
HAL Id: hal-03272963
https://hal.science/hal-03272963v2

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new parametrization for independent set
reconfiguration and applications to RNA kinetics

Laurent Bulteau, Bertrand Marchand, Yann Ponty

To cite this version:
Laurent Bulteau, Bertrand Marchand, Yann Ponty. A new parametrization for independent set re-
configuration and applications to RNA kinetics. IPEC 2021 - 16th International Symposium on
Parameterized and Exact Computation, Sep 2021, Lisbon, Portugal. �hal-03272963v2�

https://hal.science/hal-03272963v2
https://hal.archives-ouvertes.fr

A new parametrization for independent set1

reconfiguration and applications to RNA kinetics2

Laurent Bulteau �3

LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-vallée France4

Bertrand Marchand �Â5

LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechique de Paris, France6

LIGM7

Yann Ponty � Â8

LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechique de Paris, France9

Abstract10

In this paper, we study the Independent Set (IS) reconfiguration problem in graphs. An IS11

reconfiguration is a scenario transforming an IS L into another IS R, inserting/removing vertices one12

step at a time while keeping the cardinalities of intermediate sets greater than a specified threshold.13

We focus on the bipartite variant where only start and end vertices are allowed in intermediate ISs.14

Our motivation is an application to the RNA energy barrier problem from bioinformatics, for which15

a natural parameter would be the difference between the initial IS size and the threshold.16

We first show the para-NP hardness of the problem with respect to this parameter. We then17

investigate a new parameter, the cardinality range, denoted by ρ which captures the maximum18

deviation of the reconfiguration scenario from optimal sets (formally, ρ is the maximum difference19

between the cardinalities of an intermediate IS and an optimal IS). We give two different routes to20

show that this problem is in XP for ρ: The first is a direct O(n2)-space, O(n2ρ+2.5)-time algorithm21

based on a separation lemma; The second builds on a parameterized equivalence with the directed22

pathwidth problem, leading to a O(nρ+1)-space, O(nρ+2)-time algorithm for the reconfiguration23

problem through an adaptation of a prior result by Tamaki [20]. This equivalence is an interesting24

result in its own right, connecting a reconfiguration problem (which is essentially a connectivity25

problem within a reconfiguration network) with a structural parameter for an auxiliary graph.26

We demonstrate the practicality of these algorithms, and the relevance of our introduced27

parameter, by considering the application of our algorithms on random small-degree instances for28

our problem. Moreover, we reformulate the computation of the energy barrier between two RNA29

secondary structures, a classic hard problem in computational biology, as an instance of bipartite30

reconfiguration. Our results on IS reconfiguration thus yield an XP algorithm in O(nρ+2) for the31

energy barrier problem, improving upon a partial O(n2ρ+2.5) algorithm for the problem.32

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact33

algorithms ; Applied computing → Bioinformatics34

Keywords and phrases reconfiguration problems - parameterized algorithms - RNA bioinformatics -35

directed pathwidth36

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.1137

Related Version https://hal.inria.fr/hal-0327296338

Supplementary Material https://gitlab.inria.fr/bmarchan/bisr-dpw39

Acknowledgements The authors would like to thank H. Tamaki and Y. Kobayashi for fruitful email40

exchanges.41

1 Introduction42

Reconfiguration problems. Reconfiguration problems informally ask whether there exists,43

© Laurent Bulteau, Bertrand Marchand and Yann Ponty;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laurent.bulteau@univ-eiffel.fr
https://orcid.org/0000-0003-1645-9345
mailto:bertrand.marchand@lix.polytechnique.fr
https://www.lix.polytechnique.fr/~marchand/
https://orcid.org/0000-0001-8060-6640
mailto:yann.ponty@lix.polytechnique.fr
http://www.myhomepage.edu
https://orcid.org/0000-0002-7615-3930
https://doi.org/10.4230/LIPIcs.IPEC.2021.11
https://hal.inria.fr/hal-03272963
https://gitlab.inria.fr/bmarchan/bisr-dpw
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Parameterized Independent Set Reconfiguration

between two configurations of a system, a reconfiguration pathway entirely composed of legal44

intermediate configurations, connected by legal moves. In a thoroughly studied sub-category45

of these problems, configurations correspond to feasible solutions of some optimization46

problem, and a feasible solution is legal when its quality is higher than a specified threshold.47

Examples of optimization problems for which reconfiguration versions have been studied48

include Dominating Set, Vertex Cover, Shortest Path or Independent Set, which49

is our focus in this article. Associated complexities range from polynomial (see [23] for50

examples) to NP-complete (for bipartite independent set reconfiguration [13]), and even51

PSPACE-complete for many of them [13, 9]. Such computational hardness motivates the52

study of these problems under the lens of parametrized complexity [18, 14, 15, 9], in the53

hope of identifying tractable sub-regimes. Typical parameters considered by these studies54

focus on the value of the quality threshold (typically a solution size bound) defining legal55

configurations and the length of the reconfiguration sequences.56

Directed pathwidth. Directed pathwidth, originally defined in [1] and attributed to Robert-57

son, Seymour and Thomas, represents a natural extension of the notions of pathwidth and58

path decompositions to directed graphs. Like its undirected restriction, it may alternatively59

be defined in terms of graph searching [24], path decompositions [4, 6] or vertex separation60

number [11, 20]. An intuitive formulation can be stated as the search for a visit order of61

the directed graph, using as few active vertices as possible at each step, and such that no62

vertex may be deactivated until all its in-neighbors have been activated. Although an FPT63

algorithm is known for the undirected pathwidth [2], it remains open whether computing64

the directed pathwidth admits a FPT algorithm. XP algorithms [20, 11] are known, and have65

been implemented in practice [19, 12].66

RNA energy barrier. RNAs are single-stranded biomolecules, which fold onto themselves67

into 2D and 3D structures through the pairing of nucleotides along their sequence [22].68

Thermodynamics then favors low-energy structures, and the RNA energy barrier problem69

asks, given two structures, whether there exists a re-folding pathway connecting them that70

does not go through unlikely high-energy intermediate states [17, 21]. Interestingly, the71

problem falls under the wide umbrella of reconfiguration problems described above, namely72

the reconfiguration of solutions of optimization problems (here, energy minimization). An73

important specificity of the problem is that the probability of a refolding pathway depends74

on the energy difference between intermediate states and the starting point rather than the75

absolute energy value. Another aspect of this problem is that, since some pairings of the76

initial structure may impede the formation of new pairings for the target structure, it induces77

a notion of precedence constraints, and may therefore also be treated as a scheduling problem,78

as carried out in [8, 10].79

Problem statement. In our work, we focus on independent set reconfigurations where80

only vertices from the start or end ISs (L and R) are allowed within intermediate ISs. This81

amounts to considering the induced subgraph G[L ∪ R], bipartite by construction. We write82

α(G) for the size of a maximum independent set of G (recall that α(G) can be computed in83

polynomial time on bipartite graphs).84

L. Bulteau, B. Marchand and Y. Ponty 11:3

a

b
c

d
e

f

g

h

i
|L|=5

a
b
c
d
e

f

g

h

i
|I1|=4

a
b
c
d
e

f

g

h

i
|I2|=3

a
b
c
d
e

f

g

h

i
|I3|=4

a
b
c
d
e

f

g

h

i
|I4|=5

a
b
c
d
e

f

g

h

i
|I5|=4

a
b
c
d
e

f

g

h

i
|I6|=3

a
b
c
d
e

f

g

h

i
|I7|=4

a
b
c
d
e

f

g

h

i
|I8|=3

a

b
c

d
e

f

g

h

i
|R|=4

i

|Ii|

−

− +

+ −

− + − +
3

4

5 α(G)

ρ

Figure 1 Example of a bipartite independent set reconfiguration from vertices in L (blue) to R

(red). Selected vertices at each step have a filled background. All intermediate ISs have size at least
3, and the optimal IS has size 5, so this scenario has a range of 2; it can easily be verified that it is
optimal.

