moreover, a “confidence” (named “priority” in earlier releases of SpotBugs)
is associated to each warning: high confidence (1), normal confidence (2) and
low confidence (3), to highlight the quality of the detection process.

2.2 A Code Smells Detector: JDeodorant

JDeodorant [15, 42, 2] is a free tool (available as an Eclipse plug-in) that detects
design problems in source code, such as code smells, and suggests how to resolve
these smells by applying refactoring procedures. Specifically, JDeodorant is able
to detect the following four code smells [16]: God Class (a class that is too long,
too complex, and does too much), Long Method (a method, function or proce-
dure that is too large), Type Checking (a class contains “complicated conditional
statements that make the code difficult to understand and maintain” [14]), and
Feature Envy (a method or an object does not leverage data or methods from
its class but asks for external data or methods to perform computation or make
a decision).
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3 The Empirical Study

3.1 Method

Recently, one of the authors participated in the analysis of the quality of an
industrial software product, which used several pieces of OSS [22]. In this study
we use those OSS programs, briefly described in Table 1, as a test bed. In
practice, the quality of a large fraction of industrial software depends on the
quality of OSS. By selecting a set of OSS products that we know are used also in
non open-source contexts, we make sure to 1) analyze software that is relevant,
and 2) provide results that are of interest also outside the OSS community.

Table 1. The open-source products that were analyzed.

Product name Version LOC Num classes Num methods

Log4j 1.2.16 16497 217 1910
Jasperreports 6.11.0 278694 2558 23465
Pdfbox 1.8.16 120037 1125 9164
Hibernate-search-elasticsearch 5.11.4 21575 350 3264
Hibernate-search-backend-jgroups 5.11.4 1624 25 1067
Hibernate-search-engine 5.11.4 65239 1020 7967
Hibernate-search-performance-orm 5.11.4 1950 39 159

The study was organized in three phases: data extraction, data analysis, and
interpretation of results.

Data extraction was performed as follows:

1. We applied SpotBugs to the set of OSS products. SpotBugs issued several
hundred warnings. To limit the effort needed to inspect the code flagged as
possibly defective, we considered only the 64 issues having rank not greater
than 11. Since SpotBugs ranks warning severity in the range 1–20, we chose
11 as a threshold since it is the upper median of the severity rank range. Con-
sidering the issues with the highest ranks is just what developers would do in
an industrial setting: having a limited effort to be dedicated to inspections,
they deal with the issues classified as most dangerous.

2. The considered issues reported by SpotBugs were inspected manually by the
authors. The inspections resulted in classifying every issue as either con-
firmed (when a real defect was found), rejected (when a false positive was
recognized), or “possible” (when we found something wrong, but our knowl-
edge of the code did not allow us to decide whether a failure was actually
bound to occur).

3. The code elements (i.e., the classes or methods) involved in the issues re-
ported by SpotBugs were analyzed with JDeodorant, and the detected smells
were annotated. We focused on performing smell detection on elements al-
ready flagged defective by SpotBugs since, in this paper, we are interested
in evaluating the effectiveness of static analysis bug detectors by themselves



6 L. Lavazza et al.

and in combination with code smell detectors in guiding inspections, and
not vice versa.

For instance, in our study, SpotBugs issued a warning of category Correct-
ness and type rc ref comparison (which is issued when == or != operators
were used instead of equals()) in method validateEqualWithDefault of class
Elasticsearch2SchemaValidator, package hibernate.search.elasticsearch.
JDeodorant highlighted that class Elasticsearch2 SchemaValidator is a smelly
class (God Class), and method validateEqualWithDefault suffers from Fea-
ture Envy. Moreover, manual inspection confirmed that the SpotBugs warning
is associated with a real bug.

Data analysis was conducted on the set of code elements flagged as defective
by SpotBugs. The analysis was performed twice: once considering the “possible”
bugs as false positives, and once considering the “possible” bugs as true positives.
In what follows, we label the former scenario as “optimistic” (since the code is
less buggy than indicated by SpotBugs), and the latter scenario as “pessimistic”
(since the code is considered as buggy as indicated by SpotBugs).

Data analysis was conducted as follows (once for each scenario). First, we
computed the number of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) estimates provided by SpotBugs and JDeodorant
for both scenarios (see Table 3). In doing this, the existence of a given smell was
considered as a fault prediction.

Then, based on TP, FP, TN and FN, we computed a few accuracy indicators,
namely precision, recall, F-measure (the harmonic mean of precision and recall),
and φ, alias Matthews’ Correlation Coefficient (MCC):

precision = TP
EP = TP

TP+FP

recall = TP
AP = TP

TP+FN

F-measure = 2 precision recall
precision+recall

φ = TP TN−FP FN√
EP EN AP AN

where EP is the number of estimated positives (EP=TP+FP), EN is the number
of estimated negatives (EN= TN+FN), AP is the number of actual positives
(AP=TP+FN) and AN is the number of actual negatives (AN=TN+FP).

