
HAL Id: hal-03264047
https://inria.hal.science/hal-03264047

Submitted on 17 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checkpointing Workflows à la Young/Daly Is Not Good
Enough

Anne Benoit, Lucas Perotin, Yves Robert, Hongyang Sun

To cite this version:
Anne Benoit, Lucas Perotin, Yves Robert, Hongyang Sun. Checkpointing Workflows à la Young/Daly
Is Not Good Enough. [Research Report] RR-9413, Inria - Research Centre Grenoble – Rhône-Alpes.
2021, pp.54. �hal-03264047�

https://inria.hal.science/hal-03264047
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

13
--

FR
+E

N
G

RESEARCH
REPORT
N° 9413
June 2021

Project-Team ROMA

Checkpointing
Workflows à la
Young/Daly
Is Not Good Enough
Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Checkpointing Workflows à la Young/Daly
Is Not Good Enough

Anne Benoit∗, Lucas Perotin∗, Yves Robert∗† Hongyang Sun‡

Project-Team ROMA

Research Report n° 9413 — June 2021 — 54 pages

Abstract: This paper revisits checkpointing strategies when workflows composed of multiple
tasks execute on a parallel platform. The objective is to minimize the expectation of the total
execution time. For a single task, the Young/Daly formula provides the optimal checkpointing
period. However, when many tasks execute simultaneously, the risk that one of them is severely
delayed increases with the number of tasks. To mitigate this risk, a possibility is to checkpoint
each task more often than with the Young/Daly strategy. But is it worth slowing each task down
with extra checkpoints? Does the extra checkpointing make a difference globally? This paper
answers these questions. On the theoretical side, we prove several negative results for keeping
the Young/Daly period when many tasks execute concurrently, and we design novel checkpointing
strategies that guarantee an efficient execution with high probability. On the practical side, we
report comprehensive experiments that demonstrate the need to go beyond the Young/Daly period
and to checkpoint more often, for a wide range of application/platform settings.

Key-words: Checkpoint, workflow, concurrent tasks, Young/Daly formula.

∗ Université de Lyon and Laboratoire LIP, École Normale Supérieure de Lyon, CNRS, Inria
& UCB Lyon, France

† University of Tennessee Knoxville, USA
‡ Vanderbilt University, Nashville, TN, USA

La période de checkpoint de Young/Daly
n’est pas optimale

pour l’exécution de graphes de tâches

Résumé : Cet article étudie les stratégies de checkpoint pour l’exécution de
graphes de tâches (applications de type workflow). La formule de Young/Daly
est optimale pour minimiser l’espérance du temps d’exécution d’une seule tâche.
Mais quand plusieurs tâches s’exécutent en parallèle, le risque est grand que
l’une d’entre elles soit retardée significativement, et partant, que soit retardée
l’exécution de ses successeurs dans le graphe de tâches. Nous étudions la
meilleure stratégie de checkpoitnt dans ce contexte, et montrons qu’effectivement
il faut prendre des checkpoints plus souvent pour obtenir une solution efficace
avec très grande probabilité. Nous conduisons des simulations sur des graphes
de tâches de référence, qui confirment les résultats théoriques.

Mots-clés : checkpoint, graphe de tâches, tâches concurrentes, formule de
Young/Daly.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 3

1 Introduction

Checkpointing is the standard technique to protect applications running on
HPC (High Performance Computing) platforms. Every day, the platform will
experience a few fail-stop errors (or failures, we use both terms indifferently).
After each failure, the application executing on the faulty processor (and likely
on many other processors for a large parallel application), is interrupted and
must be restarted. Without checkpointing, all the work executed for the ap-
plication is lost. With checkpointing, the execution can resume from the last
checkpoint, after some downtime (enroll a spare to replace the faulty processor)
and a recovery (read the checkpoint).

Consider an application, composed of a unique task, executing on a plat-
form whose nodes are subject to fail-stop errors. How frequently should it be
checkpointed so that its expected execution time is minimized? There is a
well-known trade-off: taking too many checkpoints leads to a high overhead,
especially when there are few failures, while taking too few checkpoints leads
to a large re-execution time after each failure. The optimal checkpointing pe-
riod is given by the Young/Daly formula as WYD =

√
2µC [37, 11], where µ

is the application MTBF (Mean Time Between Failures) and C the checkpoint
duration. Recall that if the application executes on p processors, its MTBF is
µ = µind

p , where µind is the individual processor’s MTBF: in other words, the
MTBF is inversely proportional to the number of processors enrolled, which is
intuitive in terms of failure frequency (see [25] for a formal proof).

Now, assume that, say, 300 independent applications (each with a unique
task) have been launched concurrently on the platform. For the sake of il-
lustration, assume that these 300 applications are identical: same number of
processors p = 30, same length Tbase = 10 hours, and same checkpoint duration
C = 6 minutes. Hence, the platform has at least m = 9, 000 processors. Assume
a short downtime D = 1 minute, and recovery time R = C. Finally, assume that
each task has 0.5% chances to fail during execution; this setting corresponds to

an individual MTBF µind such that 1 − e−
pTbase
µind = 0.005, i.e., µind = 59, 850

hours (or 6.8 years). This is in accordance with MTBFs typically observed on
large-scale platforms, which range from a few years to a few dozens of years [7].

For each task, the Young/Daly period is WYD =
√

2µind

p C ≈ 20 hours, and the

expected execution time of a single task E(T1-task) , is minimized either when no
checkpoint is taken or if a single checkpoint is taken at the end of the execution
(see Section 2.6). We assume that we always take a checkpoint at the end of
the execution of a task, e.g., to save final results on stable storage1. Then, we
derive that E(T1-task) ≈ 10.4 (see Section 2.6).

Is it safe to checkpoint each task individually à la Young/Daly? The problem
comes from the fact that the expectation E(Tall-tasks) of the maximum execution
time over all tasks, i.e., the expectation of the total time required to complete
all tasks, is far larger than the maximum of the expectations (which in the
example have all the same value E(T1-task)). When a single checkpoint is taken
at the end of each task, we compute that E(Tall-tasks) > 14, while adding four
intermediate checkpoints to each task reduces it down to E(Tall-tasks) < 12.75

1We make this assumption throughout the paper for simplicity. Appendix A extends the
analysis to the case where no checkpoint is taken at the end of the execution of a task. Changes
are minimal and results are quite similar.

RR n° 9413

4 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

(see Section 2.6 for details of the computation of both numbers). Intuitively,
this is because adding these intermediate checkpoints greatly reduces the chance
of re-executing any single task from scratch when it is struck by a failure, and
the probability of having at least one failed task increases with the number
of tasks. Of course, there is a penalty from the user’s point of view: Adding
four checkpoints to each task augments their length by 24 minutes, while the
majority of them will not be struck by a failure. In other words, users may feel
that their response time has been unduly increased, and state it is not worth to
add these extra checkpoints.

Going one step further, consider now a single application whose dependence
graph is a simple fork-join graph, made of 302 tasks: an entry task, 300 parallel
tasks identical to the tasks above (each task runs on p = 30 processors for
Tbase = 10 hours, and is checkpointed in C = 6 minutes) and an exit task.
Such applications are typical of HPC applications that explore a wide range of
parameters or launch subproblems in parallel. Now, the extra checkpoints make
full sense, because the exit task cannot start before the last parallel task has
completed. The expectation of the total execution time is E(Ttotal) = E(Tentry)+
E(Tall-tasks) +E(Texit), where E(Tentry) and E(Texit) are the expected durations
of the entry and exit tasks, and E(Ttotal) is minimized when E(Tall-tasks) is
minimized. By diminishing E(Tall-tasks), we save 1.25 hour, or 75 minutes (and in
fact much more than that, because the lower and upper bounds for E(Tall-tasks)
are loosely computed).

This last example shows that the optimal execution of large workflows on
failure-prone platforms requires to checkpoint each workflow task more fre-
quently than prescribed by the Young/Daly formula. The main focus of this
paper is to explore various checkpointing strategies, and our main contributions
are the following:
•We provide approximation bounds for the performance of MinExp, a strategy
à la Young/Daly that minimizes the expected execution time of each task, and
for a novel strategy CheckMore that performs more checkpoints than Min-
Exp.
• Both bounds apply to workflows of arbitrary shape, and whose tasks can be
either rigid or moldable. In addition, we exhibit an example where the bounds
are tight and where CheckMore can be an order of magnitude better than
MinExp.
• The novel CheckMore strategy comes in two flavors, one that tunes the
number of checkpoints as a function of the degree of parallelism in the failure-
free schedule, and a simpler one that does not require any knowledge of the
failure-free schedule, beyond a priority list to decide in which order to start
executing the tasks.
•We report comprehensive simulations results based on WorkflowHub testbeds [18],
which demonstrate the significant gain brought by CheckMore over MinExp
for almost all testbeds.

The paper is organized as follows. We first describe the model in Section 2.
We assess the performance of MinExp in Section 3; performance bounds are
proven both for independent tasks and for general workflows. Section 4 presents
the novel strategy CheckMore that checkpoints workflow tasks more often
than MinExp, and analyzes its theoretical performance. The experimental
evaluation in Section 5 presents extensive simulation results comparing both
strategies. Finally, we discuss related work in Section 6, and conclude in Sec-

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 5

tion 7.

2 Model and Background

In this section, we first detail the platform and application models, and de-
scribe how to practically deploy a workflow with checkpointed jobs. Then,
we discuss the objective function before providing background on the optimal
checkpointing period for preemptible tasks, and getting back to the example of
the introduction. Key notations are summarized in Table 1.

2.1 Platform

We consider a large parallel platform with m identical processors, or nodes.
These nodes are subject to fail-stop errors, or failures. A failure interrupts the
execution of the node and provokes the loss of its whole memory. Consider a
parallel application running on several nodes: when one of these nodes is struck
by a failure, the state of the application is lost, and execution must restart from
scratch, unless a fault-tolerance mechanism has been deployed.

The classical technique to deal with failures makes use of a checkpoint-
restart mechanism: the state of the application is periodically checkpointed,
i.e., all participating nodes take a checkpoint simultaneously. This is the stan-
dard coordinated checkpointing protocol, which is routinely used on large-scale
platforms [9], where each node writes its share of application data to stable
storage (checkpoint of duration C). When a failure occurs, the platform is un-
available during a downtime D, which is the time to enroll a spare processor that
will replace the faulty processor [11, 25]. Then, all application nodes (including
the spare) recover from the last valid checkpoint in a coordinated manner, read-
ing the checkpoint file from stable storage (recovery of duration R). Finally,
the execution is resumed from that point on, rather than starting again from
scratch. Note that failures can strike during checkpoint and recovery, but not
during downtime (otherwise we can include the downtime in the recovery time).

Throughout the paper, we add a final checkpoint at the end of each appli-
cation task, to write final outputs to stable storage. Symmetrically, we add
an initial recovery when re-executing the first checkpointed segment of a task
(to read inputs from stable storage) if it has been struck by a failure before
completing the checkpoint. See Appendix A for an extension relaxing either or
both assumptions.

m Total number of processors
p Number of processors per task
n Number of tasks

µind = 1
λ Individual processor’s MTBF

C Checkpoint time
R Recovery time
D Downtime
Tbase Task duration without failures
NME Number of segments with MinExp strategy
WME Segment length with MinExp strategy

Table 1: Key notations.

RR n° 9413

6 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

We assume that each node experiences failures whose inter-arrival times
follow an Exponential distribution Exp(λ) of parameter λ > 0, whose PDF
(Probability Density Function) is f(x) = λe−λx for x ≥ 0. The individual
MTBF of each node is µind = 1

λ . Even if each node has an MTBF of several
years, large-scale parallel platforms are composed of so many nodes that they
will experience several failures per day [17, 7]. Hence, a parallel application
using a significant fraction of the platform will typically experience a failure
every few hours.

2.2 Application

We focus on HPC applications expressed as workflow graphs, such as those
available in WorkflowHub [18] (formerly Pegasus [35]). The shape of the task
graph is arbitrary, and the tasks can be parallel. We further assume that all
tasks are preemptible, i.e., that we can take a checkpoint at any instant.

For the theoretical analysis, we use workflows whose tasks can be rigid or
moldable parallel tasks. A moldable task can be executed on an arbitrary num-
ber of processors, and its execution time depends on the number of processors
allotted to it. This corresponds to a variable static resource allocation, as op-
posed to a fixed static allocation (rigid tasks) and a variable dynamic allocation
(malleable tasks) [15]. Scheduling rigid or moldable workflows is a difficult
NP-hard problem (see the related work in Section 6) . We take as input a
failure-free schedule for the workflow and transform it by adding checkpoints
as follows. The failure-free schedule provides an ordered list of tasks, sorted by
non-decreasing starting times. Our failure-aware algorithms are list schedules
that greedily process the tasks (augmented with checkpoints) in this order: if
task T is number i in the original failure-free schedule, then T is scheduled
after the i − 1 first tasks in the failure-aware schedule, and no other task can
start before T does. Hence, the processors allocated to T in the failure-aware
schedule may differ from those allocated in the failure-free schedule. Enforcing
the same ordering of execution of the tasks may be sub-optimal, but it is the
key to guarantee approximation ratios for the total execution time.

For the experiments, we restrict to workflows with uni-processor tasks, in
accordance with the characteristics of the workflow benchmarks from Work-
flowHub.

2.3 Implementation in a Cluster Environment

This section briefly describes two approaches to deploy a workflow with check-
pointed jobs in a cluster environment.

The first approach is to use the job scheduler LSF [28] and to submit a set of
jobs with their dependencies: there are as many jobs as tasks in the workflow,
and these jobs are declared checkpointable. The system will relaunch a job after
it is hit by a failure, from the last checkpoint on and until success (see the ‘job
failover’ section in [28]). If the failed job was using j processors, then it releases
j − 1 surviving processors right after the failure; if there is at least one other
processor available, the job can be rescheduled right away (jobs usually get high
priority when they are rescheduled after a failure). Otherwise, the failed job will
have to wait and this waiting time, a.k.a. the re-submission time, is dependent
on the platform scheduling policy and on the availability of nodes.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 7

A second approach is to submit a single job with p + q processors, where p
processors represent the allotment for the whole workflow and q processors are
spare. The job uses a master process that spans the workflow tasks and controls
how their execution progresses; the tasks are checkpointed using a standard
software such as VeloC [8]. The spare nodes are mutualized across the tasks
either by using a fault tolerant MPI library like ULFM [5, 14], or by having the
master process launch each task as independent MPI applications spanning on
subgroups of the reservation, and re-launching them from their last checkpoint
on the surviving nodes and the spare nodes if some task is subject to failure.

In the first approach, the downtime would be non-constant, because it cor-
responds to the re-submission time, while in the second approach with spares,
the downtime can be approximated as a constant. Regardless, all the results of
this paper are taken in expectation, and they extend to using an average value
of the downtime whenever a fixed value is not appropriate.

Finally, we stress that this work is agnostic of system management policies
and does not modify any parameter specified by the user for the job alloca-
tions; we simply increase the checkpoint frequency when needed, which results
in shorter execution time and better processor utilization for the workflow.

2.4 Objective Function

Given a workflow composed of a set of tasks, where each task executes on a
given number of processors, the objective function is to minimize the expected
makespan of the workflow, i.e., the expected total execution time to complete
all tasks. We aim at determining the best checkpointing strategy for the tasks
that compose the workflow. This is the only parameter that we modify in the
execution: we keep the number of processors specified by the user, and we even
keep the order of the tasks as given by the user schedule. The replacement of
failed nodes, or the resubmission of failed tasks, is decided by the system and
does not depend upon the checkpointing policy, either à la Young/Daly, or one
of our new strategies.

As a result, minimizing the expected makespan of the workflow also maxi-
mizes processor utilization of the platform, because the processors reserved by
the user will be released earlier on, and with no additional cost for the rest of
the platform.