Bipartite Independent Set Reconfiguration (BISR)
Input: Bipartite graph G = (V, E) with partition V = L ∪ R; integer ρ

Parameter: ρ

Output: True if there exists a sequence I0 · · · Iℓ of independent sets of G such that
I0 = L and Iℓ = R;
|Ii| ≥ α(G) − ρ, ∀i ∈ [0, ℓ];
|Ii △ Ii+1| = 1, ∀i ∈ [0, ℓ − 1].

False otherwise.

Figure 1 shows an example of an instance of BISR and a possible reconfiguration pathway.85

We introduce the cardinality range (or simply range) ρ = max1≤i≤ℓ α(G) − |Ii| as a natural86

parameter for this problem, since it measures a distance to optimality. As mentioned above,87

the related parameter in RNA reconfiguration is the barrier, denoted k, and defined as88

k = max1≤i≤ℓ |L| − |Ii|. Intuitively, k measures the size difference from the starting point89

rather than from an “absolute” optimum. Note that k = ρ − (α(G) − |L|), so one has90

0 ≤ k ≤ ρ. Both parameters are obviously similar for instances where L is close to being a91

maximum independent set, which is generally the case in RNA applications, but in theory92

the range ρ can be arbitrarily larger than the barrier k.93

Our results. We first prove that in general, the barrier k may not yield any interesting94

parameterized algorithm, since BISR is Para-NP-hard for this parameter. We thus focus on95

the range parameter for Bipartite Independent Set Reconfiguration, and prove that96

it is in XP by providing two distinct algorithmic strategies to tackle it.97

Our first algorithmic strategy stems from a parameterized equivalence we draw between98

BISR and the problem of computing the directed pathwidth of directed graphs. Within this99

equivalence, the range parameter ρ maps exactly to the directed pathwidth. This allows to100

apply XP algorithms for Directed Pathwidth to BISR while retaining their complexity,101

such as the O(nρ+2)-time, O(nρ+1)-space algorithm from Tamaki [20] (with n = |V |). This102

equivalence between directed pathwidth and bipartite independent set reconfiguration is itself103

an interesting result, as it connects a structural problem, whose parameterized complexity is104

IPEC 2021

11:4 Parameterized Independent Set Reconfiguration

open, with a reconfiguration problem of the kind that is routinely studied in parameterized105

complexity [18, 14, 15, 9].106

We also present another more direct algorithm for BISR, with a time complexity of107

O(n2ρ
√

nm) (with m = |E|) but using only O(n2) space. It relies on a separation lemma108

involving, if it exists, a mixed maximum independent set of G containing at least one vertex109

from both parts of the graph. In the specific case of bipartite graphs arising from RNA110

reconfiguration, we improve the run-time of the subroutine computing a mixed MIS to O(n2)111

(rather than O(
√

nm)), with a dynamic programming approach.112

We present benchmark results for both algorithms, on random instances of general113

bipartite graphs as well as instances of the RNA Energy Barrier problem. The approach114

based on directed pathwidth yields reasonable solving times for RNA strings of length up115

to ∼ 150.116

Outline. To start with, Section 2 presents some previously known results related to BISR,117

as well as some alternative formulations or parameters. Then, Section 3 shows that BISR118

is in fact equivalent to the computation of directed pathwidth in directed graphs. We first119

present a parameterized reduction from bipartite independent set reconfiguration to an120

input-restricted version, on graphs allowing for a perfect matching. Then, this version of121

the problem is shown to be simply equivalent to the computation of directed pathwidth on122

general directed graphs.123

Section 4 presents our direct algorithm for bipartite independent set reconfiguration.124

More precisely, Section 4.2 presents the separation lemma on which the divide-and-conquer125

approach of the algorithm is based, while Section 4.3 details the algorithm and its analysis.126

To finish, Section 5 explains some optimizations specific to RNA reconfiguration instances,127

and presents our numerical results.128

2 Preliminaries129

Previous results. Bipartite Independent Set Reconfiguration was proven NP-130

complete in [13], through the equivalent k-Vertex Cover Reconfiguration problem.131

Formulated in terms of RNAs, and restricted to secondary structures (i.e. the subset of132

bipartite graphs that can be obtained in RNA reconfiguration instances), it was independently133

proven NP-hard in [17]. To the authors’ knowledge, its parameterized complexity remains134

open.135

Independent set reconfiguration in an unrestricted setting (allowing vertices which are136

outside from the start or end independent sets, i.e. in possibly non-bipartite graphs) when137

parameterized by the minimum allowed size of intermediate sets has been proven W[1]-hard138

[18, 9], and fixed-parameter tractable for planar graphs or graphs of bounded degree [14].139

Whether this more general problem is in XP for this parameter remains open. We note that140

in this setting, parameter ρ seems slightly less relevant since it involves computing a maximal141

independent set in a general graph (i.e. testing if there exists a reconfiguration from ∅ to ∅142

with range ρ is equivalent to deciding if α(G) ≥ ρ).143

As for algorithms for BISR, the closest precedent is an algorithm by Thachuk et al. [21].144

It is restricted to RNA secondary structure conflict graphs, and additionally to conflict145

graphs for which both parts L and R are maximum independent sets of G. In this restricted146

setting, although it is not stated as such, [21] provides an XP algorithm with respect to the147

barrier parameter k which then coincides with the range parameter ρ that we introduce.148

Restriction to the monotonous case. A reconfiguration pathway for bipartite inde-149

pendent set reconfiguration is called monotonous or direct if every vertex is added150

L. Bulteau, B. Marchand and Y. Ponty 11:5

or removed exactly once in the entire sequence. The length of a monotonous sequence is151

therefore necessarily: ℓ = |L ∪ R| = |L| + |R|.152

Theorem 2 from [13] tells us that if G, ρ is a yes-instance of bipartite independent set153

reconfiguration, then there exists a monotonous reconfiguration between L and R respecting154

the constraints. We will therefore restrict without loss of generality our study to this simpler155

case. In the more restricted set studied in [21], this was also independently shown.156

Hardness for the barrier parameter. In the general case where L is not necessarily157

a maximal independent set, the range and barrier parameters (respectively ρ and k =158

ρ − (α(G) − |L|) may be arbitrarily different. The following result motivates our use of159

parameter ρ for the parameterized analysis of BISR.160

▶ Proposition 1. BISR is Para-NP-hard for the energy barrier parameter (i.e. NP-hard even161

with k = 0).162

Proof. We use additional vertices in R to prove this result. Informally, such a vertex may163

always be inserted first in a realization: it improves the starting IS from |L| to |L| + 1, so the164

lower bound on the rest of the sequence is shifted from |L| − k to |L| − (k − 1), effectively165

reducing the barrier without simplifying the instance. Thus, we build a reduction from the166

general version of BISR: given a bipartite graph G with parts L and R and an integer ρ,167

we construct a new instance G′ with parts L′ = L and R′ equal to R ∪ NR and ρ′ = ρ. NR168

is composed of |L| − (α(G) − ρ) isolated vertices (we can assume without loss of generality169

that this quantity is non-negative, otherwise (G, ρ) is a trivial no-instance), completely170

disconnected from the rest of the graph.171

Note that α(G′) = α(G)+|NR| = |L|+ρ, so the barrier in (G′, ρ′) is k = ρ−(α(G′)−|L|) =172

0. A realization for (G, ρ) can be transformed into a realization for (G′, ρ) by inserting173

vertices from NR first, and conversely, vertices from NR can be ignored in a realization for174

(G′, ρ) to obtain a realization for (G, ρ). Therefore, since BISR is NP-Complete, it is also175

Para-NP-hard w.r.t the barrier k. ◀176

Permutation formulation and ρ-realizations. An equivalent representation of a monotonous177

reconfiguration pathway I0 . . . Iℓ from L to R for a graph G is a permutation P of L ∪ R. The178

i-th vertex of the permutation is the vertex that is processed (i.e. added or removed) between179

