
HAL Id: hal-03269168
https://inria.hal.science/hal-03269168

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Reducing the Energy Consumption of Software
Product Lines

Édouard Guégain, Clément Quinton, Romain Rouvoy

To cite this version:
Édouard Guégain, Clément Quinton, Romain Rouvoy. On Reducing the Energy Consumption of Soft-
ware Product Lines. SPLC ’21: 25th ACM International Systems and Software Product Line Confer-
ence, Sep 2021, Leicester, United Kingdom. pp.89-99, �10.1145/3461001.3471142�. �hal-03269168�

https://inria.hal.science/hal-03269168
https://hal.archives-ouvertes.fr

On Reducing the Energy Consumption
of Software Product Lines

Édouard Guégain

edouard.guegain@univ-lille.fr

Univ. Lille, UMR 9189 CRIStAL

CNRS, UMR 9189

Inria

Lille, France

Clément Quinton

clement.quinton@univ-lille.fr

Univ. Lille, UMR 9189 CRIStAL

CNRS, UMR 9189

Inria

Lille, France

Romain Rouvoy

romain.rouvoy@univ-lille.fr

Univ. Lille, UMR 9189 CRIStAL

CNRS, UMR 9189

Inria, IUF

Lille, France

ABSTRACT

Along the last decade, several studies considered green software

design as a key development concern to improve the energy effi-

ciency of software. Yet, few techniques address this concern for

Software Product Lines (SPL). In this paper, we therefore introduce

two approaches to measure and reduce the energy consumption

of a SPL by analyzing a limited set of products sampled from this

SPL. While the first approach relies on the analysis of individual

feature consumptions, the second one takes feature interactions

into account to better mitigate energy consumption of resulting

products.

Our experimental results on a real-world SPL indicate that both

approaches succeed to produce significant energy improvements on

a large number of products, while consumption data was modeled

from a small set of sampled products. Furthermore, we show that

taking feature interactions into account leads to more products

improved with higher energy savings per product.

CCS CONCEPTS

• Software and its engineering→ Software product lines.

KEYWORDS

Software Product Lines, Energy, Consumption, Measurement, Miti-

gation

ACM Reference Format:

Édouard Guégain, Clément Quinton, and Romain Rouvoy. 2021. On Re-

ducing the Energy Consumption of Software Product Lines. In 25th ACM
International Systems and Software Product Line Conference - Volume A (SPLC
’21), September 6–11, 2021, Leicester, United Kingdom. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3461001.3471142

1 INTRODUCTION

Energy consumption of software systems is becoming a major

concern for the environment and the society, especially with the

emergence of highly-configurable and large-scale distributed sys-

tems, such as Fog, IoT, or cyber-physical systems. Along the last

decade, several studies showed that software has a significant im-

pact on the energy consumed and considered green software design

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8469-8/21/09. . . $15.00

https://doi.org/10.1145/3461001.3471142

as a key development concern to improve the energy efficiency of

software systems at large [14, 15, 26]. While tools and approaches

have thus been published to understand, measure, and anticipate

the energy consumption of software [22], few techniques address

this concern for Software Product Lines (SPL) [6]. Measuring the

energy consumption of a SPL is a challenging task due to (i) the
large number of features and products that must be considered, and

(ii) the time and cost required to efficiently handle such a variabil-

ity. To the best of our knowledge, only Couto et al. proposed an

approach to measure energy consumption in SPL [6]. Similarly to

their work, we acknowledge that measuring the energy consump-

tion of each product of the SPL is not conceivable, in particular

when considering large configuration spaces of highly-configurable

software systems. But, rather than simulating and predicting the

energy consumption of a single product as in [6], we propose to

measure the energy consumption of a set of products.

In this paper, we thus present a method to measure and reduce

the energy consumption of multiple products at once by sampling

and analyzing a minimal set of products. In particular, our method

distinguishes two approaches: one that considers the energy con-

sumption of individual features and one that takes pairs of features

into account. The latter thus takes feature interactions into account

when measuring the energy consumed by a product to highlight

pairs of features that may cooperate or obstruct each other at a

behavioral level, while altering the energy spent to complete a task.

This approach also suggests candidate features whose interaction

with user-required features exhibits lower energy footprint than

the one produced by the initial interaction.

Our method thus provides means to estimate the energy con-

sumption of individual product features, to highlight how feature

interactions impact the energy consumed by products and to pro-

pose products with lower energy consumption while still including

user-required features. We implemented our method and demon-

strated it on a Java-based SPL to assess and compare the approach

taking energy consumption of feature interactions into considera-

tion with the approach only focusing on energy consumption of

individual features.

In the remainder of the paper, Section 2 explains fundamen-

tals on software energy consumption and measurement. Section 3

describes our approaches to measure and reduce the energy con-

sumption of a product from the SPL. Section 4 presents the design

and results of our experiments. Section 6 analyzes related work. Sec-

tion 5 discusses the outcomes of our contributions, while Section 7

concludes the paper.

https://doi.org/10.1145/3461001.3471142
https://doi.org/10.1145/3461001.3471142

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Édouard Guégain, ClémentQuinton, and Romain Rouvoy

2 MEASURING ENERGY CONSUMPTION OF

SOFTWARE

While the energy consumption of hardware components has been

widely studied, software consumption only recently gained interest.

By driving and managing such hardware, software is now consid-

ered as a central concern when aiming at reducing energy con-

sumption [22]. When dealing with green concerns of software

systems, the impact of such systems is often measured as power or
energy consumption. While power (𝑃) measures the instantaneous

consumption in Watts, energy (𝐸) reports on a accumulated con-

sumption over a given period in Joules [25]. Throughout this paper,

we will propose an approach to estimate and reduce energy con-

sumption of SPL, expressed in Joules. Thus, all our measurements

represent the total energy consumed by products from this SPL,

independently of their execution time, which can vary depending

on products.

Energy measurement tools usually estimate the energy consump-

tion of the CPU rather than the one of a specific software [21]. Thus,

identifying the share of the software under study among the total

energy consumption is not straightforward. To address this issue,

we first sample the CPU consumption for one second before the

program starts. We define this measurement as the idle energy con-

sumption 𝑃𝑖𝑑𝑙𝑒 , which refers to the average power consumption at

rest. The general idea is to measure the energy consumed by the

running software, 𝐸𝑟𝑎𝑤 , and then substract 𝐸𝑖𝑑𝑙𝑒 = 𝑃𝑖𝑑𝑙𝑒 ×𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒

from 𝐸𝑟𝑎𝑤 to get rid of the environment consumption.