In the analysis of the checkpointing strategies, we focus on bounding the ra-
tio, which is defined as the expected makespan of the workflow (i.e., the expected
total execution time) divided by the makespan in the failure-free execution (no
checkpoints nor failures), given a user-specified schedule. Hence, the ratio shows
the overhead induced by failures and the checkpointing strategy: the closer to
one, the better.

2.5 Checkpointing Period

Consider an application A composed of a single parallel task executing on p
processors. Assume that the task is preemptible, which means that it can be
checkpointed at any instant. The key for an efficient checkpointing policy is to
decide when to checkpoint. If the application A runs for a duration Tbase (base
time without checkpoints nor failures), then the optimal checkpointing strategy,

RR n° 9413

8 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

i.e., the strategy minimizing the expected execution time of the application, can
be derived as shown below.

Lemma 1. The expected time E(W,C,R) to execute a segment of W seconds
of work followed by a checkpoint of C seconds and with recovery cost R seconds is

E(W,C,R) =

(
1

pλ
+D

)
epλR

(
epλ(W+C) − 1

)
. (1)

Proof. This is the result of [6, Theorem 1]. Note that Lemma 1 also applies
when the segment is not followed by a checkpoint (take C=0).

The slowdown function is defined as f(W,C,R) = E(W,C,R)
W .

We have the following properties:

Lemma 2. The slowdown function W 7→ f(W,C,R) has a unique minimum
Wopt that does not depend on R, is decreasing in the interval [0,Wopt] and is
increasing in the interval [Wopt,∞).

Proof. Again, this is the result of [6, Theorem 1]. The exact value of Wopt is
obtained using the Lambert W function, but a first-order approximation is the

Young/Daly formula WYD =
√

2C
pλ .

Lemma 2 shows that infinite tasks should be partitioned into segments of
size WYD followed by a checkpoint. What about finite tasks? Back to our ap-
plication A of duration Tbase, we partition it into Nc segments of length Wi,
1 ≤ i ≤ Nc, each followed by a checkpoint C. By linearity of the expectation,
the expected time to execute the application A is

E(A) =

Nc∑
i=1

E(Wi, C,R) =

(
1

pλ
+D

)
epλR

Nc∑
i=1

(
epλ(Wi+C) − 1

)
,

where
∑Nc

i=1Wi = Tbase. By convexity of the Exponential function, or by using
Lagrange multipliers, we see that E(A) is minimized when the Wi’s take a con-
stant value, i.e., all segments have same length. Thus, we obtain Wi = Tbase

Nc
for

all i, and we aim at finding Nc that minimizes
E(A) = NcE

(
Tbase

Nc
, C,R

)
= f

(
Tbase

Nc
, C,R

)
× Tbase ,

where f is the slowdown function. Define Kopt = Tbase

Wopt
, where Wopt achieves the

minimum of the slowdown function. Kopt would be the optimal value if we could
have a non-integer number of segments. Lemma 2 shows that the optimal value
NME of Nc is either NME = max(1, bKoptc) or NME = dKopte, whichever leads
to the smallest value of E(A). In this paper, to avoid the numerical evaluation of

the Lambert function for Wopt, we use the simplified expression NME =
⌈
Tbase

WYD

⌉
:

Definition 1. The MinExp checkpointing strategy partitions a parallel task of

length Tbase, with p processors and checkpoint time C, into NME =
⌈
Tbase

WYD

⌉
equal-

length segments, each followed by a checkpoint, where WYD =
√

2C
pλ

=
√

2µindC
p

.

Each segment is of length WME = Tbase
NME

.

2.6 Back to the Example

In the introduction, we used the example of 300 identical tasks, each with
Tbase = 10 hours, p = 30, and C = 6 minutes. We also had D = 1 minute and
R = C. We assume that each task has 0.5% chances to fail during execution,

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 9

which corresponds to an individual MTBF µind such that 1− e−
pTbase
µind = 0.005.

This equality leads to µind = 59, 850 hours. We derive WYD =
√

2µindC/p ≈ 20
hours, hence NME = 1. With a single segment, we then compute the optimal
expected execution time E(T1-task) for each task as:

E(T1-task) =

(
µind

p
+D

)
e
pR
µind

(
e

p
µind

(Tbase+C) − 1
)
≈ 10.4.

With 300 tasks executing concurrently, we compute that the expectation of
the total time required to complete all tasks is at least E(Tall-tasks) > 14,
hence the ratio is 14

10 = 1.4. Indeed, there is no failure at all with probability(
e
− p(Tbase+C)

µind

)300

< 0.23, and in this case the execution time is Tbase + C = 10.1.

The other case, happening with a probability larger than 0.77, is when at least
one failure occurs in the process, and we will bound its expected execution
time if exactly one failure occurs, which is clearly lower than the actual ex-
pected execution time. To that end, we compute the expected time lost before
the failure occurs when attempting to successfully execute for T = Tbase + C

hours: E(Tlost(T)) =
∫∞

0
xP(X = x|X < T)dx = 1

P(X<T)

∫ T
0
xe−pλxdx, with

P(X < T) = 1− e−pλT . Integrating by parts, we derive that:

E(Tlost(T)) =
1

pλ
− T

epλT − 1
. (2)

In the example, we have T = Tbase+C = 10.1, p = 30, and λ = 1
µind

= − ln(0.995)
pTbase

.
Thus, if a failure strikes one of the tasks, the expected time lost is higher than
5.045 hours. After that, we also have to wait D > 0.016 hour of downtime and
recover for a duration of R = 0.1 hour. Overall, the expected execution time
satisfies E(Tall-tasks) ≥ 10.1+0.77×(E(Tlost(T))+R+D) > 10.1+0.77×5.161 >
14. Note that this lower bound is far from tight.

When adding four intermediate checkpoints to each task, we reduce E(Tall-tasks)
down to E(Tall-tasks) < 12.75. Indeed, the tasks are now slightly longer (10.5

hours without failure), and they fail with probability 1 − e−
30×10.5
59850 < 0.006.

Let Mf denote the maximum number of failures of any tasks. Clearly, we have
P{Mf ≥ k} ≤ 300 × 0.006k. The worst-case scenario for each failure is when
it happens just before the end of a checkpoint, and in that case we loose at
most 2 + 0.1 + 0.1 + 0.017 < 2.22 for each failure (the length of a segment, the
checkpoint time, the recovery time and the downtime). Thus, E(Tall-tasks) <
10.5 + 2.22

∑
k≥1 P{Mf ≥ k} < 10.5 + 2.22 + 2.22× 300×

∑
k≥2 0.006k < 12.75,

hence a ratio lower than 1.275, to compare with 1.4 with the MinExp strategy.
Note that this upper bound is far from tight. This example shows that the
optimal checkpointing strategy should not only be based upon the task profiles,
but also upon the number of other tasks that are executing concurrently.

3 Young/Daly for Workflows: the MinExp Strat-
egy

In this section, we prove performance bounds for the MinExp checkpointing
strategy, which adds NME checkpoints to each task, thereby minimizing the
expected execution time for each task. We start in Section 3.1 with independent

RR n° 9413

10 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

tasks, first identical and then arbitrary, that can be executed concurrently (think
of a shelf of tasks). Next, we move to general workflows in Section 3.2.

3.1 MinExp for Independent Tasks

We start with a word of caution: throughout this section, the proofs of the
theorems and the analysis of the examples are long and technically involved.
We state the results and provide proof sketches in the text below; all details are
available in the Appendices.

3.1.1 Identical Independent Tasks

First we consider identical independent tasks that can be executed concurrently.
Recall that m is the total number of processors. We identify a task T with
its type (i.e., set of parameters) T= (Tbase, p, C,R): length Tbase, number of
processors p, checkpoint time C, recovery time R.

Theorem 1. Consider n identical tasks of same type T=(Tbase,p,C,R) to be
executed concurrently on n × p ≤ m processors with individual failure rate
λ = 1

µind
. The downtime is D. For the MinExp strategy, NME is the num-

ber of checkpoints, and WME is the length of each segment, as given by Defini-

tion 1. Let Psuc(R̃) = e−pλ(WME+C+R̃) be the probability of success of a segment

with re-execution cost R̃ (R̃ = 0 if no re-execution, or R̃ = R otherwise), and

Q∗ = 1
1−Psuc(R) . Let the ratio be rME

id (n, T) = E(Ttot)
Tbase

, where E(Ttot) is the ex-

pectation of the total time Ttot of the MinExp strategy. We have:

rME
id (n,T)≤

(
logQ∗ (n)

NME
+logQ∗(logQ∗(n))+1+ ln(Q∗)

12NME
+ 1

ln(Q∗)NME

)
×
(

1 + C+R+D
WME

)
+ C

WME
+ 1 + o(1).

(3)

Note that if n is small, the ratio holds by replacing all negative or undefined
terms by 0.

Proof. First, a segment consists of the re-execution cost R̃, the work WME and
the checkpoint cost C. Since failures may occur during recovery or checkpoint,
the total processing time is WME + R̃+ C. Thus, given the exponential failure

probability, we have Psuc(R̃) = e−pλ(WME+C+R̃). The MinExp strategy is a
rME
id (n, T)-approximation of the base time Tbase = NMEWME, hence also of the

optimal expected execution time. Let Mf be the maximum number of failures
over all tasks. We process NME segments of length WME+C, and each failure in
a segment incurs an additional time upper bounded by D+R+WME +C. The
expectation E(Ttot) of the total time Ttot of the MinExp strategy is at most:

E(Ttot) ≤ Tbase +NMEC + E(Mf)(WME + C +R+D), hence

rME
id (n, T) =

E(Ttot)

Tbase
≤ 1 +

C

WME
+

E(Mf)

NME

(
1 +

C +R+D

WME

)
. (4)

We continue with the computation of E(Mf). We first study the random
variable (RV) Nf of the number of failures before completing a given task. We
have identical segments (s1, s2, ...) to process, each of them having a probabil-
ity of success psi ∈ {Psuc(R), Psuc(0)}, and we stop upon reaching the NME

successes. Hence, s1 is the first trial of the first segment; if s1 succeeds, which

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 11

happens with probability Psuc(0), s2 corresponds to the first trial of the second
segment, and succeeds with probability Psuc(0); otherwise, s2 corresponds to the
second trial of the first segment, and succeeds with probability Psuc(R). We are
interested in the number of failures Nf before having NME successes. Clearly, if
N ′f represents the RV for the same problem except that all segments have the
same probability of success Psuc(R), all segments are less likely or equally likely
to succeed, and

∀x,P{N ′f ≤ x} ≤ P{Nf ≤ x}. (5)

Now, let M ′f be the RV equal to the maximum of n IID (Independent and
identically Distributed) RVs following N ′f . Equation (5) leads to E(M ′f) ≥
E(Mf). Each N ′f is a negative binomial RV with parameters (NME, Psuc(R)).
We refine the analysis from [20] by bounding the sum of some Fourier coefficients
(see Appendix B for details) to show that

E(M ′f) ≤ logQ∗(n) + (NME − 1) logQ∗(logQ∗(n))

+NME +
(

ln(Q∗)
12 + 1

ln(Q∗)

)
+ o(1).

(6)

Recall thatQ∗ = 1
1−Psuc(R) . Here, we assume for convenience that logQ∗(logQ∗(n)) ≥

0, but otherwise we can replace it by 0 and the ratio holds. Plugging the bound
of Equation (6) back into Equation (4) leads to Equation (3).

We provide an informal simplification of the bound in Equation (3). Under
reasonable settings, we have C,D,R� µind, and the probability of success Psuc

of each segment is pretty high, hence Q∗ > e. For this reason, we have (i)

∀x, logQ∗(x) < ln(x); (ii) C+R+D
WME

≈ 0; (iii) ln(Q∗)
12NME

≤ 1; and (iv) 1
ln(Q∗)NME

≈ 0.

Altogether, the bound simplifies to:

rME
id (n, T) ≤ ln(n)

NME
+ ln(ln(n)) + 3 + o(1). (7)

Here is a more precise statement (proof in Appendix C):

Proposition 1. We have rME
id (n, T) ≤ 4

5

(
ln(n)
NME

+ ln(ln(n))
)

+ 3 + 3
NME

+ o(1)

under the following assumptions:

• A checkpoint of length C succeeds with probability at least 0.99;

• D ≤ R ≤ C;

• A segment of length WME fails with probability at least 10−10;

• Tbase > 2(C+R+D) (otherwise the tasks are so small that no checkpoints
are needed).

3.1.2 Tightness of the bound rME
id (n, T) of Theorem 1

Consider a set T of n identical uni-processor tasks with Tbase = 2K − 1, C = 1,

D = R = 0 and λ =
ln(1+ 1

2K)

2K so that e−λ(Tbase+C) = 2K
2K+1 . Here, K ≥ 2 is fixed,

and n is the variable. We assume that all tasks execute in parallel, i.e., m ≥ n.
Under these settings, we show in Appendix G.1 that rME

id (n, T) = Θ(ln(n)),
thereby showing the tightness of the bound given in Theorem 1.

RR n° 9413

12 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

3.1.3 Arbitrary independent tasks

We now proceed with different independent tasks that can be executed concur-
rently:

Theorem 2. Consider a set T of n tasks. The i-th task has profile Ti =
(T ibase, pi, Ci,Ri). These tasks execute concurrently, hence

∑n
i=1 pi ≤ m. The

individual fault rate on each processor is λ. The downtime is D. For the Min-
Exp strategy, N i

ME is the number of checkpoints, and W i
ME is the length of each

segment, for task i. Let P isuc(Ri) = e−piλ(W i
ME+Ci+Ri) be the probability of suc-

cess of a segment of task i with re-execution cost Ri, and Q∗i = 1
1−P isuc(Ri)

. Then,

the MinExp strategy is a rME(n, T)-approximation of the failure-free execution
time, hence also of the optimal expected execution time, where:

rME(n, T) ≤ 2 max
1≤i≤n

(
rME
id (n, Ti)

)
. (8)

The key element of the (very long) proof of Theorem 2 is an important new
result (to the best of our knowledge) on expectations of RVs. Please refer to
Appendix D. Similarly to identical tasks, under reasonable assumptions, we
derive a simplified bound:

rME(n, T) ≤ 2 ln(n)
min1≤i≤n(NiME)

+ 2 ln(ln(n)) + 6 + o(1).

3.2 MinExp for Workflows

We proceed to the study of MinExp for a workflow of tasks, with task depen-
dencies. We build upon the results for identical tasks (see Equation (3)), that
can be reused for each task of the workflow.

Theorem 3. Let S be a failure-free schedule of a workflow W of n tasks. The
i-th task has profile Ti = (T ibase, pi, Ci,Ri). The individual fault rate on each
processor is λ. The downtime is D. Let ∆ be the maximum number of tasks
processed concurrently by the failure-free schedule S at any instant. Then, the
MinExp strategy is a rME(∆,W)-approximation of the failure-free execution
time, where

rME(∆,W) ≤ 2 max
1≤i≤n

rME
id (∆, Ti). (9)

In other words, the degree of parallelism ∆ of the schedule becomes the key
parameter to bound the performance of the MinExp strategy, rather than the
total number n of tasks in the workflow. Similarly to independent tasks, under
reasonable assumptions, we derive a simplified bound:

rME(∆,W) ≤ 2 ln(∆)
min1≤i≤n(NiME)

+ 2 ln(ln(∆)) + 6 + o(1).

Proof. As stated in Section 2.2, we enforce the same ordering of starting times in
the initial schedule S and in the failure-aware schedule S’ returned by MinExp:
if task i starts after task j in S, the same will hold in S’. However, we greedily
start a task as soon as enough processors are available, which may result in
using different processors for a given task in S and S’. Consider an arbitrary
failure scenario, and let Ti be the execution time of task i in S’. Let T (S′) be
the total execution time of S’. We want to prove that:

E(T (S′)) ≤ 2 max
1≤i≤n

rME
id (∆, Ti)T (S), (10)

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 13

time

p
ro

ce
ss

or
s T1 (1) T2(1

2) (1
4) (1

4)

T3(3/4) (1/4)

T4(2/3) (2/9) (1/9)

slices: S1 S2 S3 S4

t0=0 t1=6 t2=8 t3=9 t4=10

S

Figure 1: Example for the proof of Theorem 3: Schedule S.

where T (S) is the (deterministic) total execution time of S.