Ii−1 and Ii (this formulation lightens the representation of a solution, from a list of vertex180

sets to a list of vertices). Given a subset X of vertices, we write δ(X) = |L ∩ X| − |R ∩ X|181

and I(X) = (L \ X) ∪ (R ∩ X) = L∆X for the set obtained from L after processing vertices182

from X. Then |I(X)| = |L| − δ(X). We say that X is licit if I(X) is an independent set.183

For any prefix p of P of length i, we write V (p) (or simply p if the context is clear) for the184

set of vertices appearing in p, and Ii = I(V (p)). A permutation P is licit if V (p) is licit for185

each prefix p of P ; note that P is licit if and only if ∀r ∈ R, the neighborhood N(r) of r in186

G appears before r in P . Last, we say that P is a ρ-realization that is licit and such that for187

each prefix p, |I(p)| ≥ α(G) − ρ (i.e. δ(V (p)) ≤ ρ + |L| − α(G)).188

3 Connection to Directed Pathwidth189

3.1 Definitions190

Parameterized reduction. In this section, we provide a definition of directed pathwidth,191

and then prove its parameterized equivalence to the bipartite independent set reconfiguration192

problem. We say two problems P1 and P2 are parametrically equivalent when there exists193

both a parameterized reduction from P1 to P2 and another from P2 to P1. A parameterized194

IPEC 2021

11:6 Parameterized Independent Set Reconfiguration

reduction [5] from problem P to problem Q is a function φ from instances of P to instances195

of Q such that (i) φ(x) is a yes-instance of Q ⇔ x is a yes-instance of P, (ii) φ(x) can be196

computed in time f(k) · |x|O(1), where k is the parameter of x, and (iii) if k is the parameter197

of x and k′ is the parameter of φ(x), then k′ ≤ g(k) for some (computable) function g.198

Interval representation. Our definition of directed pathwidth relies on interval embeddings.199

Alternative definitions can be found, for instance in terms of directed path decomposition or200

directed vertex separation number [24, 20, 11].201

▶ Definition 2 (Interval representation). An interval representation of a directed graph H202

associates each vertex u ∈ H with an interval Iu = [au, bu], with au, bu integers. An interval203

representation is valid when (u, v) ∈ E ⇒ au ≤ bv. I.e, the interval of u must start before204

the interval of v ends. If m, M are such that ∀u, m ≤ au, bu ≤ M , we define the width of an205

interval representation as maxm≤i≤M |{u|i ∈ Iu}|206

▶ Definition 3 (directed pathwidth). The directed pathwidth of a directed graph H is the207

minimum possible width of a valid interval representation of H. We note this number dpw(H).208

Nice interval representation. An interval representation is said to be nice when no more209

than one interval bound is associated to any given integer, and the integers associated to210

interval bounds are exactly [1 . . . 2 · |V (H)|]. Any interval representation may be turned into211

a nice one without changing the width by introducing new positions and “spreading events”.212

See Appendix B for more details.213

Directed graph from perfect matching. Given a bipartite graph G allowing for a214

perfect matching M , we construct an associated directed graph H in the following way: the215

vertices of H are the edges of the matching, and (l, r) → (l′, r′) is an arc of H iff (l, r′) ∈ G.216

Alternatively, H is obtained from G, M by orienting the edges of G from L to R, and then217

contracting the edges of M . We will denote this graph H(G, M), and simply call it the218

directed graph associated to G, M . Such a construction is relatively standard and can be219

found in [7, 26], for instance.220

3.2 Directed pathwidth ⇔ Bipartite independent set reconfiguration221

Perfect matching case. Our main structural result is the following. Its proof, relying on222

interval representations, is quite straightforward and postponed to appendix B:223

▶ Proposition 4. Let G be a bipartite graph allowing for a perfect matching M , and let224

H(G, M) be the directed graph associated to G, M . Then G allows for a ρ-realization iff225

dpw (H(G, M)) ≤ ρ.226

Conversely, given any directed graph H, there exists a bipartite graph G allowing for a perfect227

matching M such that H = H(G, M) is the directed graph associated to G, M and G allows228

for a ρ-realization iff dpw(H) ≤ ρ.229

The first half of Proposition 4 is a parameterized reduction from an input-restricted230

version of bipartite independent set reconfiguration to directed pathwidth. The231

restriction is on bipartite graphs allowing for a perfect matching. The second half is a232

parameterized reduction in the other direction. In both cases, the parameter value is directly233

transferred, which allows to retain the same complexity when transferring an algorithm from234

one problem to the other.235

Non-perfect-matching case. In the case where G does not allow for a perfect matching,236

we construct an equivalent instance G′ allowing for a perfect matching M ′, through the237

L. Bulteau, B. Marchand and Y. Ponty 11:7

addition of new vertices. Specifically, with a bipartite graph G with sides L, R, a maximum238

matching M of G, and the set U of unmatched vertices in G, we extend G with |U | new239

vertices in two sets NL, NR, giving a new graph G′, with sides L′ = L ∪ NL, R′ = R ∪ NR,240

in the following way (M ′ is initialized to M):241

For each u ∈ L ∩ U , we introduce a new vertex r(u) ∈ NR, connect it to all vertices of242

L′, and add the edge (u, r(u)) to M ′.243

Likewise, for each v ∈ R ∩ U , we introduce l(v) ∈ NL, connect it to all vertices of R′ and244

add (v, l(v)) to M ′.245

Note that M ′ is a perfect matching of the extended bipartite graph G′.246

▶ Proposition 5. With G, G′ defined as above, we have that G allows for a ρ-realization iff247

G′ allows for a ρ-realization.248

Proof. First note that by König’s Theorem, α(G′) = |M ′| = |M | + |U | = α(G), so it suffices249

to ensure that any realization for G can be transformed into a realization for G′ where250

independent sets are lower-bounded by the same value, and vice versa.251

Let P be any ρ-realization of G, then P ′ = NL · P · NR is a ρ-realization for G′, with252

NL and NR laid out in any order. Indeed, P ′ satisfies the precedence constraint, and any253

intermediate set I in P ′ satisfies one of the following cases: L ⊆ I, R ⊆ I, or I is an254

intermediate set from P , so in any case it has size at least α(G) − ρ = α(G′) − ρ.255

Conversely, because of the all-to-all connectivity between NL and R and between L and256

NR, a realization for G′ needs to have NL before any vertex from R, and have NR after all257

vertices from L. Without loss of generality, it is therefore of the form NL · P · NR with P a258

realization of G, and G allows for a ρ-realization. ◀259

The construction above in fact yields a parameterized reduction from bipartite inde-260

pendent set reconfiguration to its input-restricted version on bipartite graphs, allowing261

for a perfect matching. This input-restricted version is in turn parametrically equivalent to262

directed pathwidth by Proposition 4. Hence the following corollary:263

▶ Corollary 6. Bipartite Independent Set Reconfiguration is parametrically equiva-264

lent to Directed Pathwidth265

4 An XP algorithm for independent set reconfiguration266

4.1 Definitions267

We use the permutation representation of reconfiguration scenarios, i.e. licit permutations of268

vertices. Note that the intersection, as well as the union, of two licit set of vertices are licit.269

Given a realization P of G and a set of vertices X, we write P ∩ X for the sub-sequence of270

P consisting of the vertices of X, without changing the order. Likewise, P \ X denotes the271

sub-sequence of P consisting of vertices not in X.272

A mixed maximum independent set I of G is an independent set of G of maximum273

cardinality containing at least a vertex from both parts. Note that not every bipartite graph274

contains such a set. A separator X is a subset of L ∪ R such that I(X) is a mixed maximum275

independent set of G.276

4.2 Separation lemma277

The separation lemma on which our algorithm is based is proved using the following “mod-278

ularity” property of the imbalance functions. Interestingly, it is almost the same property279