𝐸𝑛𝑒𝑡 = 𝐸𝑟𝑎𝑤 − (𝑃𝑖𝑑𝑙𝑒 ×𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒) (1)

The resulting energy consumption, 𝐸𝑛𝑒𝑡 , can then be associated

to the software under study, as depicted in Figure 1 and presented

in Equation (1).

Figure 1: Raw vs. net energy consumption.

3 ESTIMATING AND REDUCING ENERGY

CONSUMPTION FOR SPL

Unlike measuring the energy consumption of a software, measuring

the energy consumption of a SPL is a non-trivial task, as multiple

related software—i.e., the products of the SPL—must be measured.

These products exhibit different properties, including energy con-

sumption, while sharing several features that perform differently

in different contexts. The context of a feature can either be external

to the product containing this feature—i.e., the environment host-

ing the product—or internal to the product. That is, a feature can

exhibit different performances when combined with different sets

of features. Inferring the energy consumption of a single feature by

measuring it while running in one given product is therefore irrele-

vant and does not reflect the energy consumption of that feature in

the SPL. On the other hand, measuring the energy consumption of a

feature in each product individually is not feasible as some products

may be complex to measure, while measuring the consumption of

each product from a large SPL is not an option. To tackle these

issues, we thus propose two approaches that estimate the energy

consumption of features by measuring products sampled from the

configuration space of the SPL, and then exploiting such sampled

measures to reduce the energy consumption of any product from

the SPL.

Both approaches improve energy consumption of products by

removing features or substituting them with other ones. However,

some features are included in a product to ensure its validity with

regard to the feature model, e.g., in or and xor relationships. We

thus define 𝐹𝑓 ⊂ 𝐹 as the set of features that are valid substitute

features for a given feature 𝑓 . These substitute features are either

sibling features of 𝑓 in or and xor relationships, or features involved
in or and xor used in cross-tree constraints. On the other hand,

some products may contain features due to functional constraints

(e.g., stakeholder’s requirements). Such features cannot be removed

or substituted and are hereafter referred to as required features.
Thus, from the stakeholder standpoint, all products are functionally

equivalent if they contains the features required by this stakeholder.

3.1 Feature-wise Energy Analysis

Energy impact of individual features. To estimate the energy

consumption of each feature from the SPL, we first measure the

energy consumption of every product from the sample, using the

method presented in Section 2. The energy consumption of each

product is then reported in a matrix 𝑛 ×𝑚 with n the features and

m the products, by copying the energy consumption of the product

in the columns of each included feature. For instance, Matrix (2)

defines 𝑓1 to 𝑓𝑛 as the available features, 𝑝1 to 𝑝𝑚 the sampled

products, and 𝐸𝑥𝑦 represents the energy consumption of 𝑝𝑥 if it

includes 𝑓𝑦 , or is left empty otherwise.

𝑓1 𝑓2 · · · 𝑓𝑛

𝑝1

𝑝2

.

.

.

𝑝𝑚



𝐸11 𝐸12 . . . 𝐸1𝑛

𝐸21 𝐸22 . . . 𝐸2𝑛

.

.

.
.
.
.

. . .
.
.
.

𝐸𝑚1 𝐸𝑚2 . . . 𝐸𝑚𝑛


𝐸 (𝑓1) 𝐸 (𝑓2) · · · 𝐸 (𝑓𝑛)

(2)

By computing the median value of each column of the matrix,

the relative energy consumption 𝐸 (𝑓) of the feature 𝑓 represented

by this column can be estimated. The expected behavior is that

extreme energy consumption will cancel out and all features will

On Reducing the Energy Consumption of Software Product Lines SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

have similar median energy consumption. However, if the median

consumption of a feature is higher or lower than the other medians,

then the presence of this feature tends to impact the performance

of the products that contain it. Although such a measure does not

provide a very accurate reading, it can nevertheless be used to

compare the energy consumption of different features and perform

preliminary optimizations, e.g., by selecting the less consuming

feature among the substitutes of each feature 𝐹𝑓 . In the remainder

of the paper, we will refer to this method as the feature-wise analysis.

Feature-wise mitigation. Getting the most energy-efficient prod-

uct including the required features follows a two-steps process.

First, all optional features of the products are removed, thus only

including the required features and the features requiring a substi-

tution. Then, by leveraging the feature-wise analysis, the energy

consumption of the remaining non-required features can be com-

pared with their respective substitutes, to identify the one with

the lowest consumption among them. Each of the non-required

features are replaced by the most energy efficient substitute. This

approach always converges toward an efficient product composed

of no optional feature, including only the features with the lowest

energy consumption within each feature substitution set.

The product resulting from this mitigation strategy is the one

with the lowest energy consumption that can be obtained given an

initial configuration.

3.2 Pairwise Energy Analysis

Energy impact of pairwise interactions. Although measuring the

energy consumption of each feature in isolation gives a general

trend, it cannot be used to compute the energy consumption of a

combination of features (e.g., as the mean or the median of several

individual consumption) due to the feature interactions phenome-

non [28]. Indeed, numerous work have shown that features interact

with each other, hence impacting performances of products [1–

4, 27, 28]. Therefore, restricting the energy consumption analysis

to individual features does not provide a comprehensive landscape

of a feature consumption, and additional analysis that consider

feature interactions must be performed to obtain additional details

about the energy consumption. By analyzing how the consumption

of a feature evolves when this feature is combined with different

features, it is thus possible to highlight feature interactions leading

to positive or negative impact on the consumption of the product.

𝑐1 𝑐2 · · · 𝑐𝑛

𝑝1

𝑝2

.

.

.

𝑝𝑚



𝐸11 𝐸12 . . . 𝐸1𝑛

𝐸21 𝐸22 . . . 𝐸2𝑛

.

.

.
.
.
.

. . .
.
.
.