Finally, we considered two additional smell-based faultiness predictions, which
we labeled “any smell” and “all smells.” In the former case, a code element is
estimated buggy if it has one or more of the smells detected by JDeodorant;
in the latter case, a code element is estimated buggy if it has all of the smells
detected by JDeodorant. We computed the same accuracy indicators mentioned
above for “any smell” and “all smells.”

3.2 Results

First of all, let us evaluate the performance of SpotBugs. We considered 64 warn-
ings, hence EP=64. Among these, in the optimistic scenario, TP is the number
of confirmed bugs; in the pessimistic scenario, TP is the number of confirmed
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and possible bugs. Note that we consider only warnings, which—according to
SpotBugs—concern potential problems, hence there are estimated positives, but
no estimated negatives. Thus, EP=64=n, where n indicates the total number of
estimates of the classifier implemented by SpotBugs. As a consequence, we have
TN=FN=0, hence TP=AP, and recall=1.

The first row of Table 2 summarizes the performance of SpotBugs. Specifi-
cally, SpotBugs issued 64 warnings; of these, 37 were recognized via inspections
as real bugs, 13 were recognized as false positives, while 14 could not be classified
with certainty. Accordingly, in the optimistic case (i.e., when possible bugs are
considered as false positives) precision= 37

64 ' 0.54. In the pessimistic case (i.e.,
when possible bugs are considered as true positives) precision= 37+14

64 ' 0.8.
The first row of Table 2 shows that the accuracy of SpotBugs’s predictions is

good, substantially better than reported in several previous studies (for instance,
Shen et al. reported in their study that FindBugs achieved precision=40% [39]).

Table 2. SpotBug’s issues and precision.

Selected Bugs precision
issues n Confirmed Possible Rejected Optimistic Pessimistic

all 64 37 14 13 0.58 0.80
high rank 6 6 0 0 1.00 1.00
mid rank 36 13 11 12 0.36 0.67
low rank 22 18 3 1 0.82 0.95
high conf. 22 10 7 5 0.45 0.77
mid conf 42 27 7 8 0.64 0.81

To verify the reliability of the evaluation of the confidence in the warnings,
we split SpotBugs issues into high- and mid-confidence ones (there were no
low-confidence issues among the ones we considered). We also split SpotBugs
issues into high-, mid- and low-rank ones (corresponding to SpotBugs “scariest,”
“scary,” and “worrying” rank levels), to check if the estimation accuracy depends
on the rank. The results we obtained are in Table 2. The only noticeable result
is that all the 6 high-rank reported issues concern real bugs.

The accuracy indicators for SpotBugs and the considered code smells evalu-
ated by JDeodorant for the optimistic and pessimistic case are given in Table 3.
Note that φ is undefined for SpotBugs: this is a consequence of EN being zero.

3.3 Interpretation of Results

In interpreting the results, we must take into consideration a few facts:

– For SpotBugs, n=EP, hence FN=TN=0: thus recall= TP
AP = TP

TP+FN = TP
TP =1.

– When performing a completely random estimation, you get precision=recall
=F-measure=AP

n . Therefore, a prediction model having F-measure < AP
n

should be discarded, since it performs worse than random estimation. In the
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Table 3. Accuracy indicators with the optimistic (AP/n=0.58) and pessimistic crite-
rion (AP/n=0.8).

criterion TP FP FN TN recall precision FM φ

SpotBugs 37 27 0 0 1.00 0.58 0.73 —
GodClass 15 5 22 22 0.41 0.75 0.53 0.23
LongMethod 22 5 15 22 0.59 0.81 0.69 0.41

optimistic FeatureEnvy 5 1 32 26 0.14 0.83 0.23 0.17
TypeChecking 9 0 28 27 0.24 1.00 0.39 0.35
AllSmells 2 0 35 27 0.05 1.00 0.10 0.15
AnySmell 29 9 8 18 0.78 0.76 0.77 0.45

SpotBugs 51 13 0 0 1.00 0.80 0.89 —
GodClass 18 2 33 11 0.35 0.90 0.51 0.17
LongMethod 24 3 27 10 0.47 0.89 0.62 0.20

pessimistic FeatureEnvy 6 0 45 13 0.12 1.00 0.21 0.16
TypeChecking 9 0 42 13 0.18 1.00 0.30 0.20
AllSmells 2 0 49 13 0.04 1.00 0.08 0.09
AnySmell 34 4 17 9 0.67 0.89 0.76 0.29

pessimistic case it is AP
n = 0.8, while in the optimistic case it is AP

n = 0.58.
Better than random values of F-measure are in bold in Tables 3.