IPEC 2021

11:8 Parameterized Independent Set Reconfiguration

(sub-modularity), on a different quantity (the in-degrees of vertices) on which rely the XP280

algorithm for directed pathwidth [20].281

▶ Lemma 7 (modularity). The function associating a licit subset to its corresponding inde-
pendent set I(X) verifies:

|I(X)| + |I(Y)| = |I(X ∪ Y)| + |I(X ∩ Y)|

Proof. We have I(X) = (L\X)∪ (R∩X). Therefore, |I(X)| = |L\X|+ |R∩X| = |L|− |L∩282

X|+|R∩X|. Furthermore, |(X ∪Y)∩L| = |(X ∩L)∪(Y ∩L)| = |X ∩L|+|Y ∩L|−|X ∩Y ∩L|,283

and likewise for R. The result stems from a substraction of one equation to the other, and284

an addition of |L|. ◀285

Based on this “modularity”, the following separation lemma is shown by “re-shuffling” a286

solution into another one going through a mixed MIS.287

▶ Lemma 8 (separation lemma). Let X be a separator of G. If P is a ρ-realization for G,288

then (P ∩ X) · (P \ X) is also a ρ-realization for G.289

Proof. Let P be a ρ-realization for G and P ′ = (P ∩ X) · (P \ X) a reshuffling, where X is290

processed first.291

Consider p′ a prefix of P ′. There are two cases:292

1. p′ is included in (or equal to) P ∩ X. In this case, ∃p prefix of P such that: p′ = p ∩ X.293

We therefore have |I(p′)| = |I(p)| + |I(X)| − |I(p ∪ X)|, and since |I(X)| is a maximum294

independent set of G, |I(p′)| ≥ |I(p)| ≥ α(G) − ρ.295

2. P ∩ X is included in p. In that case, ∃p prefix of P such that p′ = p ∪ X. We have,296

likewise, |I(p′)| = |I(p)| + |I(X)| − |I(p ∩ X)| and conclude the same way.297

◀298

The separation allows for a divide-and-conquer approach: if we identify a separator X299

in G, i.e. a licit subset of G such that I(X) is a mixed independent set, then we may300

independently solve the problem of finding a ρ-realization from L to I(X) and then from301

I(X) to R. If no solution is found for one of them, then the converse of Lemma 8 implies302

that no ρ-realizations exists for G. The algorithm of the following section is based on this303

approach.304

4.3 XP algorithm305

Algorithm details. We present here a direct algorithm for Bipartite Independent Set306

Reconfiguration, detailed in Algorithm 1. The main function Realize is recursive. Its307

sub-calls arise either from a split with a mixed MIS I (in which case it is called on a smaller308

graph but with the same parameter), or from the loop over all possible starting points in the309

case where no separator is found (lines 13-18), in which case the parameter does reduce. The310

overall runtime is dominated by this loop, and is analyzed in Proposition 9 below.311

Mixed MIS algorithm. The sub-routine allowing to find, if it exists, a maximum indepen-312

dent set intersecting both L and R is based on concepts from matching theory [16], namely313

the Dulmage-Mendelsohn decomposition [3, 16], as well as the decomposition of bipartite314

graphs with a perfect matching into elementary subgraphs [16](part 4.1). Its full details are315

described in Appendix A.316

L. Bulteau, B. Marchand and Y. Ponty 11:9

Algorithm 1 XP algorithm for Bipartite Independent Set Reconfiguration
Input : bipartite graph G (with sides L and R), integer ρ

Output : a ρ-realization for G, if it exists

1 Function Realize(G, ρ):

2 // Terminal cases:
3 if ρ < 0 then return ⊥
4 if |L ∪ R| = ∅ then return ∅

5 // Isolated vertices:
6 if ∃ℓ ∈ L s.t N(ℓ) = ∅) then return Realize(G \ {ℓ}, ρ − 1) · l

7 if ∃r ∈ R s.t N(r) = ∅) then return r · Realize(G \ {r}, ρ − 1)

8 // Trying to find a separator (cf Algorithm 2)
9 I = MixedMIS(G)

10 if I ̸=⊥ then
11 S = (L \ I) ∪ (R ∩ I) // intermediate point.
12 return Realize(G[S], ρ)· Realize(G[V \ S], ρ)
13 else
14 // Iterating over all possible start/end point pairs.
15 for (ℓ, r) ∈ L × R do
16 if Realize(G \ {ℓ, r}, ρ − 1) ̸=⊥ then
17 return ℓ · Realize(G \ {ℓ, r}, ρ − 1) · r

18 return ⊥

▶ Proposition 9. Algorithm 1 runs in O(|V |2ρ
√

|V ||E|) time, while using O(|V |2) space,317

where ρ is the difference between the minimum allowed and maximum possible independent318

set size, along the reconfiguration.319

Proof. Let us start with space: throughout the algorithm, one needs only to maintain a320

description of G and related objects (independent set I, maximum matching M , associated321

directed graph H(G, M)) for which O(|V |2) is enough.322

As for time, let C(n1, n2, ρ) be the number of recursive calls of the function Realize of323

Algorithm 1 when initially called with |L| = n1, |R| = n2, and some value of ρ. We will show324

by induction that C(n1, n2, ρ) ≤ (n1 + n2)2ρ. Since each call involves one computation of a325

maximum matching, this will prove our result.326

Given (n1, n2, ρ), suppose therefore that ∀(n′
1, n′

2, ρ′) ̸= (n1, n2, ρ) with n′
1 ≤ n1, n′

2 ≤327

n2, ρ′ ≤ ρ we have C(n′
1, n′

2, ρ′) < (n′
1 + n′

2)2ρ′
328

1. If G allows for a mixed maximum independent set, the instance is split into two smaller329

instances, yielding C(n1, n2, ρ) = C(n′
1, n2, ρ) + C(n′′

1 , n′′
2 , ρ) with n′

1 + n′′
1 = n1 and n2 =330

n′
2 + n′′

2 . And C(n1, n2, ρ) ≤
(
(n′

1 + n′
2)2ρ + (n′′

1 + n′′
2)2ρ

)
≤ (n′

1 + n′′
1 + n′

2 + n′′
2)2ρ ≤331

(n1 + n2)2ρ.332

2. else, we have the following relation: C(n1, n2, ρ) = n1n2 · C(n1 − 1, n2 − 1, ρ − 1). Which333

yields:334

C(n1, n2, ρ) = n1n2 · C(n1 − 1, n2 − 1, ρ − 1)335

≤ n2 · n2(ρ−1) by induction hypothesis336

≤ n2ρ
337
338

IPEC 2021

11:10 Parameterized Independent Set Reconfiguration

◀339

The exponential part (O(n2ρ)) of the worst case complexity of Algorithm 1 is in fact340

tight, as it is met with a complete bi-clique Kn,n with sides of size n. Indeed, in this case,341

no mixed MIS is found in any of the recursive calls.342

5 Benchmarks and Applications343

In this section, we report benchmark results for both algorithmic approaches. We first explain344

some details about the algorithm we implemented for directed pathwidth. Then, we present345

a general benchmark of our algorithms on random (Erdös-Rényi) bipartite graphs. Last, we346

give some background related to RNA bioinformatics and the application of our algorithm347

to the barrier energy problem.348

349

Code availability. The code used for our benchmarks, including a Python/C++ imple-350

mentation of our two algorithms, is available at https://gitlab.inria.fr/bmarchan/bisr-dpw351

5.1 Implementation details352

Directed pathwidth. We implemented and used an algorithm from Tamaki [20], with a353

runtime of O(nρ+2). This algorithm was originally published in 2011 [20]. In 2015, H.Tamaki354

and other authors described this algorithm as “flawed” in [11], and replaced it with another355

XP algorithm for directed pathwidth, with a run-time of O(mn2ρ

(ρ−1)!).356

Upon further analysis from our part, and discussions with H. Tamaki and the corresponding357

author of [11], it appears a small modification allowed to make the algorithm correct. In a358

nutshell, the algorithm involves pruning actions, and these need to be carried out as soon as359

they are detected. In [20], temporary solutions were accumulated before a general pruning360

step. With this modification, the analysis presented in [20] applies without modification, and361

yields a time complexity of O(nρ+2). The space complexity is unchanged at O(nρ+1). For362

completeness, a detailed re-derivation of the results of [20] is included in Appendix C363