𝐸𝑚1 𝐸𝑚2 . . . 𝐸𝑚𝑛


𝐸 (𝑐1) 𝐸 (𝑐2) · · · 𝐸 (𝑐𝑛)

(3)

A possible means to take pairwise feature interactions into ac-

count is by creating a new matrix with as many columns as there

are valid pairs of features in the SPL. The consumption of each pair

of features can be quantified by reporting on the energy consump-

tion of each product in the columns of the pairs of features that

this product contains, as illustrated in Matrix (3). 𝑐1 to 𝑐𝑛 are all

the valid pairs of features, 𝑝1 to 𝑝𝑚 the sampled products, and 𝐸𝑥𝑦
is the energy consumption of 𝑝𝑥 if it contains 𝑐𝑦 , or is left empty

otherwise. To ensure a proper interaction coverage—i.e., that all
valid pairs of features are measured—the sampling of products must

be performed by an algorithm ensuring such coverage.

Following the same methodology as in the feature-wise analysis,
the consumption of pairwise feature interactions can be inferred

by computing the median energy consumption 𝐸 (𝑐) of each pair

of features 𝑐 . In the remainder of the paper, we will refer to this

method as the pairwise analysis. It is worth noting that this method

is not only valid for pairwise interactions, but can also be used to

deal with larger 𝑇 -wise interactions of features.

Pairwise mitigation. Instead of replacing each feature by the sub-

stitute feature with the lowest energy consumption, this second

approach iteratively picks the alternative features whose interac-

tions with other features of the product results in a more energy-

efficient product. At each iteration, the approach identifies a feature

to remove from the product and, if required, replaces this feature.

To identify the feature 𝑓 to be removed from a given product

𝑃 , our approach relies on a scoring system: the interaction score

I. The interaction score of a feature 𝑓 is computed by considering

all pairs of feature containing 𝑓 in the product 𝑃 , and by summing

the observed median energy consumption 𝐸 (𝑐) of these pairs, as
described in Formula (4).

1

I(𝑓 , 𝑃) =
∑

𝑔∈𝑃 | 𝑔≠𝑓
𝐸 (𝑔𝑓) (4)

The iterations of this approach are realized as described by Al-

gorithm 1. This algorithm iterates over the set of features until

no more improvement can be performed. That is, each iteration

removes or changes one feature in the product. At each iteration,

the feature with the highest interaction score in the product must

be removed in priority. The algorithm starts by sorting features by

decreasing interaction score (line 8) and considers the first feature

of the list (line 9) as a removal candidate. If this removal feature

is a user-required feature and cannot be removed, it is skipped

(line 13). If the removal candidate is not a required feature and

must be replaced (line 17), the replacement feature is identified

among all possible substitutes—i.e., 𝐹𝑓 —by computing the inter-

action score of alternative features with regards to all remaining

features of the product—i.e., all but the removal candidate (lines 18

to 23). The selected replacement feature is the one with the lowest

interaction score among all alternative features. As a result of the

iteration, a new product is created by including the replacement

feature (line 26).

However, if the removal candidate has the lowest interaction

score, the replacement is discarded and the algorithm skips the

feature, which is kept in the product. If a feature is skipped—i.e., it
was either a requirement or already the best option, a new removal

candidate is defined as the next feature in the ordered list (line 34

and 11). Other features of the product will be changed over the next

1
The interaction score can also be used during the configuration process, e.g., to assist

the user when selecting the most energy efficient features when dealing with a partial

configuration.

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Édouard Guégain, ClémentQuinton, and Romain Rouvoy

Algorithm 1: Interaction mitigation

1 Input initialProduct : a product to improve

2 Output bestProduct : the best product from all iterations

3 iterations.addProd(initialProduct)

4 𝑖𝑚𝑝𝑟𝑜𝑣𝑎𝑏𝑙𝑒 ← 𝑡𝑟𝑢𝑒

5 while improvable do
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑜𝑑 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑚()
7 currentProd.removeNonRequiredOptionalFeatures()

8 𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑒𝑎𝑡 ← 𝑠𝑜𝑟𝑡𝐵𝑦𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑜𝑑)
9 𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ← 0

10 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒𝐹𝑜𝑢𝑛𝑑 ← 𝑡𝑟𝑢𝑒

11 while (𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 <

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑜𝑑.𝑠𝑖𝑧𝑒) ∧ 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒𝐹𝑜𝑢𝑛𝑑 do

12 𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑒𝑎𝑡 .𝑔𝑒𝑡 (𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥)
13 if ¬𝑖𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) then
14 𝑝𝑟𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐𝑜𝑝𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑜𝑑)
15 𝑝𝑟𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
16 𝑠𝑢𝑏𝑂𝑝𝑡𝑖𝑜𝑛𝑠 ← 𝑎𝑙𝑙𝐹𝑠𝑢𝑏 (𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
17 if subOptions then
18 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 ← 𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

19 for 𝑠𝑢𝑏𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑠𝑢𝑏𝑂𝑝𝑡𝑖𝑜𝑛𝑠 do
20 if I(subCandidate, prodCandidate) <

I(currentBest, prodCandidate) then
21 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 ← 𝑠𝑢𝑏𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

22 end

23 end

24 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 ≠ 𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 then

25 prodCandidate.addFeat(currentBest)

26 iterations.addProd(prodCandidate)

27 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒𝐹𝑜𝑢𝑛𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

28 end

29 else

30 iterations.addProd(prodCandidate)

31 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒𝐹𝑜𝑢𝑛𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

32 end

33 end

34 remCandIndex++

35 end

36 𝑖𝑚𝑝𝑟𝑜𝑣𝑎𝑏𝑙𝑒 ← (𝑟𝑒𝑚𝐶𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 <

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑜𝑑.𝑠𝑖𝑧𝑒) ∧ 𝑎𝑙𝑙𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
37 end

38 return lowestEc(iterations)

iterations to accommodate this skipped feature. Once amodification

has been applied, the algorithm proceeds to the next iteration,

unless a stop criteria is met: if a same product appears twice over

different iterations, or if all features were tested during an iteration

and no optimization was found (line 36).

Once a stop criteria is met, the energy consumption of the prod-

uct resulting from each iteration is measured in order to monitor

the energy gain. As the different mutations of the product are based

on empirical data, which may be subject to imprecision and noise, it

is possible that a specific iteration worsens the performance of the

product. For this reason, the last step of this algorithmmeasures the

energy consumption of the products resulting from each iteration.

The product finally returned by this algorithm is the one with the

lowest energy consumption, which may be the initial product in

the worst case scenario (lines 38).

4 EMPIRICAL VALIDATION

In the previous section, we introduced two approaches to reduce

the energy consumption of a given product. In this section, we

experimentally assess each of these approaches. In particular, we

aim to answer the following research questions:

RQ1: Do our different analysis detect feature interactions impact-
ing energy consumption? By applying the two approaches on the

same set of products, it should be possible to determine whether

feature interactions have been detected as the two analysis methods

should provide different results.