To analyze S’, we partition S into a series of execution slices, where a slice
is determined by two consecutive events. An event is either the starting time or
the ending time of a task. Formally, let si be the starting time of task i in S, and
ei be its ending time. We let {tj}0≤j≤K = ∪ni=1{si, ei} denote the set of events,
labeled such that ∀j ∈ [0,K − 1], tj < tj+1. Note that we may have K + 1 < 2n
if two events coincide. We partition S into K slices Sj , 1 ≤ j ≤ K, which are
processed sequentially. Slice Sj spans the interval [tj−1, tj]. In other words,
the length of Sj is tj − tj−1. Let Bj ⊂ W denote the subset of tasks that are
(partially or totally) processed during slice Sj ; note that ∆ = maxj∈[1,K] |Bj |.
Finally, for a task i in Bj , let ai,j be the fraction of the task that is processed
during Sj (and let ai,j = 0 if i /∈ Bj).

As an example, we consider a workflow W consisting of n = 4 independent
tasks, with T 1

base = 6, T 2
base = 4, T 3

base = 8 and T 4
base = 9. We have m = 4,

p1 = p2 = 2 and p3 = p4 = 1. The optimal failure-free schedule S is shown in
Figure 1, and has length 10. Note that task i is represented by its profile Ti.
There are five time-steps where an event occurs, thus K = 4 and {tj}0≤j≤K =
{0, 6, 8, 9, 10}. Therefore, S is decomposed into four slices, S1 running in [0, 6],
S2 in [6, 8], S3 in [8, 9], and S4 in [9, 10]. The (ai,j)i∈[1,n],j∈[1,K] are represented
in brackets. Finally, B1 = {1, 3, 4}, B2 = {2, 3, 4}, B3 = {2, 4}, B4 = {4}, and
∆ = 3. We use the decomposition into slices to define a virtual schedule Svirt,
which consists of scaling the slices Sj to account for failures in S’. For each
slice Sj , the scaling is the largest ratio Ti

T ibase
over all tasks i ∈ Bj . Hence, Svirt

is composed of K slices Svirt
j whose length is T (Svirt

j) =
(

maxi∈Bj
Ti
T ibase

)
T (Sj).

Within each slice Svirt
j , for each task i ∈ Bj , we execute the same fraction ai,j

of task i as in the original schedule S, for a duration ai,jTi, so that some tasks
in Bj may not execute during the whole length of Svirt

j , contrarily to during the
initial schedule S.

We can then bound the total execution time of Svirt by using the result on
independent tasks on each slice, each with a maximum degree of parallelism
of ∆. Finally, to obtain Equation (10), there remains to show that E(T (S′)) ≤
E(T (Svirt)). In fact, we show that under any failure scenario, T (S′) ≤ T (Svirt),
and the result follows. We relabel the tasks by non-decreasing starting time in
S and prove by induction that no task starts nor ends later in S’ than in Svirt.
The key element is that the ordering of starting times from S is preserved in
both Svirt and S′, see Appendix E for details.

RR n° 9413

14 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

time

p
ro

ce
ss

or
s

T1 (1) T2(1/2) T2 T2

T3 (1/4)T3 (3/4)

T4 (2/3) T4 (2/9) T4

slices: S1 S2 S3 S4

0 158 9 18 19+1
3 20+1

3

Svirt

time

p
ro

ce
ss

or
s

T1

T2
T3

T4

0 1512 16

S′

Figure 2: Schedules Svirt (top) and S′ (bot.) for the example.

Going back to the example, assume that T1 = 15, T2 = 4, and T3 = T4 = 12
in S’. Then, we obtain the task with the largest ratio Ti

T ibase
for each slice: task 1

for S1, task 3 for S2, task 4 for S3, and task 2 for S4. The schedule Svirt is
shown at the top of Figure 2 and has length T (Svirt) = 20 + 1/3 (and the tasks
with largest ratio in each slice are hatched). Finally, the schedule S′ is shown
at the bottom of Figure 2, and T (S′) = 16.

We point out that Theorem 3 applies to workflows with arbitrary depen-
dences, and with rigid or moldable tasks. The bound given for rME(∆,W)
is relative to the execution time of the failure-free schedule. If this failure-free
schedule is itself a ρ-approximation of the optimal solution, then we have derived
a rME(∆,W)× ρ approximation of the optimal solution.

4 The CheckMore Strategies

The previous section has shown that, in the presence of failures, the ratio of
the actual execution time of a workflow over its failure-free execution time,
critically depends upon the maximum degree of parallelism ∆ achieved by the
initial schedule.

In this section, we introduce CheckMore strategies, which checkpoint
workflow tasks more often than MinExp, with the objective to decrease the
ratio above. The number of checkpoints for each task becomes a function of the
degree of parallelism in the execution. We define SafeCheck(δ), the number of
checkpoints for a task, given a parameter δ (typically the degree of parallelism):

Definition 2. SafeCheck(δ) partitions a parallel task of length Tbase, with

p processors and checkpoint time C, into NSC(δ) =
⌈

(ln(δ)+1)Tbase

WYD

⌉
equal-length

segments, each followed by a checkpoint, where WYD =
√

2C
pλ =

√
2µindC
p . Each

segment is of length WSC(δ) = Tbase

NSC(δ) .

Note that MinExp corresponds to applying SafeCheck (1) to all tasks,
since NSC(1) = NME. The key building block of the analysis of MinExp is

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 15

Theorem 1 for identical independent tasks. The good news is that Theorem 1
holds for any checkpointing strategy, not just for the Young/Daly approach, and
can easily be extended if each task is checkpointed following SafeCheck(δ):

Theorem 4.Consider n identical tasks of same type T=(Tbase,p,C,R) to be
executed concurrently on n× p ≤ m processors with individual failure rate λ =

1
µind

. The downtime is D. For the SafeCheck(δ) strategy, NSC (δ) is the

number of checkpoints, and WSC (δ) is the length of each segment, as given

by Definition 1. Let Psuc(R̃) = e−pλ(WSC+C+R̃) be the probability of success

of a segment with re-execution cost R̃ (R̃ = 0 if no re-execution, or R̃ = R

otherwise), and Q∗ = 1
1−Psuc(R) . Let rSCid (δ, n, T) = E(Ttot)

Tbase
, where E(Ttot) is the

expectation of the total time Ttot of the SafeCheck(δ) strategy. Then:

rSCid (δ, n, T) ≤
(

logQ∗ (n)

NSC(δ)
+ logQ∗(logQ∗(n)) + 1 + ln(Q∗)

12NSC(δ)

+ 1
ln(Q∗)NSC(δ)

)
×
(

1 + C+R+D
WSC(δ)

)
+ C

WSC(δ)
+ 1 + o(1).

(11)

Note that if n is small, the ratio holds by replacing all negative or undefined
terms by 0.

To prove this theorem, we reuse the proof of Theorem 1: we just need to
replace NME by NSC(δ), and WME by WSC(δ).

The idea behind SafeCheck(δ) is the following: when processing δ jobs
in parallel, the expected maximum number of failures given by Equation (6)
eventually grows proportionally to its first term, logQ∗(δ), which is Θ(ln(δ)). To
accommodate this growth, we reduce the segment length by a factor ln(δ), so
that the total failure-induced overhead does not increase much. This is exactly
what SafeCheck(δ) does, when δ tasks are processed in parallel. Similarly, the

first term
logQ∗ (n)

NME(n) of the ratio in Equation (3) was dominant for MinExp, while

it becomes almost constant in Equation (11). To that extent, CheckMore
generalizes this idea to general workflows using SafeCheck(δ) as a subroutine.
We provide two variants of CheckMore:

Definition 3. Consider a failure-free schedule S for a workflow W of n tasks:
• The CheckMore algorithm applies SafeCheck(∆i) to each task i, where
∆i is the largest number of tasks that are executed concurrently at some point
during the processing of task i.
• The BasicCheckMore algorithm applies SafeCheck(min(n,m)) to all tasks,
where m is the number of processors.

The main reason for introducing BasicCheckMore is that we do not need
to know the maximum degree ∆ of parallelism in S to execute BasicCheck-
More (because we always have ∆ ≤ min(n,m)). In fact, we do not even need
to know the failure-free schedule for BasicCheckMore (contrarily to Check-
More), we just need an ordered list of tasks and to greedily start them in this
order.

Theorem 5. Let S be a failure-free schedule of a workflow W of n tasks. The
i-th task has profile Ti = (T ibase, pi, Ci,Ri). Let ∆i be the maximum number
of tasks processed concurrently to task i by S at any instant, and let ∆ =
max1≤i≤n ∆i. Then CheckMore is a rCM ((∆i)i≤n,W)-approximation of the
failure-free execution time in expectation:

RR n° 9413

16 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

rCM ((∆i)i≤n,W) ≤ 2 max
1≤i≤n

rSCid (∆i,∆i, Ti). (12)

And BasicCheckMore is a rBCM (min(n,m),W)-approximation of the failure-
free execution time in expectation:

rBCM (min(n,m),W) ≤ 2 max
1≤i≤n

rSCid (min(n,m),∆, Ti). (13)

See Appendix F for the proof. Note that ∀i,∆i ≤ ∆ and ∆i ≤ min(n,m),
so it is extremely likely that the bound obtained for rCM is smaller than the one
obtained for rBCM . To illustrate the difference between the bounds of Check-
More and MinExp, we show in Appendix H that for a shelf of n identical
uni-processor tasks running in parallel, rCMid is an order of magnitude lower
than rME

id under reasonable assumptions and when n is large enough.
We conclude this section by returning to the example of Section 3.1.2, and show-
ing that CheckMore (equivalent to BasicCheckMore in this case) can be
arbitrarily better than MinExp. The proof is given in Appendix G.2.
Proposition 2. Consider a set T of n(K) identical uni-processor tasks with

type T = (2K−1, 1, 10), D = 0 and λ(K) =
ln(1+ 1

2K)

2K . We assume that all tasks

execute in parallel, i.e., m ≥ n(K). When letting n(K) =
⌊
e
√

2/λ(K)−1
⌋

(hence

ln(n(K)) = Θ(K)), and K tending to infinity, we have rME(n(K), T)=Θ
(

K
ln(K)

)
and rBCM (n(K), T)=Θ(1).

5 Experimental Evaluation

In this section, we evaluate the performance of the different checkpointing strate-
gies through simulations. We describe the simulation setup in Section 5.1,
present the main performance comparison results in Section 5.2, and assess
the impact of different parameters on the performance in Section 5.3. Our in-
house simulator is written in C++ and is publicly available for reproducibility
purpose.

5.1 Simulation Setup

We evaluate and compare the performance of the three checkpointing strategies
MinExp, CheckMore and BasicCheckMore. All strategies are coupled
with a failure-free schedule computed by a list scheduling algorithm (see be-
low). The workflows used for evaluation are generated from WorkflowHub [18]
(formerly Pegasus [35]), which offers realistic synthetic workflow traces with a
variety of characteristics. They have been shown to accurately resemble the
ones from real-world workflow executions [2, 18]. Specifically, we generate the
following nine types of workflows offered by WorkflowHub that model appli-
cations in various scientific domains: Blast, Bwa, Epigenomics, Genome,
SoyKB and Sras are bioinformatics workflows; Cycles is an agroecosystem
workflow; Montage is an astronomy workflow; and Seismology is a seismol-
ogy workflow; see Appendix I.1 for more details.

Each trace defines the general structure of the workflow, whose number of
tasks and total execution time can be specified by the user2. All tasks generated

2Note that the workflow generator may offer a different number of tasks so as to guarantee
the structure of the workflow. The difference, however, is usually small.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 17

in WorkflowHub are uni-processor tasks.
In the experiments, we evaluate the checkpointing strategies under the fol-

lowing parameter settings:
• Number of processors: m = 214 = 16384;
• Checkpoint/recovery/down time: C = R = 1 min, D = 0;
• MTBF of individual processor: µind = 10 years;
• Number of tasks of each workflow: n ≈ 50000.

Furthermore, the total failure-free execution times of all workflows are gener-
ated such that they complete in 3-5 days. This is typical of the large scientific
workflows that often take days to complete as observed in some production log
traces [1, 33] (Appendix I.2 also presents similar experimental results, which
utilize small workflow traces that take less than a day to complete). Section 5.2
will present the comparison results of different checkpointing strategies under
the above parameter settings. In Section 5.3, we will further evaluate the im-
pacts of different parameters (i.e., m, C, µind and n) on the performance.

The evaluation methodology is as follows: for each set of parameters and each
type of workflow trace, we generate 30 different workflow instances and compute
their failure-free schedules. We use the list scheduling algorithm that orders the
tasks using the Longest Processing Time (LPT) first policy: if several tasks are
ready and there is at least one processor available, the longest ready task is
assigned to the available processor to execute. Since all tasks are uni-processor
tasks, LPT is known to be a 2-approximation algorithm [21]; also, LPT is known
to be a good heuristic for ordering the tasks [30]. This order of execution will
be enforced by all the checkpointing strategies. For each workflow instance, we
further generate 50 different failure scenarios. Here, a failure scenario consists of
injecting random failures to the tasks by following the Exponential distribution
as described in Section 2.1. The same failure scenario will then be applied to
each checkpointing strategy to evaluate its execution time for the workflow.
We finally compute the ratio of a checkpointing strategy under a particular
failure scenario as T

Tbase
, where Tbase is the failure-free execution time of the

workflow, and T is the execution time under the failure scenario. The statistics
of these 30×50 = 1500 experiments are then compared using boxplots (that show
the mean, median, and various percentiles of the ratio) for each checkpointing
strategy. The boxes bound the first to the third quantiles (i.e., 25th and 75th
percentiles), the whiskers show the 10th percentile to the 90th percentile, the
black lines show the median, and the stars show the mean.

5.2 Performance Comparison Results

Figure 3 shows the boxplots of the three checkpointing strategies in terms of
their ratios for the nine different workflows.

First, we observe that CheckMore and BasicCheckMore have very sim-
ilar performance, which in most cases are indistinguishable. This shows that
BasicCheckMore offers a simple yet effective solution without the need to
inspect the failure-free schedule, thus making it an attractive checkpointing
strategy in practice. Also, both versions of CheckMore perform significantly
better and with less variation than MinExp, except for the few workflows where
the ratios of all strategies are very close to 1 (e.g., Bwa, SoyKB, Sras). Over-
all, the 90th percentile ratio of CheckMore never exceeds 1.08, whereas that
of MinExp is much higher for most workflows and reaches almost 1.5 for Mon-
tage. Similarly, the average ratio of CheckMore never exceeds 1.03, while

RR n° 9413

18 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Figure 3: Performance (ratio) comparison of the three checkpointing strategies
for the nine different workflows.

that of MinExp is again significantly higher and reaches more than 1.2 for
Seismology and Montage.

We now examine a few workflows more closely to better understand the
performance. For Sras, MinExp is slightly better than CheckMore, but the
ratios of all strategies are near optimal (i.e., ¡1.003). In this workflow, very
few tasks are extremely long while many others are very short, and there are
very few dependencies among them. Thus, failures hardly ever hit the long
tasks due to their few number, while failures that hit short tasks have little
impact on the overall execution time. This is why the ratio is so small for all
strategies. It also explains why MinExp outperforms CheckMore: although
the maximum degree of parallelism is important, only a few tasks matter and
they should be checkpointed à la Young/Daly to minimize their own expected
execution time, and thereby that of the entire workflow. SoyKB and Bwa also
have very low ratios. In the case of SoyKB, there is just not enough parallelism
during the majority of the execution time, so all strategies are making reasonable
checkpointing decisions, with CheckMore performing slightly better for taking
into account this small parallelism. Bwa, on the other hand, has two source
tasks that must be executed first and two sink tasks that must be executed last.
Among them, one source task and one sink task are extremely long, so failures
in other tasks have little impact (as in the case of Sras). Yet the small tasks are
not totally negligible here, because the dominant sink task must be processed
after all of them, so it is still worth to optimize these tasks with CheckMore,
which explains why it is slightly better than MinExp.