– The F-measure has been widely criticized in the literature [18, 34, 49], mainly
because it does not account for true negatives. In our case, though, this is
not a reason not to use the F-measure to evaluate SpotBugs, because TN=0
by construction. As far as code smells are concerned, φ complements the
F-measure in providing a reliable indication of prediction accuracy.

In the pessimistic scenario, no code smell has F-measure better than random.
The low values of φ confirm that in this case code smells are poor defect pre-
dictors. However, in the optimistic scenario, Long Method and AnySmell have
a F-measure better than random, and φ confirms that in this case these smells
are acceptably good defect predictors. In fact, values of φ greater than 0.4 in-
dicate that the association between the defect prediction and model and actual
defectiveness is between medium and strong [10].

Nonetheless, in both scenarios, all code smells’ precision is better than ran-
dom, and often really good. This is not surprising. Most smells address very spe-
cific conditions, which do not occur very frequently. Therefore, they are bound to
feature rather low recall. On the contrary, when a very specific smell is present,
it is expected that there is “something wrong” and a defect is likely present as
well. For instance, in the pessimistic scenario, Feature Envy is detected in only
6 cases out of 64, and all 6 code elements were found defective.

3.4 Discussion

SpotBugs appears much more precise than reported by previous—possibly
outdated—studies. Precision in the [0.58, 0.80] range (depending on “possible”
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bugs being real bugs or not) suggests that manual inspection of the issues re-
ported by SpotBugs is generally cost-effective. To this end, it is worth noting
that SpotBugs describes and localizes possible bugs very precisely. Thus, exam-
ining a few lines of code is generally sufficient to recognize the presence of the
bug. In many cases, the required correction is also straightforward. So, a first
outcome of our analysis is that using SpotBugs to identify the code to be in-
spected appears cost-effective, even when the evaluated code is OSS, on which
industrial developers do not want to invest much effort and time.

However, a practitioner that applied SpotBugs and obtained a set of warnings
could still wonder whether SpotBugs warnings are reliable enough to deserve
inspections. To clear this doubt, a practitioner could decide to run JDeodorant on
the code flagged as possibly defective by SpotBugs, to get further confirmations.
Our analyses show (see rows “AnySmell” in Table 3) that this process, which
connects static analysis and code smell detection, achieves better precision than
static analysis by itself, i.e., a greater proportion of inspections find real defects;
in other words, inspections are most cost-effective. At the same time, recall
decreases with respect to inspecting all the warnings issued by SpotBugs; hence,
fewer defects are removed.

In conclusion, based on the results of our study, we can suggest that manual
code inspection be done following the indications provided by SpotBugs, because
its relatively high precision level makes it possible to identify (and often correct)
several bugs with little effort. However, practitioners may prefer to inspect only
code that is flagged as defective by both SpotBugs and JDeodorant; however
practitioners are warned that this practice seems to have a slightly increased
precision and a more substantially decreased recall.

Code smells appear characterized by good precision. Hence it appears useful
to inspect code elements that are classified as smelly. Nonetheless, each inspec-
tion could be relatively expensive: for instance, inspecting a God Class involves
examining several hundred lines of code. Instead, performing smell detection on
elements already flagged defective by bug detectors leads to both increasing the
confidence that a smelly piece of code is really defective, and greatly simplifies
inspections: in case of a God Class, one does not need to examine the entire
class, but only the piece of code flagged defective by the bug detector.

4 Threats to Validity

The external validity of our study may be influenced by the fact that we used only
two tools, one for each type of analysis. However, the two tools are among the
best-known and most used ones, by both researchers and practitioners. At any
rate, we were able to investigate only a few code smells, i.e., all those supported
by JDeodorant. So, we may have obtained different results if we had investigated
other code smells. Also, we used a limited number of projects and datasets,
which may not be representative of a wider section of the software products. In
addition, we used OSS projects, which may not be representative of proprietary
software products and processes. We limited the number of issues investigated
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to 64, though we addressed the most critical of a few hundred warnings. As
already noted in Section 3.1, we performed smell detection only on elements
already flagged defective by SpotBugs, because our goal was not to compare the
performance of the two tools in isolation. This is a limitation to the scope of the
study, not to its validity; readers are warned not to interpret our results as an
evaluation of the performance of code smellers when not used in combination
with bug detectors.

Construct validity may be threatened by the performance metrics used. For
instance, FM has been widely used in the literature, but it also has been largely
criticized [49]. We also used precision, recall, and φ, to have a more comprehensive
picture about the performance of the tools we used.

5 Related Work

Tools that use static analysis to identify likely defective code have been intro-
duced more than twenty years ago. Several research efforts have been devoted
to investigating their real effectiveness.