Mixed-MIS algorithm implementation. On Figure 2, the “m-MIS”-curve, corresponds364

to our mixed-MIS-based algorithm in O(n2ρ
√

|V ||E|). Compared to the algorithm presented365

in Algorithm 1, a more efficient rule is used in the non-separable case: we loop over all366

possible r ∈ R and add N(r) · r to the schedule (instead of a single vertex ℓ ∈ L).367

5.2 Random bipartite graphs368

Benchmark details. Figure 2 shows, as a function of the number of vertices, the average369

execution time of both our algorithms (top panel), as well as the distribution of parameter370

values (ρ - bottom panel), on a class of random bipartite graphs. These graphs are generated371

according to an Erdös-Rényi distribution (each pair of vertices has a constant probability372

p of forming an edge). We use a connection probability of d/n, dependent on the number373

of vertices. It is such that the average degree of vertices is d. The data of our benchmark374

(Figure 2) has been generated with d = 5.375

Comments on Figure 2. The difference in trend between the execution times of the two376

algorithms is quite coherent with the difference in their exponents (nρ+2 vs. n2ρ+2.5).377

https://gitlab.inria.fr/bmarchan/bisr-dpw

L. Bulteau, B. Marchand and Y. Ponty 11:11

10 3

10 2

10 1

100

101

ru
n-

tim
e

(s
, l

og
-s

ca
le

)

4 10 16 22 28 34 40 46 52 58
number of vertices

2

4

6

8

 v
al

ue

m-MIS
dpw

Figure 2 (top panel) Average run-time (seconds, log-scale) of our algorithms on random Erdös-
Rényi bipartite graphs, with a probability of connection such that the average degree of a vertex is
5 (i.e p = 5/n). (bottom panel) Average parameter value of generated instances, as a function of
input size.

5.3 Computing energy barriers in RNA kinetics378

In this section, we give more detail about how our algorithms may apply to a bioinformatics379

problem, the RNA barrier energy problem. We present benchmark results, on a random380

class of RNA instances, showing the practicality of our approach.381

RNA basics. RiboNucleic Acids (RNAs) are biomolecules of outstanding interest for382

molecular biology, which can be represented as strings over an alphabet Σ := {A, C, G, U}383

(in this context, n denotes the length of the string). Importantly, these strings may fold on384

themselves to adopt one or several conformation(s). A conformation is typically described385

by a set of base pairs (i, j), i < j. Then, a standard class of conformations to consider in386

RNA bioinformatics are secondary structures, which are pairwise non-crossing (∄(i, j), (k, l) ∈387

S such that i ≤ k ≤ j ≤ l, in particular, they involve distinct positions). In this section,388

we more precisely work on the problem of finding a reconfiguration pathway between two389

secondary structures (i.e conflict-free sets of base pairs). The reconfiguration may only involve390

secondary structures, and remain of energy as low as possible. We work with a simple energy391

model consisting of the opposite of number of base pairs in a configuration (−Nbps). The392

RNA Energy-Barrier problem can then be stated as such:393

RNA Energy-Barrier
Input: Secondary structures L and R; Energy barrier k ∈ N+

Output: True if there exists a sequence S0 · · · Sℓ of secondary structures such that
S0 = L and Sℓ = R;
|Si| ≥ |L| − k, ∀i ∈ [0, ℓ];
|Si △ Si+1| = 1, ∀i ∈ [0, ℓ − 1].

False otherwise.

Bipartite representation. Given two secondary structures L and R, represented as sets of394

base pairs, we define a conflict graph G(L, R) such that: the vertex set of G(L, R) is L ∪ R;395

and two vertices (i, j), (k, l) are connected if they are crossing (see Figure 3). Since base396

IPEC 2021

11:12 Parameterized Independent Set Reconfiguration

1

23
4

5
6 7

8 9
10

11
12 13

14

15
1617

18
19

20

1

2

3
4

5
6

7
8 9

10
11 12 13

14

15

16

17
18

19

20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A B

C

D

Figure 3 Conflict bipartite graph (D) associated with an instance of the RNA Energy-Barrier
problem, consisting of an initial (A) and final (B) structure, both represented as an arc-annotated
sequence (C). The sequence of valid secondary structures, achieving minimum energy barrier can be
obtained from the solution given in Figure 1.

pairs in both L and R are both pairwise non-crossing, G(L, R) is bipartite with parts L397

and R. In this context, a maximum independent set of G(L, R) is a minimum free-energy398

structure of the RNA, and we write MFE(L, R) = α(G(L, R)). We then see how the RNA399

Energy-Barrier problem is simply Bipartite Independent Set Reconfiguration400

restricted to a specific class of bipartite graphs: the conflict graphs of secondary structures,401

with a range of ρ = k + MFE(L, R) − |L|.402

Problem motivation. Since the number of secondary structures available to a given RNA403

grows exponentially with n, RNA energy landscapes are notoriously rugged, i.e. feature many404

local minima, and the folding process of an RNA from its synthesis to its theoretical final state405

(a thermodynamic equilibrium around low energy conformations) can be significantly slowed406

down. Consequently, some RNAs end up being degraded before reaching this final state.407

This observation motivates the study of RNA kinetics, which encompass all time-dependent408

aspects of the folding process. In particular, it is known (Arrhenius law) that the energy409

barrier is the dominant factor influencing the transition rate between two structures, with an410

exponential dependence.411

Related works in bioinformatics. The problem was shown to be NP-hard by Maňuch et412

al [17]. Thachuk et al [21] also proposed an XP algorithm in O(n2k+2.5) parameterized by413

the energy barrier k, restricted to instances such that the maximum independent set of414

G(L, R) has cardinality equal to |L| and |L| = |R|.415

Benchmark details. Figure 4 shows (top panel) the average execution time of our algo-416

rithms on random RNA instances. The bottom panel shows the parameter distribution as417

a function of the length of the RNA string. Random instances are generated according to418

the following model: two secondary structures L, R are chosen uniformly at random (within419

the space of all possible secondary structure). Base pairs are constrained to occur between420

nucleotides separated by a distance of at least θ = 5.421

5.4 RNA specific optimizations422

Dynamic Programming and RNA. Given two secondary structures L and R, a mixed423

MIS of G(L, R) is a maximum conflict-free subset of L∪R, containing at least a base pair from424

L and R. As is the case for many algorithmic problems involving RNA, the fact that RNAs425

L. Bulteau, B. Marchand and Y. Ponty 11:13

10 3

10 1

101

ru
n-

tim
e

(s
, l

og
-s

ca
le

)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
number of nucleotides

0.0
2.5
5.0
7.5

10.0
12.5

 v
al

ue

m-MIS
dpw

Figure 4 Execution time of our algorithms on random RNA reconfiguration instances (top panel).
On the bottom panel, the distribution of the parameter value (ρ) is plotted against the length of the
RNA string. Error bars (top panel) are obtained using a bootstrapping method.

are strings and that base pairs define intervals suggests a dynamic programming approach426

to the mixed maximum independent set problem in RNA conflict graphs. Subproblems will427

correspond to intervals of the RNA string. Let us start with a simple dynamic programming428

scheme allowing to compute an unconstrained MIS.429

Unconstrained MIS DP scheme. A maximum conflict-free subset of L ∪ R can be430

computed by dynamic programming, using the following DP table: for each 1 ≤ i ≤ j ≤ n,431

let MCFi,j be the size of a maximum conflict-free subset of all base pairs included in [i, j].432