For all the other workflows, CheckMore performs better than MinExp by
a significant margin. This is due to CheckMore’s more effective checkpointing
strategies given the specific structure of these workflows. For instance, Mon-
tage has some key tasks that are dominant, so a failure that strikes most of
the other tasks does not impact the overall execution time. This is similar to
the case of Sras and explains why, for all strategies, the first quantile of the
ratio is very low (i.e., around 1). However, when a failure does strike one of
the key tasks, the execution time will be heavily impacted. The difference with
Sras is that Montage contains more key tasks that can run in parallel, so
it is much more likely that one of them will fail, which is why checkpointing
them with CheckMore is better. Next, Blast and Seismology have some
source and sink tasks (as Bwa), which, however, are not so dominant in length,
making the difference between CheckMore and MinExp higher even from the
first quantile. Other workflows also have similar structures, which eventually

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 19

contribute to the better performance of CheckMore over MinExp.

5.3 Impact of Different Parameters

We now study the impact of different parameters on the performance of the
checkpointing strategies. In each set of experiments below, we vary a single
parameter while keeping the others fixed at their base values. All figures and
comments are available in Appendix I.3; due to lack of space, we focus here on
Blast, Seismology, Genome and Sras. The results are shown in Figure 4,
where the scale of the y-axis is kept the same for ease of comparison. For some
figures with really small values, zoomed-in plots are also provided on the original
figure for better viewing.

Impact of Number of Processors (m). We first assess the impact of
the number of processors, which is varied between 4096 and 50000. In general,
increasing the number of processors increases the ratio. This corroborates our
theoretical analysis, because for most types of workflows, having more proces-
sors means having a larger ∆ and thus a larger potential ratio, until m surpasses
the width of the dependence graph. However, CheckMore and BasicCheck-
More appear less impacted than MinExp.

For Blast, Seismology, Genome, the ratio is very close to 1 when m is
small for all checkpointing strategies. In fact, for these workflows, most tasks
are quite independent. Thus, when n is large compared to m, even if a failure
strikes a task, it will have little impact on the starting times of the other tasks.
This is because we only maintain the order of execution but do not stick to the
same mapping as in the failure-free schedule. For this reason, it is better to
minimize each task’s own execution time by using MinExp (i.e., CheckMore
checkpoints a bit too much). However, when m becomes large, the performance
of MinExp degrades significantly, with an average ratio even reaching 1.7 for
Blast at m = 50000, whereas it stays below 1.1 for CheckMore.

Finally, for Sras, as the number of dominating tasks that could be run in
parallel is way less than 4096, the ratio of MinExp does not vary much with
m, while that of CheckMore increases with m as it tends to checkpoint more
with an increasing number of processors. Also, in more than 90% of the cases,
the failures have strictly no impact on the overall execution time, since they do
not hit the dominating tasks. This is why the average ratio is above the 90th
percentile for all checkpointing strategies.

Impact of Checkpoint Time (C). We now evaluate the impact of the
checkpoint time by varying it between 15 and 240 seconds. The ratio generally
increases with C; this is consistent with Equation (3). when R = C and D = 0,

the approximation ratio satisfies r ≤
(
X
Nc

+ Y
) (

2C
W + 1

)
+ C

W +Z, where X,Y

and Z barely depend on C, Nc decreases with C, and C
W ≈

√
C
2µ increases

with C. Intuitively, the checkpoint time impacts the ratio in two ways. First,
as C increases, we pay more for each checkpoint, which could lead to an increased

ratio. Second, as we use WYD =
√

2C
pλ

to determine the checkpointing period and

hence the number of checkpoints, a task will become less safe when C increases,
because it will be checkpointed less, and this could also increase the ratio.

Looking at Genome under MinExp, we can see a clear increase in the
ratio when C increases from 15 to 21. This is because the typical number

RR n° 9413

20 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Figure 4: Impact of parameters on the performance of the checkpointing strate-
gies for different workflows.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 21

of checkpoints for the critical tasks (that affect the overall execution time the
most) drops from 3 to 2, thus the time wasted due to a failure increases from
33% to 50%. As C increases from 60 to 85, the typical number of checkpoints
of these tasks further drops from 2 to 1, making the waste per failure increase
to 100%, and so the ratio also greatly increases. For values of C between 21
and 42, even if the number of checkpoints does not change, the ratio increases
smoothly due to the increase in checkpoint time. The ratio of CheckMore,
on the other hand, only increases slightly with the checkpoint time, which is,
however, not visible in the figure due to the small values. Seismology also
clearly illustrates these phenomena. For Sras, since most failures do not affect
the overall execution time, the ratio of all strategies is only impacted by the
checkpoint time. For Blast under MinExp, because most tasks are short and
we have a single checkpoint to start with, the increase in checkpoint time is
negligible compared to the waste induced by failures.

Impact of Individual MTBF (µind). We evaluate the impact of individual
processor’s MTBF by varying it between 30 months and 40 years. Intuitively,
when µind increases (or equivalently, the failure rate λ decreases), we would
have fewer failures and expect the ratio to decrease. This is generally true for
CheckMore but not always for MinExp. To understand why, we refer again

to the simplified approximation ratio r ≤
(
X
Nc

+ Y
) (

2C
W

+ 1
)
+ C
W

+Z, where X,Y

and Z are barely affected by µind. Here, when the number of failures decreases,

WYD =
√

2C
pλ

increases, so the number of checkpoints decreases and the time

wasted for each failure increases. This could potentially lead to an increase
in the ratio. To illustrate this compound effect, we again look at Genome
under MinExp. When µind goes from 2.5 to 3.5 years, the typical number of
checkpoints for the critical tasks (that affect the overall execution time the most)
drops from 3 to 2, which increases the waste per failure by around 50%. This
together with the fact that MinExp does not take into account the parallelism
results in an increase in the ratio. When µind goes from 3.5 to 7 years, the ratio
decreases simply because we have fewer failures. As µind continues to increase to
14 years, the number of checkpoints for the critical tasks further drops from 2 to
1. This increases the waste per failure to 100%, which again leads to an increase
in the ratio. From this point on, the ratio will just decrease with µind, again
due to fewer failures. The same can be observed for Seismology. In Blast
and Sras, the ratio simply decreases with µind. For Blast, even when µind is
small, we only checkpoint once, so the ratio decreases due to fewer failures. For
Sras, failures usually do not impact the overall execution time, so the decrease
in ratio is mainly due to the decrease in the number of checkpoints.

Finally, it is worth noting that the ratio variance increases as µind increases.
This is because when there are only a few failures and the length of the seg-
ments is large, the failure location (inside the segments) will matter significantly,
especially for MinExp.

Impact of Number of Tasks (n). Finally, we study the impact of the
number of tasks in the workflow, which is varied between 8800 and 70000. Again,
the ratio is impacted by the number of tasks in two different ways. First, when
n increases, the width of the graph increases and so does ∆, and this would
increase the ratio according to our analysis. Second, when n increases and m is
fixed, the average number of tasks executed by each processor increases. This
means that, if a failure occurs early in the execution, it is less likely to have

RR n° 9413

22 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

a significant impact on the ratio, since multiple other tasks will be processed
afterwards to balance the load, especially if the tasks are relatively independent.

These two phenomena are clearly observed in Blast under MinExp. This
workflow mainly consists of a large batch of independent tasks. When n in-
creases to 17680, which is approximately the number of processors (m = 16384),
the ratio increases because ∆ increases. After that, the ratio starts to decrease
because n > m. In this case, when a failure strikes an early task, the subsequent
tasks could be assigned to other processors to reduce the impact of the failure.
Ultimately, if n� m, MinExp would become more efficient. Indeed, since the
tasks are almost independent and uni-processor tasks, list scheduling is able
to dynamically balance the loads of different processors. Thus, minimizing the
expected execution time of each individual task using MinExp would be a good
strategy for the overall execution time of the workflow.

For Seismology and Genome, we observe the same up-and-down effect as
a result of these two phenomena, but nor for Sras, which is not impacted by the
number of tasks. For this workflow, only a few key dominating tasks matter and
their width remains well below the number of processors. Since these tasks form
a small proportion of the total number of tasks, varying n does not significantly
alter their chance of being hit by a failure, so the ratio remains close to 1.

Summary. Our experimental evaluation demonstrates that MinExp is not
resilient enough for checkpointing workflows, although it provides an optimal
strategy for each individual task. On the other hand, CheckMore proves
to be a very useful strategy, except for Sras whose ratios are extremely low.
When varying the key parameters, the simulation results nicely corroborate our
theoretical analysis. Furthermore, the easy-to-implement BasicCheckMore
strategy always leads to ratios that are close to those of CheckMore, regardless
of the parameters.

6 Related work

Scheduling Workflows. Scheduling a computational workflow consisting of
a set of tasks in a dependency graph to minimize the overall execution time (or
makespan) is a well-known NP-complete problem [19]. Only a few special cases
are known to be solvable in polynomial time, such as when all tasks are of the
same length and the dependency graph is a tree [27] or when there are only
two processors [10]. For the general case, some branch-and-bound algorithms
[34, 26] have been proposed to compute the optimal solution, but the problem
remains tractable only for small instances. In the seminal work, Graham [21]
showed that the list scheduling strategy, which organizes all tasks in a list and
schedules the first ready task at the earliest time possible, achieves an execution
time that is no worse than 2− 1

m times the optimum, where m denotes the total
number of processors, i.e., the algorithm is a (2 − 1

m)-approximation. This
performance guarantee holds regardless of the order of the tasks in the list.
Some heuristics further explore the impact of different task orderings on the
overall execution time, with typical examples including task execution times,
bottom-levels and critical paths (see [30] for a comprehensive survey of the
various heuristic strategies).

While the results above are for workflows with uni-processor tasks (or tasks
that share the same degree of parallelism), scheduling workflows with parallel

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 23

tasks has also been considered. Li [32] proved that, for precedence constrained
tasks with fixed parallelism of different degrees (i.e., rigid tasks), the worst-case
approximation ratio for list scheduling under a variety of task ordering rules ism.
However, if all tasks require no more than qm processors, where 0 < q < 1, the

approximation ratio becomes (2−q)m
(1−q)m+1 . Demirci et al. [12] proved an O(log n)-

approximation algorithm for this problem using divide-and-conquer, where n is
the number of tasks in the workflow. Furthermore, for parallel tasks that can
be executed using a variable number of processors at launch time (i.e., moldable
tasks), list scheduling is shown to be an O(1)-approximation when coupled with
a good processor allocation strategy under reasonable assumptions on the tasks’
speedup profiles [16, 31, 29].

In this paper, we augment the workflow scheduling problem with the check-
pointing problem for its constituent tasks. We analyze the approximation ratios
of some checkpointing strategies while relying on the ratios of existing schedul-
ing algorithms to provide an overall performance guarantee for the combined
problem.

Checkpointing Workflows. Checkpoint-restart is one of the most widely
used strategy to deal with fail-stop errors. Several variants of this policy have
been studied; see [25] for an overview. The natural strategy is to checkpoint
periodically, and one must decide how often to checkpoint, i.e., derive the op-
timal checkpointing period. An optimal strategy is defined as a strategy that
minimizes the expectation of the execution time of the application. For an pre-
emptible application, given the checkpointing cost C and platform MTBF µ,
the classical formula due to Young [37] and Daly [11] states that the optimal
checkpointing period is WYD =

√
2µC.

Going beyond preemptible applications, some works have studied task-based
applications, using a model where checkpointing is only possible right after the
completion of a task. The problem is then to determine which tasks should be
checkpointed. This problem has been solved for linear workflows (where the task
graph is a simple linear chain) by Toueg and Babaoglu [36], using a dynamic
programming algorithm. This algorithm was later extended in [4] to cope with
both fail-stop and silent errors simultaneously. Another special case is that of
a workflow whose dependence graph is arbitrary but whose tasks are parallel
tasks that each executes on the whole platform. In other words, the tasks have
to be serialized. The problem of ordering the tasks and placing checkpoints is
proven NP-complete for simple join graphs in [3], which also introduces several
heuristics. Finally, for general workflows, deciding which tasks to checkpoint
has been shown #P-complete [22], but several heuristics are proposed in [23].

In this paper, we depart from the above model and assume that each work-
flow task is a preemptible task that can be checkpointed at any instant. This
assumption is quite natural for many applications, such as those involving dense
linear algebra kernels or tensor operations. It is even mandatory for coarse-grain
workflows: unless the failure rate can be decreased below the current standard,
the successful completion of any large task, say executing a few hours with 1K
nodes, is very unlikely.

RR n° 9413

24 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

7 Conclusion

In this paper, we have investigated checkpointing strategies for parallel work-
flows, whose tasks are either sequential or parallel, and in the latter case either
rigid or moldable. Because HPC tasks may have a large granularity, we assume
that they can be checkpointed at any instant. Starting from a failure-free sched-
ule, the natural MinExp strategy consists in checkpointing each task so as to
minimize its expected execution time; hence MinExp builds upon the classical
results of Young/Daly, and uses the optimal checkpointing period for each task.
We derive a performance bound for MinExp, and exhibit an example where
this bound is tight.

Intuitively, MinExp may perform badly in some cases, because there is an
important risk that the delay of one single task will slow down the whole work-
flow. To mitigate this risk, we introduce CheckMore strategies that may
checkpoint some tasks more often than other tasks, and more often than in the
MinExp strategy. This comes in two flavors. CheckMore decides, for each
task, how many checkpoints to take, building upon its degree of parallelism
in the corresponding failure-free schedule. BasicCheckMore is just using,
as degree of parallelism for each task, the maximum possible value min(n,m)
(hence it is equivalent to CheckMore for independent tasks all running in
parallel). The theoretical bounds for BasicCheckMore are not as good as
those of CheckMore, but its performance in practice is very close, thus Bas-
icCheckMore proves to be very efficient despite its simplicity.

An extensive set of simulations is conducted at large scale, using realistic
synthetic workflows from WorkflowHub with between 8k and 70k tasks, and
running on a platform with up to 50k processors. The results are impressive,
with ratios very close to 1 on all workflows for both CheckMore strategies,
while MinExp has much higher ratios, for instance 1.7 on average for Blast
and 1.46 for Seismology. Hence, the simulations confirm that it is indeed
necessary in practice to checkpoint workflow tasks more often than the classical
Young/Daly strategy.

As future work, we plan to extend the simulation campaign to parallel tasks
(rigid or moldable), as soon as workflow benchmarks with parallel tasks are
available to the community. We will also investigate the impact of the failure-
free list schedule on the final performance in a failure-prone execution, both
theoretically and experimentally. Indeed, list schedules that control the degree
of parallelism in the execution may provide a good trade-off between efficiency
(in a failure-free framework) and robustness (when many failures strike during
execution).
Acknowledgements. We thank the reviewers for all their comments and sug-
gestions.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 25

References

[1] Argonne Leadership Computing Facility (ALCF). Mira log traces.
https://reports.alcf.anl.gov/data/mira.html.

[2] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor. Scientific workflows:
Past, present and future. Future Generation Computer Systems, 75:216–
227, 2017.

[3] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. Scheduling compu-
tational workflows on failure-prone platforms. Int. J. of Networking and
Computing, 6(1):2–26, 2016.

[4] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose
algorithms to cope with fail-stop and silent errors. ACM Trans. Parallel
Computing, 3(2), 2016.

[5] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Don-
garra. An evaluation of User-Level Failure Mitigation support in MPI.
Computing, 95(12):1171–1184, 2013.

[6] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Check-
pointing strategies for parallel jobs. Research Report 7520, INRIA, France,
Jan. 2011. Available at http://graal.ens-lyon.fr/~fvivien/.

[7] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward
exascale resilience: 2014 update. Supercomputing frontiers and innovations,
1(1), 2014.