RQ2: How effective are our approaches to reduce the energy con-
sumption of a product? The two proposed approaches rely on differ-

ent analysis methods to mitigate energy consumption of products.

We propose two experiments to ensure both of them improve the

consumption of the products given a set of required features and

evaluate how they differ.

4.1 Methodology

To assess the effectiveness of our solution when measuring energy

consumption of a software product line, we performed our experi-

ments on RobocodeSPL, a software product line designed to yield

robots for Robocode [18]. Robocode is an environment in which

community-developed robots fight against each other in battles.

A battle is composed of several rounds, and rounds have a time

granularity of turns. During a turn, each robot taking part in the

battle computes its next action and sends it to the Robocode engine

which executes them all and proceeds to the next turn. A round

ends when only one robot survives, and the winner of a match is

the robot which caused the most damages to its opponents through

the different rounds.

The RobocodeSPL proposes several implementations for the 5

mandatory features a robot requires to run properly—i.e., radar,
targeting, movement, enemy selection and gun. For instance, a move-
ment can follow linear or circular patterns, follow the walls, or

ram the opponent, among others. There are also 3 optional features

related to resource management (e.g., not spending more in-game

energy than the robots have), for a total of 92 features and 72 leaf

features. The number of valid products is 1.3× 106. Figure 2 depicts
an excerpt of the feature model of RobocodeSPL.

To evaluate our approach, we launched multiple robot matches

and ran our mitigation techniques to minimize the energy consump-

tion of such matches. In particular, we launched matches opposing

a sampled robot and a reference robot, the sample.Wall robot, con-
sidered as the strongest robot provided by Robocode

2
. As the goal

was to minimize the energy consumption, we were not interested

in which robot wins or loses the match, but in the overall energy

consumption of such a match. In order to fill the pairwise analysis

matrix, the sample must contain several occurrences of each valid

2
According to the Robocode Wiki: https://robowiki.net/

https://robowiki.net/

On Reducing the Energy Consumption of Software Product Lines SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

Figure 2: Excerpt of the Feature Model of RobocodeSPL.

pair of features from the feature model. To ensure such a coverage,

we relied on the T-wise algorithm ICPL [16] with 𝑇 = 2 to sam-

ple the configuration space of RobocodeSPL. Another sampling

technique may provide better uniform random samples [17, 20],

but such techniques do not meet our coverage requirements. This

algorithm generated 602 robots, hereafter referred to as the training
sample. For each couple (sampled robot, reference robot), we ran 10

matches to consolidate the performance data, resulting in a total of

6, 020 matches of 1 round.

We used JJoules,
3
a Java tool using the RAPL device of Intel CPU,

to measure the energy consumption of the matches. JJoules is also

able to monitor the energy consumption of the DRAM, while other

tools can monitor other components, such as Hard Disk Drives.

As Robocode is mainly CPU-intensive, we decided to focus on the

energy consumption of the CPU. The energy consumption was

monitored from the start to the end of each match, thus including

the energy consumed by both robots, but excluding the energy

consumption of the startup and shutdown of Robocode. All mea-

surements were obtained from a machine running the Manjaro

Linux distribution with an Intel i5 CPU at 2.9GHz and 8GB of RAM.

Results, input data and instructions to reproduce these experiments

are available online.
4

4.2 Results

Detecting interacting features. The pairwise analysis relies on fea-
ture interactions to mitigate energy consumption of products. The

goal of this first experiment is therefore to ensure that the pairwise

analysis is able to detect at least one occurrence of feature interac-

tion. The first experiment thus compares the energy consumption of

the Movement and Targeting features in different contexts—i.e., in
the presence of different sets of other features. Figure 3 depicts how

the energy consumption of different features evolves depending on

the analysis method.
5
Figures 3a and 3b report on the energy con-

sumption (measured with the feature-wise analysis) of the products

from our training sample containing respectively each targeting
and movement feature. Among the targeting features, T4, T6 and
T17 induce an higher energy consumption than the others, but

most features show similar energy consumption, around 3 Joules.

Among themovement features, M1, M20 and M26 impose the high-

est energy consumption, around 6 Joules, while M6, M7 and M8

report on the lowest one, slightly above 2 Joules.

3
https://github.com/powerapi-ng/j-joules

4
https://doi.org/10.5281/zenodo.5048316

5
Mapping to real feature names available in the open data

These differences in energy consumption can partially be ex-

plained by the functional behavior of these features. For instance, T6

(NoTargeting) performs no particular operation and always makes

the robot shoot forward—i.e., in the direction it is aiming at. This

is not a smart behavior and the energy consumed by matches in-

volving this feature depends on how fast the opponent is able to

destroy this robot. By contrast, T13 (TargetAdvancingVelocitySeg-
mentation) tries to anticipate the position of the opponent based

on its speed and direction to ensure that the bullet and the op-

ponent collide. Thus, a robot configured with T13 is able to win

quickly, reducing the energy consumption despite the additional

computations required to anticipate the position of the opponent.

Figure 3c presents the energy consumption of each targeting fea-
ture when the feature LinearRammingMovement is selected—i.e.,
M7, the most energy efficient movement feature. This figure is ob-
tained by selecting all measurements of M7 in Figure 3b, and break-

ing them down per targeting feature. M7 being the best movement
feature, the consumption of products containing each targeting fea-
ture is either improved or unchanged whenM7 is selected. However,

when targeting features are sorted by median energy consumption,

their rank change depending on the context. For instance, T21 is

ranked 3rd by the feature-wise analysis, but becomes 16th when M7

is selected. T13 is ranked 19th out of 23 by the feature-wise analysis,

but 1st in the pairwise analysis when M7 is selected. Furthermore,

the median energy consumption of the couple of M7 and T13 is 1.8J,

which is lower than the medians of both of these features alone,

respectively 2.2 Joules and 3.6 Joules. Therefore, despite M7 being

the best movement feature, its performance can still be improved

by selecting a relevant targeting feature.
As shown by the feature-wise analysis in Figure 3b, products in-

cluding M9 and M12 have similar median energy consumption—i.e.,
respectively 3.9 Joules and 3.7 Joules. However, when paired with

NoTargeting (T6), one of the worst targeting features, their con-

sumption evolve differently, as depicted in Figure 3d. The energy

consumption of products including M9 is reduced from 3.9 Joules

to 3.3 Joules, while the one for products including M12 dramatically

increases from 3.7 Joules to 10.6 Joules. Thus, despite being consid-

ered a sub-optimal choice by the feature-wise analysis, T6 becomes

an efficient choice when paired with M9. The pair composed of T6

and M8 is another occurrence of pairwise interaction outperform-

ing both of its members (2 Joules instead of 4.5 Joules and 2.2 Joules,

respectively). This result can be explained by the behavior of the

features: M8 is a ramming movement feature, meaning that it is

always moving toward the opponent. In this context, the behavior

https://github.com/powerapi-ng/j-joules
https://doi.org/10.5281/zenodo.5048316

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Édouard Guégain, ClémentQuinton, and Romain Rouvoy

(a) Energy consumption per targeting feature. (b) Energy consumption per movement feature.