▶ Lemma 10. MCF1,n can be computed in time O(n2)433

Proof. We have the following recurrence formula:434

MCFi,i′ = 0, ∀i′ < i435

MCFi,j = max
{

MCFi+1,j

max(i,k)∈L∪R 1 + MCFi+1,k−1 + MCFk+1,j

436

437

Note that the last max is over at most two possible pairs (i, k) (1 from L and 1 from R), per438

the fact that L and R are both conflict-free. ◀439

Mixed MIS DP scheme. The following modifications to the DP scheme above allow to440

compute a mixed MIS of G(L, R) while retaining the same complexity. In addition to the441

interval, we index the table by Boolean α and β which, when true, further restricts the442

optimization to subsets with > 0 pair from L (iff α = True) or R (iff β = True):443

MCF α,β
i,i′ =

{
0 if (α, β) = (False, False)
−∞ otherwise

, ∀i′ < i444

MCF α,β
i,j = max


MCF α,β

i+1,j

max
(i,k)∈E

α′,α′′,β′,β′′∈B4

1 + MCF α′,β′

i+1,k−1 + MCF α′′,β′′

k+1,j

∣∣∣∣∣ if ¬α ∨ α′ ∨ α′′ ∨ ((i, k) ∈ L)
and ¬β ∨ β′ ∨ β′′ ∨ ((i, k) ∈ R)

445

446

IPEC 2021

11:14 Parameterized Independent Set Reconfiguration

Through a suitable memorization, the system can be used to compute in O(n2) the maximum447

cardinality MCF True,True
1,n of a subset over the whole sequence. A backtracking procedure is448

then used to rebuild the maximal subset.449

6 Conclusion450

Our work so far sheds a new light on both Bipartite Independent Set Reconfiguration451

and Directed Pathwidth problems. The former can thus be solved with a parameterized452

algorithm, having important applications in RNA kinetics since the range parameter is453

particularly relevant in this context. We hope the newly drawn connection will help settle the454

fixed parameter tractability of computing the directed pathwidth. A slightly more accessible455

open problem would be to design an FPT algorithm for BISR in the context of secondary456

structure conflict graphs (i.e. those graphs arising in RNA reconfiguration).457

References458

1 János Barát. Directed path-width and monotonicity in digraph searching. Graphs and459

Combinatorics, 22(2):161–172, 2006.460

2 Hans L Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In The461

Multivariate Algorithmic Revolution and Beyond, pages 196–227. Springer, 2012.462

3 Jianer Chen and Iyad A Kanj. Constrained minimum vertex cover in bipartite graphs:463

complexity and parameterized algorithms. Journal of Computer and System Sciences, 67(4):833–464

847, 2003.465

4 David Coudert, Dorian Mazauric, and Nicolas Nisse. Experimental evaluation of a branch-and-466

bound algorithm for computing pathwidth and directed pathwidth. Journal of Experimental467

Algorithmics (JEA), 21:1–23, 2016.468

5 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin469

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,470

2015.471

6 Joshua Erde. Directed path-decompositions. SIAM Journal on Discrete Mathematics, 34(1):415–472

430, 2020.473

7 Komei Fukuda and Tomomi Matsui. Finding all the perfect matchings in bipartite graphs.474

Applied Mathematics Letters, 7(1):15–18, 1994.475

8 Marinus Gottschau, Felix Happach, Marcus Kaiser, and Clara Waldmann. Budget minimization476

with precedence constraints. CoRR, abs/1905.13740, 2019. URL: http://arxiv.org/abs/477

1905.13740, arXiv:1905.13740.478

9 Takehiro Ito, Marcin Kamiński, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa479

Yamanaka. Parameterized complexity of independent set reconfiguration problems. Discrete480

Applied Mathematics, 283:336–345, 2020.481

10 Jeff Kinne, Ján Manuch, Akbar Rafiey, and Arash Rafiey. Ordering with precedence constraints482

and budget minimization. CoRR, abs/1507.04885, 2015. URL: http://arxiv.org/abs/1507.483

04885, arXiv:1507.04885.484

11 Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro, Hisao Tamaki, and Toshihiro Tano.485

Computing directed pathwidth in o(1.89n) time. Algorithmica, 75(1):138–157, 2016.486

12 Yasuaki Kobayashi, Keita Komuro, and Hisao Tamaki. Search space reduction through487

commitments in pathwidth computation: An experimental study. In International Symposium488

on Experimental Algorithms, pages 388–399. Springer, 2014.489

13 Daniel Lokshtanov and Amer E Mouawad. The complexity of independent set reconfiguration490

on bipartite graphs. ACM Transactions on Algorithms (TALG), 15(1):1–19, 2018.491

14 Daniel Lokshtanov, Amer E Mouawad, Fahad Panolan, MS Ramanujan, and Saket Saurabh.492

Reconfiguration on sparse graphs. Journal of Computer and System Sciences, 95:122–131,493

2018.494

http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1507.04885
http://arxiv.org/abs/1507.04885
http://arxiv.org/abs/1507.04885
http://arxiv.org/abs/1507.04885

L. Bulteau, B. Marchand and Y. Ponty 11:15

15 Daniel Lokshtanov, Amer E Mouawad, Fahad Panolan, and Sebastian Siebertz. On the495

parameterized complexity of reconfiguration of connected dominating sets. arXiv preprint496

arXiv:1910.00581, 2019.497

16 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical498

Soc., 2009.499

17 Ján Maňuch, Chris Thachuk, Ladislav Stacho, and Anne Condon. Np-completeness of500

the energy barrier problem without pseudoknots and temporary arcs. Natural Computing,501

10(1):391–405, 2011.502

18 Amer E Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki.503

On the parameterized complexity of reconfiguration problems. Algorithmica, 78(1):274–297,504

2017.505

19 Hisao Tamaki. A directed path-decomposition approach to exactly identifying attractors of506

boolean networks. In 2010 10th International Symposium on Communications and Information507

Technologies, pages 844–849. IEEE, 2010.508

20 Hisao Tamaki. A polynomial time algorithm for bounded directed pathwidth. In Petr Kolman509

and Jan Kratochvíl, editors, Graph-Theoretic Concepts in Computer Science, pages 331–342,510

Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.511

21 Chris Thachuk, Jan Manuch, Arash Rafiey, Leigh-Anne Mathieson, Ladislav Stacho, and512

Anne Condon. An Algorithm for the Energy Barrier Problem Without Pseudoknots and513

Temporary Arcs. In Biocomputing 2010, pages 108–119. World Scientific, oct 2009. doi:514

10.1142/9789814295291_0013.515

22 Ignacio Tinoco Jr and Carlos Bustamante. How rna folds. Journal of molecular biology,516

293(2):271–281, 1999.517

23 Jan van den Heuvel. The complexity of change. Surveys in combinatorics, 409(2013):127–160,518

2013.519

24 Boting Yang and Yi Cao. Digraph searching, directed vertex separation and directed pathwidth.520

Discrete Applied Mathematics, 156(10):1822–1837, 2008.521

25 Zan-Bo Zhang and Dingjun Lou. Bipartite graphs with a perfect matching and digraphs.522

arXiv preprint arXiv:1011.4359, 2010.523

26 Zan-Bo Zhang, Xiaoyan Zhang, and Xuelian Wen. Directed hamilton cycles in digraphs524

and matching alternating hamilton cycles in bipartite graphs. SIAM J. Discret. Math.,525

27(1):274–289, 2013. doi:10.1137/110837188.526

A Mixed MIS in bipartite graphs527

Our Divide-and-Conquer strategy to the BISR problem relies on the computation of maximum528

independent sets containing at least one vertex in each part of the input bipartite graph.529

We informally call mixed bipartite maximum independent set (Mixed-MIS) the problem530

of deciding whether an input bipartite graph G has a maximum independent set intersecting531

both of its parts. It is trivially polynomial, as one may check for each pair (l, r) ∈ L × R,532

whether I ′ ∪ {l, r} is a maximum independent set of G; with I ′ maximum independent set of533