[8] F. Cappello, K. Mohror, et al. VeloC: very low overhead checkpointing
system. https://veloc.readthedocs.io/en/latest/, march 2019.

[9] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems,
3(1):63–75, 1985.

[10] E. G. Coffman and R. L. Graham. Optimal scheduling for two-processor
systems. Acta Inf., 1(3):200–213, 1972.

[11] J. T. Daly. A higher order estimate of the optimum checkpoint interval for
restart dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.

[12] G. Demirci, H. Hoffmann, and D. H. K. Kim. Approximation algorithms
for scheduling with resource and precedence constraints. In STACS, pages
25:1–25:14, 2018.

[13] B. Eisenberg. On the expectation of the maximum of iid geometric random
variables. Statistics & Probability Letters, 78(2):135–143, 2008.

[14] Fault-Tolerance Research Hub. User level failure mitigation, 2021. https:
//fault-tolerance.org.

[15] D. G. Feitelson and L. Rudolph. Toward convergence in job schedulers for
parallel supercomputers. In Job Scheduling Strategies for Parallel Process-
ing, pages 1–26. Springer, 1996.

RR n° 9413

26 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

[16] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal on-line schedul-
ing of parallel jobs with dependencies. Journal of Combinatorial Optimiza-
tion, 1(4):393–411, 1998.

[17] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the
Viability of Process Replication Reliability for Exascale Systems. In SC’11.
ACM, 2011.

[18] R. Ferreira da Silva, L. Pottier, T. a. Coleman, E. Deelman, and
H. Casanova. Workflowhub: Community framework for enabling scien-
tific workflow research and development. In 2020 IEEE/ACM Workflows
in Support of Large-Scale Science (WORKS), pages 49–56, 2020.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[20] P. J. Grabner and H. Prodinger. Maximum statistics of n random vari-
ables distributed by the negative binomial distribution. Combinatorics,
Probability and Computing, 6(2):179–183, 1997.

[21] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal
on Applied Mathematics, 17(2):416–429, 1969.

[22] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien. Checkpoint-
ing workflows for fail-stop errors. IEEE Trans. Computers, 67(8):1105–
1120, 2018.

[23] L. Han, V. L. Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. A generic
approach to scheduling and checkpointing workflows. In ICPP’2018, the
47th Int. Conf. on Parallel Processing. IEEE Computer Society Press, 2018.

[24] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford, fourth edition, 1975.

[25] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for
High-Performance Computing, Computer Communications and Networks.
Springer Verlag, 2015.

[26] U. Hönig and W. Schiffmann. A parallel branch-and-bound algorithm for
computing optimal task graph schedules. In Second International Workshop
on Grid and Cooperative Computing GCC, pages 18–25, 2003.

[27] T. C. Hu. Parallel sequencing and assembly line problems. Oper. Res.,
9(6):841–848, 1961.

[28] IBM Spectrum LSF Job Scheduler. Fault tolerance and automatic manage-
ment host failover, 2021. https://www.ibm.com/docs/en/spectrum-lsf/
10.1.0?topic=cluster-fault-tolerance.

[29] K. Jansen and H. Zhang. An approximation algorithm for scheduling mal-
leable tasks under general precedence constraints. ACM Trans. Algorithms,
2(3):416–434, 2006.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 27

[30] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471,
1999.

[31] R. Lepère, D. Trystram, and G. J. Woeginger. Approximation algorithms
for scheduling malleable tasks under precedence constraints. In ESA, pages
146–157, 2001.

[32] K. Li. Analysis of the list scheduling algorithm for precedence constrained
parallel tasks. Journal of Combinatorial Optimization, 3(1):73–88, 1999.

[33] National Energy Research Scientific Computing Center (NERSC). Cori log
traces. https://docs.nersc.gov/systems/cori/.

[34] A. Z. S. Shahul and O. Sinnen. Scheduling task graphs optimally with A*.
The Journal of Supercomputing, 51:310–332, 2010.

[35] P. Team. Pegasus workflow generator. https://confluence.pegasus.

isi.edu/display/pegasus/WorkflowGenerator, 2014.

[36] S. Toueg and O. Babaoğlu. On the optimum checkpoint selection problem.
SIAM J. Comput., 13(3), 1984.

[37] J. W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

RR n° 9413

28 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

A Extension without final checkpoint nor initial
recovery

Consider a task of type T = (Tbase, p, C,R), which is partitioned into segments
followed by a checkpoint. This section deals with the case where no checkpoint
is enforced at the end of the last segment. By symmetry, we also deal with
the case where no recovery is paid when re-executing the first segment after a
failure.

The task is partitioned into N segments of length Wi, with checkpoint cost
Ci and recovery cost Ri. Let Ctot =

∑N
i=1 Ci and Rtot =

∑N
i=1 Ci. In the

model of Section 2, we had Ci = C, Ri = R for 1 ≤ i ≤ N , Ctot = NC,
and Rtot = NR. If no checkpoint is taken after the last segment, CN = 0 and
Ctot = (N − 1)C. If no recovery is paid when re-executing the first segment,
R1 = 0 and Rtot = (N − 1)R.

What is the optimal strategy to minimize the expected execution time E of
the task? From Lemma 1, we have:

E =

N∑
i=1

E(Wi, Ci, Ri) =

(
1

pλ
+D

) N∑
i=1

epλRi
(
epλ(Wi+Ci) − 1

)
, (14)

where
∑N
i=1Wi = Tbase. GivenN , E is minimized when the sum

∑N
i=1 e

pλ(Wi+Ci+Ri)

is minimized. By convexity of the Exponential function, or by using Lagrange
multipliers, we see that E is minimized when the Wi +Ci +Ri take a constant
value Wseg. This value is given by

NWseg = Tbase + Ctot +Rtot, (15)

and the length Wi of each segment is then computed as Wi = Wseg − Ci − Ri.
If CN = 0, the last segment involves an additional amount C of work duration.
Similarly, if R1 = 0, the first segment involves an additional amount R of work
duration.

Then, we can derive the optimal value of N and Wseg as follows: Equa-
tion (15) gives N = Tbase−R−C+R1+CN

Wseg
. Plugging this value into

E =

(
1

pλ
+D

)[
(N − 1)epλR + epλR1 +NepλWseg

]
enables to solve for Wseg, using the Lambert function in a similar way as in [6].

While the derivation is painful, the conclusion is comforting: in the optimal
solution, all segments have same length of work, up to an additional recov-
ery for the first segment and an additional checkpoint for the last one. The
Young/Daly approximation still holds, as well as all the results of the paper
(whose presentation is much simpler with equal-size work segments).

B Maximum of n IID negative binomial vari-
ables of parameters (Nc, Psuc)

Consider n tasks, that each need to process Nc segments with probability of
success Psuc. We want to bound the expectation E(Mf) of the maximal number

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 29

of failures. Let Q = 1
1−Psuc . From [20], we obtain:

E(Mf) = logQ(n) + (Nc − 1)(logQ(logQ(n)) + logQ(Psuc) + 1)

− logQ(Nc − 1)! +
1

2
+

γ

ln(Q)

+F [logQ(n) +Nc − 1(logQ(logQ(n)) + logQ(Psuc) + 1)− logQ(Nc − 1)!]

+o(1),

where F is a C∞ periodic function of period 1 and mean value 0, and whose
Fourier-coefficients, for k ∈ Z\{0} are given by

F̂ (k) = − 1

ln(Q)
Γ

(
− 2kπi

ln(Q)

)
,

and F̂ (0) = 0. Our first result is the following bound on F :

Lemma 3. ∀x ∈ R, F (x) ≤ ln(Q)
12 .

Proof. We first show that (F̂ (n))n∈Z is summable. Indeed, for all z ∈ C\Z−,

Γ(z) =
e−γz

z

∏
k≥1

e
z
k

1 + z
k

,

where γ is the Euler constant [24]. We know that for n ∈ Z\{0},

Γ

(
−2nπi

ln(Q)

)
=

ln(Q)

−2nπi
exp

(
2γnπi

ln(Q)

)∏
k≥1

exp
(
−2nπi
k ln(Q)

)
1− 2nπi

k ln(Q)

.

We have |eix| = 1 for x ∈ R, hence∣∣∣∣Γ(−2nπi

ln(Q)

)∣∣∣∣ =
ln(Q)

2|n|π
∏
k≥1

k ln(Q)

|k ln(Q)− 2nπi|
.

Since
∣∣∣ k ln(Q)
|k ln(Q)−2nπi|

∣∣∣2 = k2 ln(Q)2

k2 ln(Q)2+4n2π2 ≤ 1, we can omit all the terms of the

product except the first where k = 1, and we obtain:∣∣∣∣Γ(−2nπi

ln(Q)

)∣∣∣∣ ≤ ln(Q)2

2|n|π
√

ln(Q)2 + 4n2π2
≤ ln(Q)2

4π2n2
.

The dependence in 1
n2 shows us that (F̂ (n))n∈Z is summable, thus we can bound

directly F using the result on Fourier series:

∀x ∈ R, F (x) ≤ |F (x)| =

∣∣∣∣∣∑
n∈Z

F̂ (n)e2xπni

∣∣∣∣∣ ≤∑
n∈Z
|F̂ (n)|

≤
∑
n∈Z

1

ln(Q)

∣∣∣∣Γ(−2nπi

ln(Q)

)∣∣∣∣
≤ ln(Q)

4π2
× 2

∑
n∈N+

1

n2
≤ ln(Q)

2π2

π2

6
≤ ln(Q)

12
.

RR n° 9413

30 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Using Lemma 3, we finally obtain:

E(Mf) ≤ logQ(n) + (Nc − 1)(logQ(logQ(n)) + 1) +
1

2
+

1

ln(Q)
+

ln(Q)

12
+ o(1).

C Proof of Proposition 1

Proof. First, straightforwardly, because checkpoint and recovery succeed with
probability e−pλC > 0.99 (resp. e−pλR > 0.99),

WME =
Tbase⌈
Tbase

WYD

⌉ ≤WYD =

√
2µC

p
;

pλC = − ln(e−pλC) ≤ − ln(0.99) <
1

99
;

pλR = − ln(e−pλR) ≤ − ln(0.99) <
1

99
.

Thus,

ln(Q∗) = ln

(
1

1− Psuc(R)

)
= ln

(
1

1− e−pλ(WME+C+R̃)

)
> ln

(
1

1− e−
√
2pλC−pλC−pλR

)
> ln

(
1

1− e−
√

2
99
− 2

99

)
>

15

8
.

Also, because a segment fails with probability at least 10−10, we have 15
8 <

ln(Q∗) < ln(1010) < 23.1. Since f(x) = x
12 + 1

x < 2 for x ∈ [15
8 , 23.1], we obtain:

ln(Q∗)

12
+

1

ln(Q∗)
< 2. (16)

We now consider two cases:
Case 1: If NME = 1, then WME = Tbase. In that case, as we supposed 2(C +
R+D) ≤ Tbase, we conclude:

C +R+D

WME
≤ 1

2
and

C

WME
≤ 1

2
.

Plugging this altogether with Equation (16) in the ratio given in Equation (3),
we obtain:

rME
id (n, T) ≤ 3

2

(
logQ∗(n)

NME
+ logQ∗(logQ∗(n)) +

2

NME

)
+ 3 + o(1)

≤ 3

2 ln(Q∗)

(
ln(n)

NME
+ ln(ln((n))

)
+ 3 +

3

NME
+ o(1)

≤ 4

5

(
ln(n)

NME
+ ln(ln(n))

)
+ 3 +

3

NME
+ o(1).

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 31

Case 2: Suppose now that NME > 1.
First, we should note that as e−pλC < 0.99, 72pλC < 1. Moreover NME =⌈
Tbase

WYD

⌉
≥ 2, thus

⌈
Tbase

WYD

⌉
≤ Tbase

WYD
+ 1 ≤ 2 Tbase

WYD
and finally

WME =
Tbase⌈
Tbase

WYD

⌉ ≥ WYD

2
≥

√
µC

2p
≥
√

72pλC

√
µC

2p
≥ 6C ≥ 6R ≥ 6D.

This also shows that

C +R+D

WME
≤ 1

2
and

C

WME
≤ 1

2
,

and we obtain the same result in that case, i.e.

rME
id (n, T) ≤ 4

5

(
ln(n)

NME
+ ln(ln(n))

)
+ 3 +

3

NME
+ o(1),

which concludes the proof.

D Proof of Theorem 2

The key element of this proof is a new result (to the best of our knowledge) on
expectations of RVs:

Theorem 6. Let (X1, . . . , Xn) be n independent positive RVs with finite expec-
tation, and let Y = max(X1, . . . , Xn). Let Zi be the maximum of n IID RVs
Xi,j with the same law as Xi (thus, Zi = max(Xi,1, Xi,2, . . . , Xi,n)). Then,
E(Y) ≤ 2 maxi(E(Zi)).

We start with two lemmas before proving Theorem 6:

Lemma 4. Let z, a, b ∈ R+ and n ∈ N∗ defined in the following domain:

1 ≤ z
1 ≤ n(

z − 1

z

) 1
n

≤ p0 < 1

0 < pz < 1− p0

Then the following equation holds

(1− (p0 + pz))
z[(p0 + pz)

n − pn0]

1− (p0 + pz)n
− pz(z − 1) ≥ 0 (17)

Proof. If we multiply by 1− (p0 + pz)
n and develop, we see that this equation

is equivalent to proving that the polynomial P (z, p0, pz) is nonnegative over its
domain, where

P (z, p0, pz) = z(p0 + pz)
n + z(p0 + pz)p

n
0

+ (z − 1)pz(p0 + pz)
n − zpn0 − z(p0 + pz)

n+1 − (z − 1)pz

RR n° 9413

32 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Consider fixed values of of p0 and pz with 0 < pz < 1 − p0. The polynomial
Q(z) = P (z, p0, pz) s affine in z. The range of z is 1 ≤ z ≤ 1

1−pn0
, so it is

sufficient to prove that Q(1) ≥ 0 and Q(1
1−pn0

) ≥ 0 to get the result.

We compute easily that Q(1) = (1 − p0 − pz)((p0 + pz)
n − pn0) ≥ 0. Now,

1− 1
1−pn0

=
pn0

1−pn0
and

Q(
1

1− pn0
) =

1

1− pn0

[
((p0 + pz)

n − pn0)(1− p0)− (p0 + pz)
n(1− pn0)pz

]
Letting R(pz) = ((p0 + pz)

n − pn0)(1 − p0) − (p0 + pz)
n(1 − pn0)pz, we need to

show that R(pz) ≥ 0 for 0 ≤ pz ≤ 1 − p0. But we have R(0) = R(1 − p0) = 0,
and differentiating, R′(pz) = (p0 + pz)

n−1S(pz) where

S(pz) = n(1− p0)− p0(1− pn0)− pz(1− pn0)(1 + p0)

We see that S(pz) is affine, positive then negative over R, hence R(pz) is strictly
increasing and then strictly decreasing over R. Given that R(0) = R(1−p0) = 0,
R(pz) is nonnegative for 0 ≤ pz ≤ 1− p0, which concludes the proof.

Lemma 5. Let ε ∈ (0, 1) and (X1, X2, . . . , Xn) be n independent random vari-
ables such that Xi can take only two values : 0 and Mi > 0. We assume that for
all i, E(max(Xi,1, Xi,2, . . . , Xi,n)) = 1, where all the Xi,j follow the same law as
Xi. We finally define X0, a constant random variable always equal to 1. Then
if for all i > 0, Mi ≥ 2

ε , we have E(Y) = E(max(X0, X1, X2, . . . , Xn)) ≤ 2 + ε.