(c) Energy consumption per targeting features when feature LinearRam-
mingMovement (M7) is selected.

(d) Energy consumption per movement features when feature NoTar-
geting (T6) is selected.

Figure 3: Energy variations between the movement and targeting features and their potential interactions.

of NoTargeting—i.e., always shooting forward—is very efficient, as

it always hits the opponent.

Such changes in the resulting energy consumption with cou-

ple of features outperforming both of their members alone show

that the energy consumption of targeting and movement features
changes depending on how they are paired. Therefore, it highlights

feature interactions between the targeting and movement features
in RobocodeSPL. This experiment thus unveiled occurrences of

feature interactions allowing us to answerRQ1 positively: the pair-

wise analysis is able to detect interactions significantly impacting

the energy consumption of products, and such interactions were

not detected by the feature-wise analysis.

Behavior without required feature. The purpose of the second

experiment is (i) to ensure the two mitigation approaches lead to a

product different from the initial one, and (ii) to evaluate the energy
consumption improvement resulting from these approaches. The

first experiment showed that the feature-wise and pairwise analysis

provide different results, due to their different granularity levels. It

is yet to determine if the products resulting from their respective

mitigation exhibit different energy consumption.

As explained in Section 3.2, the feature-wise analysis converges

toward a specific product composed of no optional feature, and

the features with the lowest energy consumption in each substitu-

tion set. In RobocodeSPL, considering our optimization goal, i.e.,
reducing the energy consumption against sample.Wall, and with-

out any required feature, this product is composed of the features

TurnMultiplierLock, DistanceSegmentation, LinearRammingMove-
ment, StrongestSelectEnemy, and NoFireGun. Whatever the initial

product considered for improvement, the feature-wise analysis will

On Reducing the Energy Consumption of Software Product Lines SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

Figure 4: Improving the product resulting from the feature-

wise analysis with the pairwise one.

always return this product, hereafter referred to as the Best Theoretic
product, 𝐵𝑇0.

By applying the pairwise analysis on this product, we can de-

termine how the pairwise analysis compares to the feature-wise

analysis in the absence of required features. The result of this exper-

iment is depicted in Figure 4, where 𝐵𝑇0 consumes 2.8 Joules. The

pairwise analysis performed three iterations before reaching a stop

criteria and returning the best product of the different iterations

(𝐵𝑇2), whose energy consumption is 1.9 Joules, i.e., 29% lower than

𝐵𝑇0.

This experiment provides a partial answer to our second research

question RQ2: the pairwise analysis outperforms the best product

of the feature-wise analysis by 30%, when there is no required fea-

ture.

Behavior with required features. To complete this partial answer,

the third experiment is a variant of the previous experiment that

takes required features into account. The purpose of this exper-

iment is (i) to ensure the changes our approaches perform on a

product containing required features effectively reduce the energy

consumption of such a product, and (ii) to evaluate these reduc-

tions. The products resulting from both approaches depend on the

initial product, and on which features are required in this prod-

uct. Therefore, by contrast to the previous experiment, it is not

possible to assess our approaches with only one initial product.

Thus, we used the FeatureIDE Product Generator to produce a

sample of 520 random products—i.e., 1 product tested for 2, 500

products of the SPL—hereafter referred to as the validation sample.
To mimic a real use case, we defined a random feature (based on

the java.util.Random class) as a requirement in each of these

products.

Relying on the consumption data measured on the training sam-
ple presented in Section 4.1, we applied our two energy mitigation

Figure 5: Energy consumption of the products resulting

from both analysis.

approaches on each product from the validation sample. We eval-

uated how the products resulting from both approaches perform

compared to their respective initial product. The feature-wise anal-

ysis generated 520 products, and the pairwise analysis generated

2,687 products—i.e., a mean of 5 iterations per initial product. By

design, the result of the first iteration of the pairwise analysis is

the initial product, thus all initial products are included in these

3,207 products. We computed the performance of a product as its

median energy consumption over 10 matches, for a total of 32,070

matches. Figure 5 presents the energy consumption of the products

resulting from each analysis (on the vertical axis) depending on

the energy consumption of the initial product (on the horizontal

axis). Products that are on the improvement threshold line (𝑥 = 𝑦,

identity line) performed the same as the initial product, meaning

that the corresponding approach failed to reduce its consumption

and returned the initial product. Products that are strictly below the

improvement threshold line performed better than their respective

initial products.

The feature-wise analysis improved the performance of 375 prod-

ucts from the validation sample (72%), while the pairwise analysis
improved the performance of 501 products (96%). For 127 products

(24%), the pairwise analysis found improvement when the feature-

wise analysis failed. For 1 product (0.2%), the feature-wise analysis

found improvement while the pairwise did not. Additional analysis

on this specific product tend to exclude noise or measurement error

as a cause for this exception.

To get a better view on the efficiency differences between the

two approaches, Figure 6 depicts their respective relative gains—

i.e., by how much they reduced the energy consumption of the

initial products. In the feature-wise analysis, the end of the first

quartile is still at 0%, as it improved 72% of the products, whereas

with the pairwise analysis the end of the first quartile is already

near a 24% gain. The median gain of the feature-wise analysis is

20%. Regarding the pairwise analysis, such a gain is reached before

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Édouard Guégain, ClémentQuinton, and Romain Rouvoy

Figure 6: Relative gains of the pairwise and feature-wise

analysis.

the second quartile. Therefore, only half of the products resulting

from the feature-wise analysis obtained gains higher than 20%,

while the pairwise analysis improved more than three quarters of

products by such a gain. Similarly, half of products improved by

the pairwise analysis were improved by 40% or more, while the

feature-wise analysis had such a gain for only a quarter of products.