G′, and G′ obtained from G by removing l, r as well as their neighborhoods.534

As a maximum independent set of a bipartite graph may be derived from a maximum535

matching, this simple strategy yield a O(|V |2 ·
√

|V ||E|) algorithm for our Mixed-MIS536

problem.537

We present here a more efficient strategy, based on a decomposition taking place in two538

rounds. It results into Algorithm 2. The first round is based on the Dulmage-Mendelsohn539

decomposition of bipartite graphs. It yields a partition of the vertices of G into three sets540

D, A, C, defined as such: for each vertex v of D, there exists a maximum matching in which541

IPEC 2021

https://doi.org/10.1142/9789814295291_0013
https://doi.org/10.1142/9789814295291_0013
https://doi.org/10.1142/9789814295291_0013
https://doi.org/10.1137/110837188

11:16 Parameterized Independent Set Reconfiguration

v is not matched, A = N(D) is the union of the neighborhoods of the vertices of D, and542

C = V \ (D ∪ A) contains the remaining vertices. D, A, C verify the following result:543

▶ Theorem 11 (Dulmage-Mendelsohn decomposition, Proposition 2.1 of [3], theorem 3.2.4 of544

[16]). Given G bipartite graph and D, A, C defined as above, we have that:545

546

a. D is the intersection of all maximum independent sets of G.547

A is the intersection of all minimum vertex covers of G.548

the subgraph G[C] induced by C has a perfect matching, which may be deduced from549

restricting any maximum matching of G to C.550

551

b. In addition, D may be computed from any maximum matching M of G using the following552

characterization ([3], lemma 2.2): D = W where W is composed of the vertices left553

unmatched by M , as well as all vertices connected to an unmatched vertex through an554

alternating path of even length.555

This decomposition may allow to conclude in some cases (see Algorithm 2). In general,556

however, a second round of decomposition is needed. In this second round, the set C,557

which allows for a perfect matching M , is further decomposed into elementary sub-graphs558

(section 4.1 of [16], theorem 4.1.1 and exercise 4.1.5) and [25]. It consists in computing559

the strongly connected components of a directed graph H(M, C) associated to M and C560

(same construction as in Section 3). The vertices of H are the edges of the matching, and561

(l, r) → (l′, r′) iff l is connected to r′ in C. The strongly connected components of H constitute562

a decomposition of G into elementary sub-graphs. A bipartite graph is elementary iff the563

sides L, R are the only minimum vertex covers/maximum independent sets [16](theorem564

4.1.1). If it is not elementary, then a mixed maximum independent set may be obtained by565

ordering the elementary sub-graphs {(Li, Ri)}1≤i≤p along a topological order induced by566

H(C, M). Any set of the form (∪i≤tRi) ∪ (∪i>tLi) for some t > 1 is then a mixed maximum567

independent set of C.568

The discussion above results in Algorithm 2, whose run-time is dominated by the compu-569

tation of maximum matching in O(
√

|V ||E|).570

B Delayed proofs571

B.1 Making an interval representation nice572

Let {(au, bu) | u ∈ V } be an interval representation for a directed graph H with vertex set573

V . We explain here how to turn it into a nice interval representation:574

If an integer n is such that au0 = · · · = aul
= bv0 = · · · = bvp

= n, we may modify the575

representation as such:576

Interval bounds associated to integers > n are increased by p + l − 1, to make room for577

“spreading” au1 . . . auℓ
, bv1 . . . bvp

.578

∀i, aui
is set to n + i and bvi

to l + i.579

None of these modifications change the way intervals intersect one another, leaving the width580

unchanged. The representation is then “packed” into [1 . . . 2.|V (H)|] by taking the interval581

bounds in order and setting them to their final position.582

B.2 Proof of Proposition 4:583

Proof. We start with the first statement, the equivalence between dpw(H(G, M)) ≤ ρ584

and the existence of a ρ-realization for G. First note that, since G allows for a perfect585

L. Bulteau, B. Marchand and Y. Ponty 11:17

Algorithm 2 Mixed bipartite maximum independent set
Input : a bipartite graph G with sides L and R. We suppose w.l.o.g that

|L| ≥ |R|.
Output : If it exists, a Maximum Independent Set I of G intersecting both L and

R.

1 // Compute a maximum matching of G

2 M = MaximumMatching(G) ▷ O(
√

|V | · |E|)

3 // Compute a Maximum Independent Set I from M (König’s theorem).
4 I = MaximumIndependentSet(G, M) ▷ O(|E|)

5 if (I ∩ L ̸= ∅) and (I ∩ R ̸= ∅) then return I

6 // Now |I| = max(|L|, |R|) and I = L or I = R

7 D, A, C = DulmageMendelsohn(M, G) ▷ O(|E|)

8 if |L| > |R| then
9 if R \ A ̸= ∅ then

10 pick r ∈ R \ A //A is the intersection of all minimum vertex covers
11 G′ = G \ {r ∪ N(r)}
12 M ′ = MaximumMatching(G’)
13 I ′ = MaximumIndependentSet(G’,M’)
14 return I ′ ∪ {r}
15 else return ⊥; // Not possible, L is the only MIS
16 if |L| = |R| then
17 // L and R are two MIS. So necessarily D = ∅, A = ∅, C = G

18 (L1, R1), . . . , (Lp, Rp) = elementarySubgraphsDec(M, C) ▷ O(|V |2)
19 if p=1 then return ⊥
20 else
21 Topological sort of the SCCs of H

22 s=TopologicalSort({(Li, Ri)}) ▷ O(|V | + |E|)
23 (Li, Ri) = s[0] // first in topological sort
24 return Ri ∪ (∪j ̸=iLj)

IPEC 2021

11:18 Parameterized Independent Set Reconfiguration

matching, we have |L| = |R|, and by König’s theorem, if K is a minimum vertex cover of G,586

|K| = |L| = |R|. Since α(G) = |L| + |R| − |K| we have α(G) = |L| = |R|. I.e. L and R are587

maximum independent sets of G.588

⇒ If G allows for a ρ-realization, then ∃P ordering of the vertices of G such that every589

prefix Xi of P verifies |I(Xi)| = |L| − δ(Xi) = α(G) − δ(Xi) ≥ α(G) − ρ. Therefore590

δ(Xi) = |Xi ∩ L| − |Xi ∩ R| ≤ ρ.591

Consider a vertex (l, r) of H(G, M), with (l, r) an edge of M . We associate to (l, r) the592

interval [a(l,r), b(l,r)] where a(l,r) is such that P [a(l,r)] = l. i.e, it corresponds to the step593

in the reconfiguration where l is removed. Likewise, b(l,r) is such that P [b(l,r)] = r.594

For any edge (l, r) → (l′, r′) of H, necessarily (l, r′) ∈ G, which implies that in the595

reconfiguration sequence, l has to be removed before r′ is added. l appears therefore596

earlier than l in P , and a(l,r) ≤ b(l′,r′). The intervals we have defined therefore form a597

valid interval representation of H.598

In addition, the intervals intersecting a given position i correspond to pairs (l, r) where,599

at step i, l has already been removed while r is yet to be added.600

Since the decrease in independent set size incurred by the removal of l is compensated601

by the addition of its match r, the number of intervals intersecting position i is exactly602

δ(Xi), the imbalance of the i-prefix of P , which by hypothesis is ≤ ρ.603

⇐ Suppose the directed graph H(G, M) associated to G, M has directed pathwidth ≤ ρ.604

Consider an optimal nice interval representation for H.605

In this representation, a vertex (l, r) of H is associated to an interval [a(l,r), b(l,r)]. Thanks606

to the structure of nice interval representation, we simply define a permutation P of607

L ∪ R with, ∀(l, r) P [a(l,r)] = l and P [b(l,r)] = r.608

If (l, r′) is an edge of G, with r the match of l and l′ the match of r′, then the construction609

above ensures that l is before r′ in P . For two matched vertices, this is also immediate.610

Then, as for two matched vertices l, r, the removal of l is compensated by the addition of r,611

for any prefix Xi of P , the imbalance δ(Xi) is exactly the number of intervals intersecting612

position i. By assumption, we therefore have δ(Xi) ≤ ρ and P is a ρ-realization.613