Proof. We define for all i > 0, pi = P{Xi = 0} = 1 − P{Xi = Xi}. From
the condition ∀i > 0,E(max(Xi,1, Xi,2, . . . , Xi,n)) = 1, we obtain the following
relation between Mi and pi:

∀i > 0,E(max(Xi,1, Xi,2, . . . , Xi,n)) = Mi(1− pni) = 1

From which we derive :

∀i > 0,Mi =
1

1− pni

∀i > 0, pni = 1− 1

Xi
≥ 1− ε

2

We can then upper bound our E(Y) to obtain :

E(Y) = E(max(X0, X1, X2, . . . , Xn)) ≤
n∑
i=0

E(Xi)

≤ 1 +

n∑
i=1

(1− pi)Mi ≤ 1 +

n∑
i=1

1− pi
1− pni

= 1 +

n∑
i=1

1∑n−1
j=0 p

j
i

E(Y) ≤ 1 +

n∑
i=1

1

npni
≤ 1 +

n

n(1− ε
2)

= 1 + 1 +
ε

2− ε
≤ 2 + ε

We are now ready to prove Theorem 6.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 33

Proof of Theorem 6. The sketch of the proof is as follows. Let R0 = E(Y)
maxi(E(Zi))

.

We fix ε ∈ (0, 1) arbitrarily small. We apply a set of transformations to the
xi so that they eventually satisfy the conditions described in Lemma 5, while
decreasing the ratio by a factor at most (1 + ε)3. To show this, we will use the
equation of Lemma 4. This will prove that the ratio is less than (1 + ε)3(2 + ε)
for all ε, thus not greater than 2.

Transformation 1: Bound the Xi

We prove that we can bound the Xi in such a way that the ratio is increased
by a factor at most (1 + ε). Let i > 0 and f be the probability density function
of Zi, thus E(Zi) =

∫∞
0
xf(x) dx. First consider g(z) =

∫ z
0
xf(x) dx. We know

that g(z) increases monotonically towards E(Zi) thus there exists Mi such that
g(Mi) ≥ E(Zi)

(
1− ε

2

)
. We define Z ′′i as follows:

Z ′′i = Zi if Zi ≤Mi

Z ′′i = 0 otherwise

Then E(Z ′′i) = g(Mi) ≥ E(Zi)
(
1− ε

2

)
. We now define X ′i in a similar manner :

X ′i = Xi if Xi ≤Mi

X ′i = 0 otherwise

Clearly, if we let Z ′i = max(X ′i,1, X
′
i,2, . . . , X

′
i,n), with all the X ′i,j corresponding

to the bounded Xi,j , we obtain that

Z ′i = Zi if Zi ≤Mi

Z ′i ≥ 0 otherwise

Thus E(Z ′i) ≥ E(Z ′′i) ≥ E(Zi)
(
1− ε

2

)
.

We can apply this for all i, and replace the Xi by the X ′i. Clearly E(Y) will
decrease and maxi(E(Zi)) decreases by a factor at most

(
1− ε

2

)
. Thus after the

first transformation, the new ratio R1 will verify :

R0 ≤
R1

1− ε
2

= R1

(
1 +

ε

2− ε

)
≤ R1(1 + ε)

From now on, we assume that all the Xi are bounded by Mi.

Transformation 2: Discretize the Xi

We prove that we can transform the Xi so that they take only a finite number
of values and so that the ratio is increased by a factor at most (1 + ε).

For all i > 0, we split the domain of Xi, [0,Mi] into Ni = d Mi

εE(Y)e segments

so that each segment is smaller than εE(Y), and if Xi is in a segment we replace
it by the largest value of the segment. This will naturally increase E(Y) by a
factor at most (1 + ε) and it will also increase maxi(E(Zi)). Thus the ratio R2

will verify R1 ≤ (1 + ε)R2. More formally, we define X ′i as the following:

X ′i =

⌈
XiNi
Mi

⌉
Mi

Ni

We apply this change for all i and define Y ′ = max(X ′1, . . . , X
′
n) as well as the

RR n° 9413

34 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Z ′i = max(X ′i,1, X
′
i,2, . . . , X

′
i,n) and we have:

Y ′ − Y ≤ max
i

(X ′i −Xi) ≤
(⌈

XiNi
Mi

⌉
− XiNi

Mi

)
Mi

Ni
≤ Mi

Ni
≤ εE(Y)

E(Y ′) ≤ (1 + ε)E(Y)

E(Z ′i) ≥ E(Zi)

We can replace the Xi by the X ′i, and after transformation 2 we have

R0 ≤ R1(1 + ε) ≤ R2(1 + ε)2

From now on, we assume that all the Xi can take a finite number of values
bounded by Mi.

Transformation 3: Add a high value in the domain of the Xi

In addition to needing that all the Xi take a finite number of values, we
also want that Xi may be extremely large, in order to end up with the con-
ditions described in Lemma 5. More precisely, for any i we define M ′i =

max
(

2(1+ε)E(Zi)
ε ,Mi

)
, pi = ε2

2(1+ε)n2 and X ′i as follows:

X ′i = Xi with probability 1− pi
X ′i = M ′i otherwise (for exemple if Xi

is within the pi proportion of its highest values)

We define Z ′i and Y ′ accordingly. Then:

∀i,E(Z ′i)− E(Zi) ≤ npiM ′i ≤
εE(Zi)

n

E(Y ′)− E(Y) ≤
n∑
i=1

piM
′
i ≤

n∑
i=1

εE(Zi)

n2

≤
n∑
i=1

εE(Xi)

n
≤

n∑
i=1

εE(Y)

n
≤ εE(Y)

∀i,E(Zi) ≤ E(Z ′i) ≤ (1 + ε)E(Zi)

E(Y) ≤ E(Y ′) ≤ (1 + ε)E(Y)

∀i,M ′i ≥
2E(Z ′i)

ε

We replace the Xi by the X ′i (with maximum value Mi := M ′i and the new ratio
R3 verifies :

R0 ≤ R2(1 + ε)2 ≤ R3(1 + ε)3

From now on, we assume that all the xi can take a finite number of values, with

a maximal value Mi larger than 2E(Zi)
ε .

Transformation 4: Normalize the E(Zi)
For all i, we alter the Xi such that all the E(Zi) becomes equal to one. In
practice we do the following:

X ′i =
Xi

E(Zi)

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 35

As usual, if we define Z ′i accordingly to Zi under a draw (Xi,1, . . . , Xi,n), as well
as Y ′ accordingly to Y from a draw of (X1, . . . , Xn), we straightforwardly have:

∀i,E(Z ′i) = 1

E(Y ′)

E(Y)
≥ 1

maxi(E(Zi))

maxi(E(Z ′i))

maxi(E(Zi))
=

1

maxi(E(Zi))

M ′i ≥
Mi

E(Zi)
≥ 2

ε

As before we can replace the Xi by the X ′i, and the new ratio increases, so we
have:

R0 ≤ R3(1 + ε)3 ≤ R4(1 + ε)3 = E(Y)(1 + ε)3

From now on, we assume that the Xi verify: E(Zi) = 1, Xi can only take a finite
number of different values, whose highest is at least 2

ε . We are getting closer to
the conditions of Lemma 5, we just need to add X0 (easy) and to transform the
Xi so that they can take only two values.

Transformation 5: Add X0 = 1
We add the random variable X0 which is always equal to one. We adapt

Y := max(X0, X1, . . . , Xn). Clearly Y can only increase while maxi(E(Zi)) is
still equal to one. Thus

R0 ≤ R4(1 + ε)3 ≤ R5(1 + ε)3 = E(Y)(1 + ε)3

From this point, we apply a transformation that zero out the smaller possible
value for Xi, reducing the number of possible values while E(Zi) remains un-
changed even though Mi and E(Y) increases. The first step will be zeroing out
all the positive values smaller than one.

Transformation 6: Removing the minimal strictly positive possi-
ble value for a Xi 6= X0, if this value is at most 1 (to be processed
iteratively until all the Xi can only be equal to 0 or larger than 1)

This is easy to understand: if z is the minimal strictly positive value that
Xi can reach with probability pz, with z ≤ 1, and if we want to transform Xi so
that pz = 0 while keeping E(Zi) = 1, we will need to increase the other values
(or increase their probability). Either way, if Xi = z ≤ 1 or if Xi = 0 it is
strictly the same for Y because Y ≥ X0 ≥ 1. Thus this transformation can only
increase E(Y).

Let us choose i such that Xi can be in (0, 1] and fix z as the minimal strictly
positive value that Xi can reach. (if such i does not exist, we move on to the
next step). We let p0 , P{Xi = 0}, pz , P{Xi = z} and pz+ , P{Xi > z}.
Similarly, we define P0 , P{Zi = 0}, Pz , P{Zi = z} and Pz+ , P{Zi > z}.
We first compute all these values using only p0 and pz:

pz+ = 1− p0 − pz
P0 = pn0

Pz = (p0 + pz)
n − P0 = (p0 + pz)

n − pn0
Pz+ = 1− (P0 + Pz) = 1− (p0 + pz)

n

RR n° 9413

36 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

The idea of the transformation is the following : we zero out pz (p0 := p0 + pz
and pz := 0) which makes E(Zi) decrease by zPz. To balance that, we increase
all the other possible values (and not their probability) by X = zPz

Pz+
which will

increase E(Zi) by zPz. Formally, we define our new variable X ′i as follows:

X ′i = 0 if Xi ≤ z

X ′i = Xi +
zPz
Pz+

otherwise

Consider a draw (x1, . . . , xn) following (X1, . . . , Xn), and compare Y = max(x0, . . . , xn)
and Y ′ = max(x0, x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). If xi ≤ z < 1 or if x′i ≤ Y ,

Y = Y ′; otherwise Y ′ > Y . Thus E(Y ′) > E(Y), E(Z ′i) = 1, and the ratio
increases as well as Mi.

When we may not apply transformation 6 again, each Xi can only be equal
to 0 or larger than 1, with a maximum possible value greater than 2

ε , and we
can move on to the last transformation before concluding the proof.

Transformation 7: If some Xi can take more than two different
values, remove its smallest strictly positive value (to be processed
iteratively until meeting the conditions of Lemma 5)

We take an Xi and its minimum strictly positive value z ≥ 1; we apply the
same transformation as in transformation 6 although the analysis differs, i.e.

X ′i = 0 if Xi ≤ z

X ′i = Xi +
zPz
Pz+

otherwise

Consider a draw (x1, . . . , xn) following (X1, . . . , Xn), and compare Y = max(x0, . . . , xn)
and Y ′ = max(x0, x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). If xi ≤ z < 1 or if x′i ≤ Y ,

Y = Y ′; otherwise Y ′ > Y . Thus E(Y ′) > E(Y), E(Z ′i) = 1, and the ratio
increases as well as Mi. Straightforwardly if xi ≤ Y then Y ′ ≥ Y ; otherwise
xi = maxnj=0(xj). There are two cases:

• Case 1: xi = z. This happens with a probability pz
∏n
i=0,i6=j P{xj ≤ z}

and in this case Y ′ − Y = maxi=0,i6=j(xj)− z ≥ 1− z.

• Case 2: xi > z. This happens with a probability pz+
∏n
i=0,i6=j P{xj ≤

xi|xi > z} ≥ pz+
∏n
i=0,i6=j P{xj ≤ z} and in this case Y ′ − Y = zPz

Pz+
.

We are now able to bound E(Y ′ − Y) and show that it is nonnegative.

E(Y ′ − Y) ≥
n∏

i=0,i6=j

P{xj ≤ z}
(
pz+

zPz
Pz+

− pz(z − 1)

)

If
∏n
i=0,i6=j P{xj ≤ z} = 0, we are done; otherwise:

E(Y ′ − Y) ≥ 0⇔ pz+
zPz
Pz+

− pz(z − 1) ≥ 0

⇔ (1− (p0 + pz))
z[(p0 + pz)

n − pn0]

1− (p0 + pz)n
− pz(z − 1) ≥ 0

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 37

We are now under the conditions described in Lemma 4 and can conclude.
Indeed, the following conditions are obvious:

n ∈ N∗

1 ≤ z
1 ≤ n
p0 < 1

0 < pz < 1− p0

So we only need to show that p0 ≥ (z−1
z)

1
n , i.e. P0 ≥ z−1

z . A quick study of
E(Zi) shows us what we need:

1 = E(Zi) = (1− P0)E(Zi|Zi > 0) ≥ (1− P0)z thus

P0 ≥ 1− 1

z
≥ z − 1

z

Applying Lemma 4, we finally show that E(Y ′) ≥ E(Y). We fix xi := x′i and
we have increased the ratio while decreasing the number of possible values for
xi, increasing Mi and keeping E(Zi) = 1. Once all the xi can only take two
possible values, 0 and Xi ≥ 2

ε , we cannot apply transformation 7 any more, and
are ready to conclude.

Conclusion of the proof of Theorem 6:
We are now exactly under the conditions of Lemma 5, Furthermore, transfor-
mations 6 and 7 increased the ratio, thus:

R0 ≤ (1 + ε)3E(Y) ≤ (1 + ε)3(2 + ε)

Now suppose there exists a case such that R0 = 2 + µ with µ > 0. Applying
the transformations with ε small enough (for example ε = min(1

2 ,
µ
22)) we reach

a contradiction. We can finally conclude the proof and claim:

R0 ≤ 2

Tightness:
For any ε > 0, it is possible to build an example such that R0 ≥ 2− 1

n − ε. We
provide a brief argument as follows. Consider n independent positive random
variables, X1 = 1 and for i > 1, Xi = 0 with probability p and x otherwise,
such that E(Zi) = 1. As in Lemma 5 we have x = 1

1−pn . Then

E(Y) = P{Y = 1}+XiP{Y = x}

= pn−1 +
1− pn−1

1− pn

= 1 + pn−1 − 1∑n−1
i=0 p

i
−→
p→1

2− 1

n

This shows that we can build an example with a ratio arbitrarily close to 2 −
1
n .

RR n° 9413

38 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Back to the proof of Theorem 2.

In fact, Theorem 6 allows us to directly extend Theorem 1 to Theorem 2. For
all i, let Ti be the Random Variable representing the execution time of the task
with profile Ti and let Xi = Ti

T ibase
. Clearly, the Xi’s are independent and positive,

so Y = max(X1, . . . , Xn) matches the condition of Theorem 2. Furthermore,
for any given i, we suppose that we were to schedule a shelf of n identical tasks
of type Ti in which Ti,j is the Random Variable representing their execution

time and Xi,j =
Ti,j
T ibase

. Then, clearly, the Xi,j ’s are IID and follow the same law

as Xi, thus we can define Zi = maxj(Xi,j) to reach the conditions of Theorem 6.
Finally, the two following equations hold:

rME(n, T) = E
(

max
i

(
Ti

maxi(T ibase)

))
≤ E

(
max
i

(
Ti
T ibase

))
= E(Y)

∀i, rME
id (n, Ti) = E

(
max
j

(
Ti,j
T ibase

))
= E

(
max
j

(Xi,j)

)
= E(Zi)

We can then apply Theorem 6 and obtain the result:

rME(n, T) ≤ E(Y) ≤ 2 max
i

(E(Zi)) = 2 max
1≤i≤n

(
rME
id (n, Ti)

)
. (18)

E Proof of Theorem 3

The (ai,j)i∈[1,n],j∈[1,K] for the example in the proof of Theorem 3 are given by
a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 =


1 0 0 0
0 1/2 1/4 1/4

3/4 1/4 0 0
2/3 2/9 1/9 0


The total execution time of Svirt is

∑K
j=1 T (Svirt

j). From Theorem 2, we
directly have that

E(T (Svirt
j)) ≤ 2 max

i∈Bj
(rME
id (|Bj |, Ti))T (Sj) ≤ 2 max

1≤i≤n
(rME
id (∆, Ti))T (Sj).

The second inequality holds because |Bj | ≤ ∆ and because rME
id increases when

the number of tasks increases. Finally,

E(T (Svirt)) =

K∑
j=1

E(T (Svirt
j)) ≤ 2 max

1≤i≤n
(rME
id (∆, Ti))

K∑
j=1

T (Sj),

where
∑K
j=1 T (Sj) = T (S).

Finally, here is the proof by induction to prove that no task starts nor ends
later in S’ than in Svirt. Recall that the key element is that the ordering of
starting times from S is preserved in both Svirt and S′.