Rahman et al. [35] compared the defect prediction capabilities of static anal-
ysis tools (namely FindBugs, PMD, and Jlint) and statistical defect prediction
based on historical data.

Vetrò et al. [47] evaluated the accuracy of FindBugs. The code base used
for the evaluation consisted of Java projects developed by students during a
programming course. The code is equipped with acceptance tests written by
teachers of the course to check all functionalities. To determine true positives,
they used temporal and spatial coincidence: an issue was considered related to
a bug when it disappeared at the same time as a bug got fixed. Later, Vetrò
et al. repeated the analysis, with a larger code set and performing inspections
concerning four types of issues found by FindBugs, namely the types of findings
considered more reliable [46].

Zazworka et al. studied the relationship between technical debt items re-
ported by developers and the indications provided by FindBugs [52]. They found
that FindBugs did well in pointing to source code files with defect debt. However,
finer granularity evaluations do not seem to have been addressed.

Danphitsanuphan and Suwantada studied the correlation between code smells
and some structural problems reported by FindBugs [11]. However, they did not
check whether the structural problems correspond to actual defects.

Zazworka et al. [51] also applied four different technical debt identification
techniques (including code smells and automatic static analysis) to 13 versions of
an open-source software project. Noticeably, the outputs of the four approaches
pointed to different problems in the source code. The research method used
by Zazworka et al. [51] is quite different from ours. They looked for correlations
between issues reported by tools and actions on code connected with repaying the
interests of technical debt. By considering a sufficiently long streak of versions,
they obtained a good representation of the underlying relationships between
reported issues and the technical debt. Our approach is inherently different. We
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consider a single version of many software products and manually inspect the
code that SpotBugs flags as possibly defective. In this way, we verify whether
issues reported by the static analysis tool are actual defects or not.

Thung et al. performed an empirical study to evaluate to what extent field
defects could be detected by FindBugs and similar tools [41]. To this end, Find-
Bugs was applied to three open-source programs (Lucene, Rhino and AspectJ).
The study by Thung et al. takes into consideration only known bugs. On the
contrary, we relied on manual inspection to identify actual bugs.

In 2007, Ayewah et al. evaluated the issues found by FindBugs in production
software developed by Sun and Google [7]. They classified the found issues into
false positives, trivial bugs, and serious bugs. A substantial fraction of the issues
turned out to concern real but trivial problems. Accordingly, they stated that
“Trying to devise static analysis techniques that suppress or deprioritize true
defects with minimal impact, and high-light defects with significant impact, is
an important and interesting research question.” 13 years later, we wish to check
if SpotBugs (the heir of FindBugs) has improved in detecting “important” issues.

Vestola applied FindBugs to Valuatum’s system and found that 18.5% of
the issues were real bugs that deserved corrections, 77.6% were mostly harmless
bugs, and 3.8% were false positives [45].

Kim and Ernst evaluated the relationship between issues reported by three
static analysis tools (including FindBugs) and the history of changes in three
open source products [21]. They consider warnings that remain in the programs
or are removed during non-fix changes as likely false positive warnings. Although
it is probably so, it is hardly so for all such warnings, hence the number of false
positives is likely overestimated.

Code smell were defined by Fowler et al. in 1999 [16], based on previous
work [36, 8]. A few years later, Marinescu proposed to identify smells on the
basis of static code measures [27]: since then, several tools implementing au-
tomatic code smell detection—both based on Marinescu’s definitions and on
other definitions—have been developed, such as Decor, CodeVizard, JDeodor-
ant, etc. [28, 9, 43, 29, 50, 44].

Many researchers addressed the problem of verifying to what extent code
smells are associated with code problems that can affect external code qualities
(mainly maintainability and correctness). Lately, a few Systematic Literature
Reviews (SLR) were published [32, 20, 33, 37], summarizing the evidence col-
lected about code smell harmfulness. The mentioned SLRs depict a situation
characterized by several studies, which produced evidence that does not seem
conclusive.

6 Conclusions

In this paper, we have described an empirical study that we carried out to assess
the usefulness of static analysis and code smell detection in the identification of
bugs. Our study uses two popular tools, SpotBugs and JDeodorant, which are
applied to a limited set of OSS projects. The study shows that these tools can



12 L. Lavazza et al.

help software practitioners detect and remove defects in an effective way, to limit
the amount of resources that would otherwise be spent in more cost-intensive
activities, such as software inspections.

SpotBugs appears to detect defects with good precision, hence manual in-
spection of the code flagged defective by SpotBugs becomes cost-effective. When
JDeodorant is used in conjunction with SpotBugs, detection precision increases,
thus making manual code inspections even more effective. However, recall de-
creases, thus decreasing the number of bugs that are actually identified.
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