The maximum gain is similar for both approaches: 82% and 86%,

respectively.

Figure 7 presents how both approaches performed on two prod-

ucts: those with the worst and best initial energy consumption in

the validation sample. The initial product is designated with the

subscript 0 (e.g.,𝑊𝑃0 in Figure 7a). The different iterations of the

pairwise analysis on the two products are designated with their

respective index (𝑊𝑃1 to𝑊𝑃4 and 𝐵𝑃1 to 𝐵𝑃3), while the result of

the feature-wise analysis used as comparison is designated with the

subscript FW (𝑊𝑃𝐹𝑊 and 𝐵𝑃𝐹𝑊 , respectively). Figure 7a depicts

the product𝑊𝑃0 with the worst initial energy consumption, 12

Joules. The pairwise analysis performed 4 iterations before meeting

a stop criteria. Most of the gains are obtained after the first iteration,

with𝑊𝑃1 reducing the energy consumption by 78%.𝑊𝑃2 and𝑊𝑃3
brought additional gains of 32% and 3% on their preceding iteration,

respectively. However,𝑊𝑃4 increased the energy consumption by

8%, resulting in𝑊𝑃3 being returned by the pairwise analysis, with

an energy consumption 86% lower than𝑊𝑃0. The feature-wise

analysis returned a product𝑊𝑃𝐹𝑊 with an energy consumption

82% lower than for𝑊𝑃0. The energy consumption of the product

𝑊𝑃3 resulting from the pairwise analysis is 21% lower than the

product𝑊𝑃𝐹𝑊 resulting from the feature-wise analysis. Figure 7b

depicts the product 𝐵𝑃0 with the best initial energy consumption,

1.6 Joules. This product is more challenging for both of our ap-

proaches, as none of them found any optimization. The pairwise

analysis performed 3 iterations with energy consumption 14%, 2%

and 18% higher than 𝐵𝑃0, respectively. The energy consumption of

the product 𝐵𝑃𝐹𝑊 resulting from the feature-wise analysis is 83%

higher than 𝐵𝑃0. As both approach fail to find optimization, they

return the initial product 𝐵𝑃0.

These results complete the partial answer to our second research

question RQ2: Both approaches are able to improve products, with

and without required features, and the pairwise analysis outper-

forms the features-wise approach.

Overall, both of our approaches succeed in improving products

from RobocodeSPL, with or without constraints. The feature-wise

and pairwise analysis thus provided useful input data about energy

consumption of features and couple of features, that could then

be used to improve products through the feature-wise and pair-

wise mitigation processes. The pairwise analysis improved more

products than the feature-wise analysis, and led to higher gains.

However, although less efficient than the pairwise analysis, the

feature-wise analysis is more straightforward to setup, and can be

used as a first intent to reduce energy consumption. It is especially

relevant in the absence of feature interactions, or in systems where

pairs of features are too numerous to be exhaustively measured.

5 DISCUSSION

Threats to Validity. To assess our approach, we ran our exper-

iments on a specific SPL (RobocodeSPL) to measure and reduce

the energy consumption of real-world products derived from this

SPL. Results, such as the success rate or the relative gains, are

thus only related to this single system, and cannot be generalized.

Nonetheless, our contribution can be easily applied to any SPL. The

improvements resulting from applying our approaches to other

SPL will depend on the initial energy consumption of products

and the impact of feature interactions on these products. We leave

the evaluation of our approach across a larger set of domains to a

future study. A second threat to validity lies in the training sample
considered. To avoid measuring all products of the SPL, we sam-

pled the configuration space and measured 602 products, which is

only 0.05% of all valid products. Such a small sample may prevent

the detection of some feature interactions and therefore, energy

optimization hotspots. Still, it is worth noting that despite the low

number of analyzed products, significant gains were obtained on

the vast majority of products using our approaches.

Limitations. During the pairwise mitigation process, products

are changed over several iterations. However, it might be possible

that the optimal change in a given iteration prevents further im-

provements in the next iterations, e.g., a sub-optimal change in that

iteration might lead to further and greater improvements in the

long term. Furthermore, this algorithm removes all non-required

optional features, without taking into account their hypothetical

positive interactions in the product. It does not either consider

the possibility to add an optional feature to improve the energy

consumption of the product.

In the SPL community, extensions to feature models have been

developed to convey information about features [5]. Extended fea-

ture models can be used to assign consumption data on features, in

order to automatically apply optimizations. However, the adoption

of such extensions may raise some challenges when dealing with

consumption metrics associated to pairs of features.

In the green computing domain, a commonly-used means to

reduce energy consumption of software is by refactoring inefficient

On Reducing the Energy Consumption of Software Product Lines SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

(a) Worst initial product. (b) Best initial product.

Figure 7: Focus on the best and worst initial products from the validation sample.

code—i.e., making it more efficient without changing its functional

behavior. Although our analysis methods highlight features or pairs

of features with high energy consumption, they do not provide

fine grained feedback nor means to identify what causes such non

energy-inefficient products at low-level, e.g., inefficient code or

unexpected behavior.

The energy consumed to obtain the measurements for our ex-

periments (i.e., the training sample of 602 products) amounts to

24, 328 Joules. In comparison, the highest energy saving among

the 520 products of the validation sample is 10 Joules per match.

Hence, we can consider that our approach is profitable after 2, 433

matches in the best case scenario where energy savings are high.

This might seem a significant number at first, but this result must

be considered keeping in mind the 1.3 × 106 products of the SPL
that can benefit from these measurements. In addition, it cannot be

generalized to others SPL since this profitability threshold tightly

depends on the number of features and products of the analyzed

SPL.

Finally, the pairwise analysis method relies on a sample of prod-

ucts containing all pairs of features. As the number of features in

the SPL grows, the number of pairs had a quadratic growth. For

larger feature models, the use of heuristics to identify interactions

between pairs of feature may proves necessary.

6 RELATEDWORK

The approaches presented in this paper lie at the intersection of

software product lines and so-called green computing. This section

discusses related work belonging to both of these research fields.

Green software. Green computing approaches applied to software

are mainly focused on the evaluation of energy consumption [21].

Rather than evaluating software artefacts, such as functions or

classes, Islam et al. [14] evaluates the energy consumption of func-

tionalities by slicing the source code to isolate such functionalities.