• The first task starts at time 0 for both Svirt and S′, and may be suspended
in Svirt, hence its ending time cannot be larger in S′;

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 39

• Let i > 1, and suppose the induction hypothesis holds for the first i − 1
tasks. Let x be the starting time of task i in schedule Svirt. By definition of
the slices in Svirt, when a task starts, all the unfinished tasks are running
concurrently; thus there are enough processors to process task i and all
the unfinished tasks among the first i−1 ones. Since the ending time of all
these unfinished tasks may not be larger in S′, there are enough processors
to start task i in S’ at time x if it has not started yet. Because we try to
start the i-th task in S’ before the ones that are started later in S, we will
indeed not start task i later in S′ than in Svirt. And because task i will
not be suspended in S′, it will not end later either.

This concludes the induction and the proof of Theorem 3.

F Proof of Theorem 5

Proof. To prove this theorem, we just need to adapt the proof of Theorem 3. In
fact, the analysis in Theorem 3 did not depend upon the checkpoint strategy,
thus using the same slices (Sj)j∈[1,K] and virtual schedule Svirt, we have for
both CheckMore and BasicCheckMore:

E(T (S′)) ≤ E(T (Svirt)) =

K∑
j=1

E(T (Svirt
j)). (19)

Again, for all slices Sj and all tasks i ∈ Bj (recall that Bj is the set of tasks

in slice Sj), we have Xi = Ti
T ibase

. Then, the scaling of Sj ,
T (Svirt

j)

T (Sj)
, corresponds to

maxi∈Bj Xi. We then can safely use Theorem 6; assuming that each task i is
checkpointed according to SafeCheck(δi), we obtain:

E(T (Svirt
j))

T (Sj)
≤ 2 max

i∈Bj

(
rSCid (δi, |Bj |, Ti)

)
≤ 2 max

1≤i≤n

(
rSCid (δi,∆i, Ti)

)
(20)

Finally, using Equation (20), Equation (19), and ∀i,∆i ≤ ∆, we obtain for
CheckMore and BasicCheckMore respectively:

E(T (S′)) ≤ 2 max
1≤i≤n

(
rSCid (∆i,∆i, Ti)

) K∑
j=1

T (Sj);

E(T (S′)) ≤ 2 max
1≤i≤n

(
rSCid (min(n,m),∆, Ti)

) K∑
j=1

T (Sj).

G Example for the tightness of the bound of
Theorem 1

In the example, we have n identical tasks of type τ = (2K − 1, 1, 1, 0), with
K ≥ 2. We have n ≤ m, D = 0 and e−λ(Tbase+C) = 2K

2K+1 .

RR n° 9413

40 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

G.1 MinExp

In this section, we study the MinExp strategy for the example, when K is fixed
and n is the variable.

Lemma 6.
3

8
≤ Tbase
WYD

≤ 1√
2

and NME = 1

Proof. We have Tbase = 2K−1, WYD =
√

4K
ln(1+ 1

2K)
, and(Tbase

WYD
)2 = (2K−1)2

4K ln(1+

1
2K). Hence, using x

2 ≤ ln(1 + x) ≤ x for 0 ≤ x ≤ 1 and K ≥ 2, we have

(
3

8
)2 ≤ (

2K − 1

4K
)2 ≤ (

Tbase
WYD

)2 ≤ (2K − 1)2

8K2
≤ 1

2

hence
3

8
≤ Tbase
WYD

≤ 1√
2

(21)

Finally, NME = d Tbase

WYD
e = 1.

Let Mf,1 denote the maximal number of failures over all tasks when using
the MinExp strategy.

Lemma 7. If K is fixed, rME
id (n, T) = Θ(ln(n)), showing the tightness of the

bound given in Theorem 1

Proof. Let E(Tlost(Tbase +C)) be the expected time lost due to one failure if we
take only one checkpoint (strategy MinExp). We get E1 ≥ E(Mf,1)E(Tlost(Tbase+
C)) +Tbase +C, where E1 is the expected total time for MinExp. Indeed E1 is
at least equal to the expectation of a task with the maximal number of failures.
The expectation of such a task is the expected number of failures time the ex-
pected waste per failures (independent RVs) plus the time Tbase +C of the first
execution.

Now the expected time lost before a failure when attempting to successfully
execute for T seconds (either work or checkpoint) is computed as

E(Tlost(T)) =

∫ ∞
0

xP(X = x|X < T)dx =
1

P(X < T)

∫ T

0

xe−λxdx

and P(X < T) = 1 − e−λT . Integrating by parts, we derive that E(Tlost(T)) =
1
λ −

T
eλT−1

.
We can check that:

T

2
≥ E(Tlost(T)) ≥ e−λTT

2
. (22)

The first inequality is easy, the second is obtained by differentiating the function

g(T) = E(Tlost(T))− e−λTT
2 .

Using Equation (22), we have

E(Tlost(Tbase + C)) ≥ e−λ(Tbase+C)(Tbase + C)

2

hence E(Tlost(Tbase+C)) ≥ 2K2

2K+1 ≥
4K
5 for K ≥ 2. Thus E1 ≥ 4K

5 E(Mf,1)+2K.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 41

Furthermore, we have that

E1 ≤ Tbase + C + E(Mf,1)(Tbase + C) = 2K(1 + E(Mf,1)) (23)

because the re-execution time after each failure is bounded by Tbase +C = 2K.
Altogether we have shown that:

2KE(Mf,1)) + 2K ≥ E1 ≥
4K

5
E(Mf1) + 2K (24)

Since E(Mf1) corresponds to the maximum of n IID geometric laws of pa-
rameter Psuc = 2K

2K+1 , we know from [13] that

Hn

− ln(1− Psuc)
− 1 ≤ E(Mf1) ≤ Hn

− ln(1− Psuc)
(25)

where Hn =
∑n
k=1

1
k is the n-th Harmonic number and verifies:

ln(n) ≤ Hn ≤ ln(n) + 1 (26)

From Equations (24), (25) and (26), and using rME
id (n, T) = E1

Tbase
, we derive

2 ln(n)

5 ln(2K + 1)
+

3

5
≤ rME

id (n, T) ≤ 4(ln(n) + 1)

3 ln(2K + 1)
(27)

For the last inequality, we have used that 2K
2K−1 ≤

4
3 for K ≥ 2. We have derived

that rME
id (n, T) = Θ(ln(n)).

G.2 CheckMore

In this section, we compare the MinExp and CheckMore strategies for the
example. We want to take 2K−1 checkpoints for each task, which will partition
them into 2K − 1 segments of total length 2. According to Definition 2, this

coincides to SafeCheck(δ), where 2K−1 = NSC(δ) =
⌈

(ln(δ)+1)Tbase

WYD

⌉
. Finally,

we choose the number n of tasks as n = δ. Note that BasicCheckMore
coincides with CheckMore in this example.

In Lemma 8, we show that the corresponding value of n is

n =
⌊
eWYD−1

⌋
=

⌊
e

√
4K

ln(1+ 1
2K

)
−1
⌋
. (28)

Then, we derive a relation between the performance of MinExp and Check-
More when K is the variable, while n obeys Equation (28) as a function of
K.

Lemma 8. Let n = δ =
⌊
eWYD − 1

⌋
. Then, NSC(n) = 2K − 1, and we have:

3 ln(n+ 1) + 8

16
≤ K ≤ ln(n+ 1)

2
√

2
+ 1.

RR n° 9413

42 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Proof. We observe that⌈
(ln(n) + 1)Tbase

WYD

⌉
= 2K − 1⇔ 2K − 2 <

(ln(n) + 1)Tbase
WYD

≤ 2K − 1

⇔ e
(2K−2)WYD

Tbase
−1

< n ≤ e
(2K−1)WYD

Tbase
−1

We can safely let n =

⌊
e

(2K−1)WYD
Tbase

−1

⌋
=
⌊
eWYD−1

⌋
as soon as

e
(2K−1)WYD

Tbase − e
(2K−2)WYD

Tbase ≥ e.

This difference is clearly increasing when WYD

Tbase
increases (for fixed K) and when

K increases (for fixed WYD

Tbase
). Using K ≥ 2 and WYD

Tbase
≥
√

2 (from Equation (21)),
we obtain the minimum value

e3
√

2 − e2
√

2 ≥ e,

hence the result.
Finally, from

⌈
(ln(n)+1)Tbase

WYD

⌉
= 2K − 1, we derive:

2K − 2 <
(ln(n) + 1)Tbase

WYD
≤ 2K − 1.

And using Equation (21),

3 ln(n) + 11

16
≤ K ≤ ln(n) + 1

2
√

2
+ 1. (29)

Let Mf,2 denote the maximal number of failures over all tasks when using
the SafeCheck(n) strategy (i.e., CheckMore or BasicCheckMore), and
recall that Mf,1 denote the maximal number of failures when using the MinExp
strategy.

Lemma 9. E(Mf,2) ≤ 2E(Mf,1) .

Proof. For CheckMore, we have n tasks with each NME = 2K−1 segments of
length 2, one unit of work and one unit of checkpoint. Consider a virtual task
set with 2n tasks with a single segment of length 2K, 2K − 1 units of work and
one unit of checkpoint. We further assume that there are only n processors, and
that each processor executes two tasks consecutively. Intuitively, the virtual set
of tasks corresponds to executing twice the tasks of MinExp. Let Mf,3 denote
the maximal number of failures for the virtual set.

Now, for a given processor, and for any failure scenario, we compare the
execution of a real task in CheckMore and of two virtual tasks. Let t be
the time-step of completion of the first virtual task, which corresponds to the
end of the first interval of 2K units of time without failing. Then, during
these 2K units of time, we could process the first K segments of the real task.
Afterwards, we need an additional time-interval of length 2K without failures
to process the second virtual task, which is enough to finish the real task. We

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 43

conclude that Mf,2 ≤ Mf,3. Because this is true for any failure scenario, we
have E(Mf,2) ≤ E(Mf,3).

Then, let Xi denote the RV for the number of failures of the first virtual
task of processor i, and Yi denote the RV for the number of failures of the
second virtual task of processor i, where 1 ≤ i ≤ n. We have E(Mf,3) =
E(maxi(Xi + Yi)) ≤ E(maxi(Xi)) + E(maxi(Yi)) = 2E(Mf,1).

We are ready to compare the MinExp and CheckMore strategies. We
show that the latter is an order of magnitude better than the former.

Proof of Proposition 2

Proof. Let E2 be the expected total time for BasicCheckMore (equivalent to
CheckMore in this case). Similarly to Equation (23), since each segment has
length 2, we get:

E2 ≤ Tbase + (2K − 1)C + E(Mf,2)× 2 ≤ 4K + 4E(Mf,1). (30)

The last inequality comes from Lemma 9.
From Equations (30), (25) and (26), and since rBCM (n, T) = E2

Tbase
, we have:

rBCM (n, T) ≤ 2
ln(n) + 1

K ln(2K + 1)
+ 2.

Using Equation (29), we obtain:

rBCM (n, T) ≤ 32

3 ln(2K + 1)
+ 2 = Θ(1). (31)

Finally, from Equations (29) and (27), as ln(n) = Θ(K), we obtain:

rME(n, T) = Θ

(
K

ln(K)

)
. (32)

H Asymptotic analysis

For a shelf of n identical uni-processor tasks executing in parallel on n processors,
we have:

rME
id (n, T) ≤

(
logQ∗

ME
(n)

NME
+ logQ∗

ME
(logQ∗

ME
(n)) + 1 +

ln(Q∗
ME)

12NME

+ 1
ln(Q∗

ME
)NME

)
×
(

1 + C+R+D
WME

)
+ C

WME
+ 1 + o(1).

and

rCMid (n, T) ≤
(

logQ∗
CM

(n)

NSC(n)
+ logQ∗

CM
(logQ∗

CM
(n)) + 1 +

ln(Q∗
CM)

12NSC(n)

+ 1
ln(Q∗

CM
)NSC(n)

)
×
(

1 + C+R+D
WSC(n)

)
+ C

WSC(n)
+ 1 + o(1).

In practice, increasing the number of checkpoints increases C+R+D
W and C

W
and decreases the other terms. We show that if n is large enough, these two

RR n° 9413

44 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

terms do not become larger than 1 even for CheckMore, and thus if n is large

enough, the dominating term of rME
id is

(
logQ∗

ME
(n)

NME
+ logQ∗

ME
(logQ∗

ME
(n))

)
while the dominating term of rCMid is

(
logQ∗

CM
(n)

NSC(n) + logQ∗
CM

(logQ∗
CM

(n))

)
.

We make the following reasonable assumptions:

1. Processing a single checkpoint with one processor can fail with probability
at most 0.05%;

2. n ≤ 109;

3. 2D ≤ R ≤ C ≤ Tbase

25 .

Because of Assumption (3), we have C +R+D ≤ 2.5C, so

C +R+D

WSC(n)
=
C +R+D

Tbase

⌈
(ln(n) + 1)Tbase

WYD

⌉
≤ 2.5C

WYD
(ln(n) + 1) +

2.5C

Tbase
.

As n ≤ 109 from Assumption (2), we have ln(n) ≤ 21, and because of
2.5C
Tbase

≤ 0.1 from Assumption (3), we have:

C +R+D

WSC(n)
≤ 22

2.5C√
2µC

+ 0.1 ≤
√

222 × 2.52

2
λC + 0.1.

From Assumption (1), we directly derive that e−λC ≥ 0.9995, which gives
λC ≤ − ln(0.9995). By doing the numerical computation, we finally show that
C+R+D
WSC(n) < 1, and by extension C

WSC(n) < 1, C+R+D
WME

< 1 and C
WME

< 1.

This shows that if n is large enough, the dominating terms of both check-

point strategies are similar, i.e.,

(
logQ∗

ME
(n)

NME
+logQ∗

ME
(logQ∗

ME
(n))

)
for rME

id , and(
logQ∗

CM
(n)

NSC(n)
+logQ∗

CM
(logQ∗

CM
(n))

)
for rCMid . Indeed, the other terms were al-

ready shown to be small for MinExp in Appendix C and they are even smaller
for CheckMore.

Clearly, the number of checkpoints increases with CheckMore and both
terms get lower when n increases. In particular, if NME > 1, Tbase

WYD
> 1 and

NSC(n) > ln(n), the dominating term of rCMid becomes ln(ln(n))
ln(Q∗

CM) , which might

be an order of magnitude lower than ln(n)
ln(QME∗)NME

. If this is not the case,

meaning that NME is large, then both dominating terms are logQ∗(logQ∗(n))
and we still have a significant gain because Q∗CM > Q∗ME , and this difference
increases with n.

I Complete Experimental Evaluation

This appendix is a self-contained extended version of Section 5. For reader’s
convenience, it duplicates text and figures from Section 5, but also provides
several additional figures and comments.

We evaluate the performance of the different checkpointing strategies through
simulations. We describe the simulation setup in Section I.1, present the main

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 45

Figure 5: Performance (ratio) comparison of the three checkpointing strategies
for the nine different workflows, with large workflows (i.e., failure-free execu-
tion time of 3-5 days) shown on the left, and small workflows (i.e., failure-free
execution time of 15-24 hours) on the right.

performance comparison results in Section I.2, and assess the impact of different
parameters on the performance in Section I.3. Our in-house simulator is written
in C++ and is publicly available for reproducibility purpose.