Then, theymeasure the energy consumption of these functionalities

by executing and measuring the consumption of the related sliced

code. While this approach works well to measure energy consump-

tion of features in isolation, it does not take feature interaction into

consideration, as proposed by our contribution.

Other studies focus on the identification of inefficient code ("en-

ergy hotspots" or anti-patterns) [22, 26]. For instance, Pereira et
al. [26] report on an approach to measure the energy consumption

of a software facing different input workloads. They propose to

model the consumption of methods by analyzing the consumption

of the software and the number of calls for each method of this

software. Once such hotspots are identified, energy consumption

can be mitigated through refactoring operations, such as changes in

the implemented data structures or algorithms [8, 9, 24]. These ap-

proaches have not been designed to take variability (especially code

shared among features) into account, but they can be considered

as complementary to our approaches. They provide a fine-grained

analysis of the energy consumption of the software at code level,

while our measures rely on the behavior (energy-wise) of the fea-

tures.

Green SPL. Recently, several approaches have been proposed to

deal with the energy consumption of highly configurable software

systems. In particular, this concern has been addressed relying

on dynamic SPL to reconfigure the system depending on context

changes and ensure it continues meeting its green requirements [10,

13, 19]. These approaches also take feature interactions into account,

but they rely on an exhaustive detection of such interactions. This

detection can be done by tools implementing dedicated heuristics,

or by domain experts. Thus, this detection may be error prone.

In this paper, the pairwise mitigation process assumes that each

feature interacts with all other features, and is thus unaffected by

detection errors.

Couto et al. also proposed different techniques to evaluate en-

ergy consumption in software product lines using static analysis

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Édouard Guégain, ClémentQuinton, and Romain Rouvoy

[6, 7]. These techniques estimate the energy consumption of fea-

tures in the worst case scenario by analyzing the source code of

features to deduce energy consumption of products, whereas our

approaches measure the median energy consumption of running

products. Contrarily to our approaches, they did not aim at sug-

gesting improvements to products based on their estimations, nor

took feature interactions into account.

Performances. Energy consumption can be generalized as a per-

formance indicator. Considering the general problem of optimizing

product performances, numerous work has been done to model

and predict such performances. Siegmund et al. provided various

contributions related to performance models and performance pre-

dictions in software product lines [27, 30]. These approaches take

feature interactions into account via a systematic identification. Sta-

tistical analysis of a sample of products has also already been used

by Guo et al. to predict the performance of a product based on its

configuration [11]. In this prediction approach, feature interactions

are detected using the systematic approach presented in [29]. Such

works are designed to predict performances, but do not suggest

optimizations for poorly-performing products.

Different authors provide multi-objective optimization frame-

works for configurations [12, 23, 28]. Such frameworks are designed

to optimize multiple performance indicators, and energy consump-

tion can be one of them. However, they also rely on a systematic

identification of feature interactions. Soltani et al. [31] propose an
approach relying on artificial intelligence to configure products

meeting stakeholders’ functional requirements, preferences and

performance goals. This approach is complementary to ours, as

we do not take stakeholders preferences into account, and this ap-

proach does not take energy consumption or feature interactions

into account. By contrast to these works, our approaches do not re-

quire a systematic identification of feature interactions. We assume

that each feature interacts with all other features.

7 CONCLUSION

In this paper, we proposed a method to measure and reduce en-

ergy consumption in software product lines. Our contribution is

twofold. First, we showed that it is possible to estimate the energy

consumption of a single feature by measuring the consumption of

a small set of products containing this feature. Second, we provided

a means to identify energy consumption of couples of features to

take feature interactions into account without detecting them in

a systematic way. We applied our approach on RobocodeSPL and

improved the energy consumption of 96% of randomly sampled

products. In particular, half of these products have seen their energy

consumption reduced by at least 40%.

As future work, we plan to improve the pairwise mitigation to

tackle its current limitations. We also plan to use our approaches on

widely used variable systems, such as the Linux kernel or Apache

Web Server.

ACKNOWLEDGMENTS

Thisworkwas partially funded by theANR-19-CE25-0003-01 KOALA

project. We thank Baptiste Lewandoski for his help during the de-

velopment of the tools supporting our experiments.

REFERENCES

[1] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kastner. 2010. De-

tecting Dependences and Interactions in Feature-Oriented Design. In Proceedings
of the 2010 IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE ’10). 161–170. https://doi.org/10.1109/ISSRE.2010.11

[2] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk

Beyer. 2011. Detection of Feature Interactions Using Feature-Aware Verification.

In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’11). 372–375.

[3] Sven Apel, Alexander Von Rhein, Thomas Thüm, and Christian Kästner. 2013.

Feature-Interaction Detection Based on Feature-Based Specifications. Comput.
Netw. 57, 12 (Aug. 2013), 2399–2409. https://doi.org/10.1016/j.comnet.2013.02.025

[4] Don Batory, Peter Höfner, and Jongwook Kim. 2011. Feature Interactions,

Products, and Composition. SIGPLAN Not. 47, 3 (Oct. 2011), 13–22. https:

//doi.org/10.1145/2189751.2047867

[5] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated

reasoning on feature models. In International Conference on Advanced Information
Systems Engineering. Springer, 491–503.

[6] Marco Couto, Paulo Borba, Jácome Cunha, João Paulo Fernandes, Rui Pereira,

and João Saraiva. 2017. Products Go Green: Worst-Case Energy Consumption

in Software Product Lines. In Proceedings of the 21st International Systems and
Software Product Line Conference - Volume A (SPLC ’17). 84–93. https://doi.org/

10.1145/3106195.3106214

[7] Marco Couto, João Paulo Fernandes, and João Saraiva. 2021. Statically Analyzing

the Energy Efficiency of Software Product Lines. Journal of Low Power Electronics
and Applications 11, 1 (2021), 13.

[8] Luis Cruz and Rui Abreu. 2018. Using Automatic Refactoring to Improve Energy

Efficiency of Android Apps. arXiv:1803.05889 [cs.SE]

[9] Luis Cruz, Rui Abreu, and Jean-Noël Rouvignac. 2017. Leafactor: Improving

Energy Efficiency of Android Apps via Automatic Refactoring. In Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft ’17). 205–206. https://doi.org/10.1109/MOBILESoft.2017.21

[10] Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. 2014. Probabilistic

Model Checking for Energy Analysis in Software Product Lines. In Proceedings
of the 13th International Conference on Modularity (MODULARITY ’14). 169–180.
https://doi.org/10.1145/2577080.2577095

[11] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej

Wasowski. 2013. Variability-Aware Performance Prediction: A Statistical Learn-

ing Approach. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE’13). 301–311.