I.1 Simulation Setup

We evaluate and compare the performance of the three checkpointing strategies
MinExp, CheckMore and BasicCheckMore. All strategies are coupled
with a failure-free schedule computed by a list scheduling algorithm (see be-
low). The workflows used for evaluation are generated from WorkflowHub [18]
(formerly Pegasus [35]), which offers realistic synthetic workflow traces with a
variety of characteristics and they have been shown to accurately resemble the
ones from real-world workflow executions [2, 18]. Specifically, we generate the
following nine different types of workflows offered by WorkflowHub that model
applications in various scientific domains:

• Blast: a bioinformatics workflow for searching biological sequence databases
and identifying amino-acid or DNA sequences that resemble query se-
quences;

• Bwa: a bioinformatics workflow for performing DNA sequence alignment
using the ”Burrows-Wheeler Aligner”;

• Cycles: an agroecosystem workflow for conducting simulations of crop
production and water, carbon and nitrogen cycles in the soil-plant-atmosphere
continuum;

• Epigenomics: a bioinformatics workflow for automating various opera-
tions in genome sequence processing;

• Genome: a bioinformatics workflow for identifying mutational overlaps
to provide statistical evaluation of potential disease-related mutations;

• Montage: an astronomy workflow for analyzing multiple input images
to create custom mosaics of the sky;

• Seismology: a seismology workflow for performing seismogram deconvo-
lutions to estimate earthquake source time functions;

• SoyKB: a bioinformatics workflow for performing large-scale next-generation
sequencing of soybean lines within the Soybean Knowledge Base (SoyKB);

• Sras: a bioinformatics workflow for downloading and aligning data in the
Sequence Read Archive (SRA).

RR n° 9413

46 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Each trace defines the general structure of the workflow, whose number of
tasks and total execution time can be specified by the user3. All tasks generated
in WorkflowHub are uni-processor tasks.

In the experiments, we evaluate the checkpointing strategies under the fol-
lowing parameter settings:

• Number of processors: m = 214 = 16384;
• Checkpoint/recovery/down time: C = R = 1 min, D = 0;
• MTBF of individual processor: µind = 10 years;
• Number of tasks of each workflow: n ≈ 50000.
Furthermore, the total failure-free execution times of all workflows are gen-

erated such that they complete in 3-5 days. This is typical of the large scientific
workflows that often take days to complete as observed in some production log
traces [1, 33]. To demonstrate the robustness of our evaluation, we also generate
small workflow traces that take less than a day (i.e., 15 - 24 hours) to complete.
This is roughly one fifth of the size of large workflows. As a result, to keep
the average number of failures per task the same, we also scale the individual
MTBF from 10 years to 2 years, while all the other parameters are kept the
same. Section I.2 will present the comparison results of different checkpointing
strategies under the above parameter settings. In Section I.3, we will further
evaluate the impacts of different parameters (i.e., m, C, µind and n) on the
performance.

The evaluation methodology is as follows: for each set of parameters and each
type of workflow trace, we generate 30 different workflow instances and compute
their failure-free schedules. We use the list scheduling algorithm that orders the
tasks using the Longest Processing Time (LPT) first policy: if several tasks are
ready and there is at least one processor available, the longest ready task is
assigned to the available processor to execute. Since all tasks are uni-processor
tasks, LPT is known to be a 2-approximation algorithm [21]; also, LPT is known
to be a good heuristic for ordering the tasks [30]. This order of execution will
be enforced by all the checkpointing strategies. For each workflow instance, we
further generate 50 different failure scenarios. Here, a failure scenario consists of
injecting random failures to the tasks by following the Exponential distribution
as described in Section 2.1. The same failure scenario will then be applied to
each checkpointing strategy to evaluate its execution time for the workflow.
We finally compute the ratio of a checkpointing strategy under a particular
failure scenario as T

Tbase
, where Tbase is the failure-free execution time of the

workflow, and T is the execution time under the failure scenario. The statistics
of these 30×50 = 1500 experiments are then compared using boxplots (that show
the mean, median, and various percentiles of the ratio) for each checkpointing
strategy. The boxes bound the first to the third quantiles (i.e., 25th and 75th
percentiles), the whiskers show the 10th percentile to the 90th percentile, the
black lines show the median, and the stars show the mean.

I.2 Performance Comparison Results

Figure 5 (left) shows the boxplots of the three checkpointing strategies in terms
of their ratios for the nine different workflows, when their failure-free execution
time is 3-5 days (i.e., large workflows).

3Note that the workflow generator may offer a different number of tasks so as to guarantee
the structure of the workflow. The difference, however, is usually small.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 47

First, we observe that CheckMore and BasicCheckMore have very sim-
ilar performance, which in most cases are indistinguishable. This shows that
BasicCheckMore offers a simple yet effective solution without the need to
inspect the failure-free schedule, thus making it an attractive checkpointing
strategy in practice. Also, both versions of CheckMore perform significantly
better and with less variation than MinExp, except for the few workflows where
the ratios of all strategies are very close to 1 (e.g., Bwa, SoyKB, Sras). Over-
all, the 90th percentile ratio of CheckMore never exceeds 1.08, whereas that
of MinExp is much higher for most workflows and reaches almost 1.5 for Mon-
tage. Similarly, the average ratio of CheckMore never exceeds 1.03, while
that of MinExp is again significantly higher and reaches more than 1.2 for
Seismology and Montage.

We now examine a few workflows more closely to better understand the
performance. For Sras, MinExp is slightly better than CheckMore, but the
ratios of all strategies are near optimal (i.e., ¡1.003). In this workflow, very
few tasks are extremely long while many others are very short, and there are
very few dependencies among them. Thus, failures hardly ever hit the long
tasks due to their few number, while failures that hit short tasks have little
impact on the overall execution time. This is why the ratio is so small for all
strategies. It also explains why MinExp outperforms CheckMore: although
the maximum degree of parallelism is important, only a few tasks matter and
they should be checkpointed à la Young/Daly to minimize their own expected
execution time, and thereby that of the entire workflow. SoyKB and Bwa also
have very low ratios. In the case of SoyKB, there is just not enough parallelism
during the majority of the execution time, so all strategies are making reasonable
checkpointing decisions, with CheckMore performing slightly better for taking
into account this small parallelism. Bwa, on the other hand, has two source
tasks that must be executed first and two sink tasks that must be executed last.
Among them, one source task and one sink task are extremely long, so failures
in other tasks have little impact (as in the case of Sras). Yet the small tasks are
not totally negligible here, because the dominant sink task must be processed
after all of them, so it is still worth to optimize these tasks with CheckMore,
which explains why it is slightly better than MinExp.

For all the other workflows, CheckMore performs better than MinExp by
a significant margin. This is due to CheckMore’s more effective checkpointing
strategies given the specific structure of these workflows. For instance, Mon-
tage has some key tasks that are dominant, so a failure that strikes most of
the other tasks does not impact the overall execution time. This is similar to
the case of Sras and explains why, for all strategies, the first quantile of the
ratio is very low (i.e., around 1). However, when a failure does strike one of
the key tasks, the execution time will be heavily impacted. The difference with
Sras is that Montage contains more key tasks that can run in parallel, so
it is much more likely that one of them will fail, which is why checkpointing
them with CheckMore is better. Next, Blast and Seismology have some
source and sink tasks (as Bwa), which, however, are not so dominant in length,
making the difference between CheckMore and MinExp higher even from the
first quantile. Other workflows also have similar structures, which eventually
contribute to the better performance of CheckMore over MinExp.

Figure 5 (right) further shows the comparison results for the nine workflows
when their failure-free execution time is 15-24 hours (i.e., small workflows). We

RR n° 9413

48 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Figure 6: Impact of the number of processors (m) on the performance of the
checkpointing strategies for different workflows.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 49

can observe that the results are very similar to those for large workflows, which
demonstrates that the relative performance of the three checkpointing strategies
is not affected by the size of the workflows, provided that the average number
of failures per task remains the same. Thus, in the subsequent experiments, we
will only report results for the large workflows.

I.3 Impact of Different Parameters

We now study the impact of different parameters on the performance of the
checkpointing strategies. In each set of experiments below, we vary a single
parameter while keeping the others fixed at their base values. The results are
shown in Figures 6-9, where the scale of the y-axis is kept the same for ease of
comparison. For some figures with really small values, zoomed-in plots are also
provided on the original figure for better viewing.

Impact of Number of Processors (m). We first assess the impact of the
number of processors, which is varied between 4096 and 50000, and the results
are shown in Figure 6. In general, increasing the number of processors increases
the ratio. This corroborates our theoretical analysis, because for most types of
workflows, having more processors means having a larger ∆ and thus a larger
potential ratio, until m surpasses the width of the dependence graph. However,
CheckMore and BasicCheckMore appear less impacted than MinExp.

For Blast, Bwa, Genome, Seismology, the ratio is very low when m is
small for all checkpointing strategies. In fact, for these workflows, most tasks
are quite independent. Thus, when n is large compared to m, even if a failure
strikes a task, it will have little impact on the starting times of the other tasks.
This is because we only maintain the order of execution but do not stick to the
same mapping as in the failure-free schedule. For this reason, it is better to
minimize each task’s own execution time by using MinExp (i.e., CheckMore
checkpoints a bit too much). However, when m becomes large, the performance
of MinExp degrades significantly, with an average ratio even reaching 1.7 for
Blast at m = 50000, whereas it stays below 1.1 for CheckMore.

For Epigenomics, Cycles and Montage, the ratio does not vary signif-
icantly with the number of processors, but is not negligible for MinExp even
when m is small (between 1.05 and 1.2 depending on the workflow). For these
workflows, the ratio of MinExp is 4 to 10 times higher than that of Check-
More, demonstrating the advantage of the latter checkpointing strategy.

Finally, for Sras, as the number of dominating tasks that could be run in
parallel is way less than 4096, the ratio of MinExp does not vary much with
m, while that of CheckMore increases with m as it tends to checkpoint more
with an increasing number of processors. Also, in more than 90% of the cases,
the failures have strictly no impact on the overall execution time, since they do
not hit the dominating tasks. This is why the average ratio is above the 90th
percentile for all checkpointing strategies. Similarly, for SoyKB, the ratio is
not impacted much for MinExp and CheckMore, especially for m ≥ 11000.

Impact of Checkpoint Time (C). We now evaluate the impact of the
checkpoint time by varying it between 15 and 240 seconds, and the results
are shown in Figure 7. The ratio generally increases with C; this is consistent
with Equation (3). when R = C and D = 0, the approximation ratio satisfies

r ≤
(
X
Nc

+ Y
) (

2C
W + 1

)
+ C

W + Z, where X,Y and Z barely depend on C, Nc

RR n° 9413

50 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Figure 7: Impact of the checkpoint time (C) on the performance of the check-
pointing strategies for different workflows.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 51

decreases with C, and C
W ≈

√
C
2µ increases with C. Intuitively, the checkpoint

time impacts the ratio in two ways. First, as C increases, we pay more for
each checkpoint, which could lead to an increased ratio. Second, as we use

WYD =
√

2C
pλ to determine the checkpointing period and hence the number of

checkpoints, a task will become less safe when C increases, because it will be
checkpointed less, and this could also increase the ratio.

For example, looking at Genome under MinExp, we can see a clear increase
in the ratio when C increases from 15 to 21. This is because the typical number
of checkpoints for the critical tasks (that affect the overall execution time the
most) drops from 3 to 2, thus the time wasted due to a failure increases from
33% to 50%. As C increases from 60 to 85, the typical number of checkpoints of
these tasks further drops from 2 to 1, making the waste per failure increase to
100%, and so the ratio also greatly increases. For values of C between 21 and 42,
even if the number of checkpoints does not change, the ratio increases smoothly
due to the increase in checkpoint time. The ratio of CheckMore, on the other
hand, only increases slightly with the checkpoint time, which is, however, not
visible in the figure due to the small values. Some other workflows, such as
Bwa, Montage and Seismology, also clearly illustrate these phenomena.

For the remaining workflows, we can again see the impact of these two factors
or their combination on the ratio. For instance, as most failures in Sras does
not affect the overall execution time, the ratio of all strategies is only impacted
by the checkpoint time. For Blast under MinExp, because most tasks are
short and we have a single checkpoint to start with, the increase in checkpoint
time is negligible compared to the waste induced by failures.

Impact of Individual MTBF (µind). We evaluate the impact of individual
processor’s MTBF by varying it between 30 months and 40 years, and the
results are shown in Figure 8. Intuitively, when µind increases (or equivalently,
the failure rate λ decreases), we would have fewer failures and expect the ratio
to decrease. This is generally true for CheckMore but not always for MinExp.
To understand why, we refer again to the simplified approximation ratio r ≤(
X
Nc

+ Y
) (

2C
W + 1

)
+ C
W +Z, whereX,Y and Z are barely affected by µind. Here,

when the number of failures decreases, WYD =
√

2C
pλ increases, so the number

of checkpoints decreases and the time wasted for each failure increases. This
could potentially lead to an increase in the ratio. To illustrate this compound
effect, we again look at Genome under MinExp. When µind goes from 2.5 to
3.5 years, the typical number of checkpoints for the critical tasks (that affect the
overall execution time the most) drops from 3 to 2, which increases the waste
per failure by around 50%. This together with the fact that MinExp does
not take into account the parallelism results in an increase in the ratio. When
µind goes from 3.5 to 7 years, the ratio decreases simply because we have fewer
failures. As µind continues to increase to 14 years, the number of checkpoints
for the critical tasks further drops from 2 to 1. This increases the waste per
failure to 100%, which again leads to an increase in the ratio. From this point
on, the ratio will just decrease with µind, again due to fewer failures. The same
phenomenon can be observed for some other workflows, such as Bwa, Montage
and Seismology.

In yet some other workflows, the ratio simply decreases with µind, such as

RR n° 9413

52 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

Figure 8: Impact of the individual MTBF (µind) on the performance of the
checkpointing strategies for different workflows.

Inria

Checkpointing Workflows à la Young/Daly Is Not Good Enough 53

Figure 9: Impact of the number of tasks (n) on the performance of the check-
pointing strategies for different workflows.

RR n° 9413

54 Anne Benoit, Lucas Perotin, Yves Robert Hongyang Sun

for Blast and Sras. For Blast, even when µind is small, we only checkpoint
once, so the ratio decreases due to fewer failures. For Sras, failures usually do
not impact the overall execution time, so the decrease in ratio is mainly due to
the decrease in the number of checkpoints.

Finally, it is worth noting that the ratio variance increases as µind increases.
This is because when there are only a few failures and the length of the seg-
ments is large, the failure location (inside the segments) will matter significantly,
especially for MinExp.

Impact of Number of Tasks (n). Finally, we study the impact of the number
of tasks in the workflow, which is varied between 8800 and 70000, and the results
are shown in Figure 9. Again, the ratio is impacted by the number of tasks in
two different ways. First, when n increases, the width of the graph increases and
so does ∆, and this would increase the ratio according to our analysis. Second,
when n increases and m is fixed, the average number of tasks executed by each
processor increases. This means that, if a failure occurs early in the execution,
it is less likely to have a significant impact on the ratio, since multiple other
tasks will be processed afterwards to balance the load, especially if the tasks
are relatively independent.

These two phenomena are clearly observed in Blast under MinExp. This
workflow mainly consists of a large batch of independent tasks. When n in-
creases to 17680, which is approximately the number of processors (m = 16384),
the ratio increases because ∆ increases. After that, the ratio starts to decrease
because n > m. In this case, when a failure strikes an early task, the subsequent
tasks could be assigned to other processors to reduce the impact of the failure.
Ultimately, if n� m, MinExp would become more efficient. Indeed, since the
tasks are almost independent and uni-processor tasks, list scheduling is able
to dynamically balance the loads of different processors. Thus, minimizing the
expected execution time of each individual task using MinExp would be a good
strategy for the overall execution time of the workflow.

For most of the other workflows, we can similarly observe the same up-and-
down effect as a result of these two phenomena, except for Sras, which is not
impacted by the number of tasks. For this workflow, only a few key dominating
tasks matter and their width remains well below the number of processors. Since
these tasks form a small proportion of the total number of tasks, varying n does
not significantly alter their chance of being hit by a failure, so the ratio remains
close to 1.

Summary. Our experimental evaluation in this section has demonstrated that
MinExp is not resilient enough for checkpointing workflows, although it pro-
vides an optimal strategy for each individual task. On the other hand, Check-
More proves to be a very useful strategy, except for Sras and SoyKB whose
ratios are extremely close to 1. When varying the key parameters, the sim-
ulation results nicely corroborate our theoretical analysis. Furthermore, the
easy-to-implement BasicCheckMore strategy always leads to ratios that are
close to those of CheckMore, regardless of the parameters.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