[12] Robert M. Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei Zheng. 2016.

SIP: Optimal Product Selection from Feature Models Using Many-Objective

Evolutionary Optimization. ACM Trans. Softw. Eng. Methodol. 25, 2, Article 17
(April 2016), 39 pages. https://doi.org/10.1145/2897760

[13] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Context-aware

energy-efficient applications for cyber-physical systems. Ad Hoc Networks 82
(2019), 15–30.

[14] Syed Islam, Adel Noureddine, and Rabih Bashroush. 2016. Measuring energy

footprint of software features. In 2016 IEEE 24th International Conference on
Program Comprehension (ICPC). 1–4. https://doi.org/10.1109/ICPC.2016.7503726

[15] Erik A. Jagroep, Jan Martijn van der Werf, Sjaak Brinkkemper, Giuseppe Pro-

caccianti, Patricia Lago, Leen Blom, and Rob van Vliet. 2016. Software Energy

Profiling: Comparing Releases of a Software Product. In Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE ’16). 523–532.
https://doi.org/10.1145/2889160.2889216

[16] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2012. An

Algorithm for Generating T-Wise Covering Arrays from Large Feature Models.

In Proceedings of the 16th International Software Product Line Conference - Volume
1 (SPLC ’12). 46–55. https://doi.org/10.1145/2362536.2362547

[17] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel.

2020. The interplay of sampling and machine learning for software performance

prediction. IEEE Software 37, 4 (2020), 58–66.
[18] Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi. 2018. Software Product

Line Extraction from Variability-Rich Systems: The Robocode Case Study. In

Proceedings of the 22nd International Systems and Software Product Line Conference
- Volume 1 (SPLC ’18). 132–142. https://doi.org/10.1145/3233027.3233038

[19] Daniel-Jesus Munoz, José A. Montenegro, Mónica Pinto, and Lidia Fuentes. 2019.

Energy-aware environments for the development of green applications for cy-

ber–physical systems. Future Generation Computer Systems 91 (2 2019), 536–554.
https://doi.org/10.1016/j.future.2018.09.006

[20] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.

Uniform random sampling product configurations of feature models that have

numerical features. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume A. 289–301.

[21] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2013. A Review of

Energy Measurement Approaches. SIGOPS Oper. Syst. Rev. 47, 3 (Nov. 2013),

42–49. https://doi.org/10.1145/2553070.2553077

https://doi.org/10.1109/ISSRE.2010.11
https://doi.org/10.1016/j.comnet.2013.02.025
https://doi.org/10.1145/2189751.2047867
https://doi.org/10.1145/2189751.2047867
https://doi.org/10.1145/3106195.3106214
https://doi.org/10.1145/3106195.3106214
https://arxiv.org/abs/1803.05889
https://doi.org/10.1109/MOBILESoft.2017.21
https://doi.org/10.1145/2577080.2577095
https://doi.org/10.1145/2897760
https://doi.org/10.1109/ICPC.2016.7503726
https://doi.org/10.1145/2889160.2889216
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1145/3233027.3233038
https://doi.org/10.1016/j.future.2018.09.006
https://doi.org/10.1145/2553070.2553077

On Reducing the Energy Consumption of Software Product Lines SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

[22] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2015. Monitoring

energy hotspots in software. Automated Software Engineering 22 (9 2015). Issue

3. https://doi.org/10.1007/s10515-014-0171-1

[23] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside. 2012.

Modelling and Multi-Objective Optimization of Quality Attributes in Variability-

Rich Software. In Proceedings of the Fourth International Workshop on Nonfunc-
tional System Properties in Domain Specific Modeling Languages (NFPinDSML ’12).
Article 2, 6 pages. https://doi.org/10.1145/2420942.2420944

[24] Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joel Penhoat. 2021. Tales

from the Code #1: The Effective Impact of Code Refactorings on Software Energy

Consumption. In ICSOFT. https://hal.archives-ouvertes.fr/hal-03202437

[25] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. 2016. What

Do Programmers Know about Software Energy Consumption? IEEE Software 33,
3 (2016), 83–89. https://doi.org/10.1109/MS.2015.83

[26] Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fernandes,

and João Saraiva. 2020. SPELLing out energy leaks: Aiding developers locate

energy inefficient code. Journal of Systems and Software 161 (3 2020), 110463.
https://doi.org/10.1016/j.jss.2019.110463

[27] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.

Performance-Influence Models for Highly Configurable Systems. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). 284–294. https://doi.org/10.1145/2786805.2786845

[28] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don

Batory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting Performance via

Automated Feature-Interaction Detection. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). Zurich, Switzerland, 167–177.

[29] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,

Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward optimization of

non-functional properties in software product lines. Software Quality Journal 20,
3 (2012), 487–517.

[30] Norbert Siegmund, Marko Rosenmüller, Christian Kästner, Paolo G. Giarrusso,

Sven Apel, and Sergiy S. Kolesnikov. 2013. Scalable prediction of non-functional

properties in software product lines: Footprint and memory consumption. Infor-
mation and Software Technology 55, 3 (2013), 491–507. https://www.sciencedirect.

com/science/article/pii/S0950584912001541

[31] Samaneh Soltani, Mohsen Asadi, Dragan Gašević, Marek Hatala, and Ebrahim

Bagheri. 2012. Automated Planning for Feature Model Configuration Based

on Functional and Non-Functional Requirements. In Proceedings of the 16th
International Software Product Line Conference - Volume 1 (SPLC ’12). 56–65.

https://doi.org/10.1007/s10515-014-0171-1
https://doi.org/10.1145/2420942.2420944
https://hal.archives-ouvertes.fr/hal-03202437
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1145/2786805.2786845
https://www.sciencedirect.com/science/article/pii/S0950584912001541
https://www.sciencedirect.com/science/article/pii/S0950584912001541

	Abstract
	1 Introduction
	2 Measuring Energy Consumption of Software
	3 Estimating and Reducing Energy Consumption for SPL
	3.1 Feature-wise Energy Analysis
	3.2 Pairwise Energy Analysis

	4 Empirical Validation
	4.1 Methodology
	4.2 Results

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