For the second part of the statement, given a directed graph H, we construct a bipartite614

graph G with sides L, R allowing for a perfect matching M in the following way: for each615

vertex u ∈ H we introduce two vertices (lu, ru) in G. We assign lu to L and ru to R, connect616

lu and ru and add the edge to the matching M . We now add an edge from lu to rv in G for617

any (u, v) ∈ E(H). G now verifies H = H(G, M), and by the result above, dpw(H) ≤ ρ iff618

G allows for a ρ-realization.619

◀620

C Re-derivation of Tamaki’s algorithm for directed pathwidth621

For completeness, we include here a re-derivation of the results of [20], with the slight622

modification mentioned in the main text related to pruning. It results in an algorithm with a623

O(nρ+2) complexity, slightly different from the O(nρ+1) announced in [20]. The re-derivation624

follows the same strategy as in the original article, and re-uses most of the notations.625

C.1 Commitment lemma - shortest non-expanding extensions626

(SNEKFEs)627

Notations and definitions. In a directed graph, d–(u) denotes the in-degree of a node628

u. We work with layouts of vertices, i.e. ordered sequences of vertices, not necessarily629

L. Bulteau, B. Marchand and Y. Ponty 11:19

containing all vertices. A partial layout σ is called feasible/valid if ∀ prefix p of σ we have630

d–(p) = |N–(p)| ≤ k. A partial layout which is completable into a valid full layout (for631

the entire digraph G) is called strongly feasible or just completable into a full solution. An632

extension τ of σ is a valid partial layout with σ as one of its prefixes. A shortest non-expanding633

extension of σ is an extension τ such that d–(τ) ≤ d–(σ) and ∀ρ s.t.V (σ) ⊊ V (ρ) ⊊ V (τ),634

d–(ρ) > d–(σ). In the rest of this note, we will write SNEKFE for shortest non-expanding635

extension.636

Lemma 1 - Commitment Lemma - shortest non-expanding extensions. If σ is637

completable into a full solution, and τ is a SNEKFE of σ, then τ is also completable into a638

full solution.639

In fact, a more general version is true: ρ could be allowed to be equal in d– to τ before
rising again. The proof relies on the fact that, for any two subsets X, Y of vertices of G:

d–(X ∪ Y) + d–(X ∩ Y) ≤ d–(X) + d–(Y)

Proof. If σ is completable into a full solution, then ∃F such that σ · F is a valid layout for640

G. Let us reshuffle F into (τ \ σ) · F ′. Within both parts, the ordering of elements is the641

same as in F . τ · F ′ is now a complete layout for G. Is it valid ?642

Consider a prefix P of τ · F ′. If P is contained within τ , d–(P) ≤ k by the validity of τ .643

Else, if P contains some of F ′, then P = P ′ ∪ τ for P ′ a certain prefix of σ · F . As for644

P ′ ∩ τ , which we call ρ it verifies V (σ) ⊂ V (ρ) ⊂ V (τ) and therefore d–(ρ) ≥ d–(σ) ≥ d–(τ)645

by definition of a SNEKFE, with the equality only potentially happening if ρ = σ or ρ = τ .646

We therefore have:647

d–(P) = d–(P ′ ∪ τ)648

≤ d–(P ′) + d–(τ) − d–(ρ)649

≤ d–(P ′) ≤ k650
651

τ ·F ′ is therefore a valid complete layout for G, and τ is completable into a full solution. ◀652

Let us now describe more precisely what SNEKFEs might look like. We show that they653

can only be of three types, and formalize it into the next lemma. Its proof relies on the654

fact that, by adding a single vertex u to a partial layout σ, we may only decrease d–(σ) by655

at most 1, since d–(σ) = |N–(σ)|. We obtain this decrement of 1 if u is a predecessor to a656

vertex of σ, and does not introduce any new predecessor itself when added.657

Lemma 2 - SNEKFE types. a SNEKFE τ of a partial layout σ may only be of three658

types:659

type-(i): single-vertex “decreasing” extension: τ = σ · u for some vertex u and d–(σ · u) =660

d–(σ) − 1661

type-(ii): single-vertex “non-decreasing” extension: τ = σ · u for some vertex u and662

d–(σ · u) = d–(σ)663

type-(iii): several vertices “shortcut” extension: τ adds strictly more than one vertex to σ664

and d–(τ) = d–(σ).665

Proof. For single vertex extensions, the two possible types follow from the observation above666

that the addition of one vertex to a layout can only decrease d– by at most 1.667

For SNEKFEs composed of more than one vertex, observe that if d–(τ) < d–(σ), then668

by considering the prefix ρ of τ obtained by removing just 1 vertex to τ , we would have669

d–(ρ) ≤ d–(τ) + 1 ≤ d–(σ). This stems from the observation above that d– may only decrease670

by at most 1 when adding a vertex. ρ would be a non-expanding extension of σ shorter than671

τ , yielding a contradiction. ◀672

IPEC 2021

11:20 Parameterized Independent Set Reconfiguration

C.2 Algorithm673

In this section, we restrict ourselves to a pure description of the algorithm, delaying the674

justification of its correctness and complexity to the “Analysis” section below.675

Tree of prefixes (trie). We will build a tree of prefixes of all possible layouts. We prune676

the tree during its construction thanks to the commitment lemma, as justified in the next677

section. We call Si the ith level of the tree of prefixes. I.e. the elements of the tree of length678

i. S0 = {∅}.679

Algorithm. Si+1 is generated in the following way given Si:680

681

For each σ ∈ Si:682

1. We generate all feasible immediate extensions to σ and add them to the tree. I.e the683

node σ now has the following children set: {σ · u s.t d–(σ · u) ≤ k}684

2. If some of these immediate extensions verify d–(σ · u) ≤ d–(σ), then they are SNEKFEs685

of σ. In that case, we do the following:686

a. We choose 1 arbitrarily and prune the others.687

b. If the chosen element verifies d–(σ · u) = d–(σ) − 1 (the only possibility if d–(σ · u) <688

d–(σ)), then we in addition look for a prefix η of σ verifying d–(η) = d–(σ · u) and689

d–(ρ) > d–(η) ∀ρ s.t. η ⊑ ρ ⊑ σ · u, ρ ̸= η, ρ ̸= σ · u.690

If such an η is found, then any part of tree branching off the path from η to σ · u is691

removed. Note that this might shorten the overall loop over σ ∈ Si.692

End Algorithm693

C.3 Analysis694

This section will be composed of three parts. In the first one, we define an invariant property695

(“internally pruned”) for trees of prefixes of layouts of vertices. In the second one, we show696

that, in the algorithm presented in the previous section, the tree of prefixes verifies the697

invariant at all times, and prove the correctness of the algorithm. Finally, in the third part,698

we analyze the size of trees of prefixes verifying the invariant, proving that each level Si of699

such a tree has a size ≤ nk, yielding a complexity analysis of the algorithm.700

C.3.1 Internally pruned trees of prefixes701

Definition - Internally pruned. A tree T of prefixes of layouts of vertices (such as the702

one used in the algorithm in the previous section) is said to be internally pruned if for all703

pairs (σ, τ) of nodes of T such that τ is a shortest non-expanding extension of σ, all nodes704

on the path from τ (included) to σ (excluded) in T have degree exactly 2. I.e. there are no705

sub-parts of the tree rooted on the path from τ (included) to σ (excluded)706

707

708

We use the term “internally” to emphasize the fact that, in a context where we apply709

the definition of “internally pruned” to a partially constructed T within the algorithm of710

the previous section, More (“external”) pruning of the tree might be achieved further in the711

construction of the tree, as new SNEKFEs are discovered (see below for the justification of712

why new SNEKFEs are indeed discovered at step 2.b of the algorithm).713

L. Bulteau, B. Marchand and Y. Ponty 11:21

C.3.2 Invariant and correctness714

Lemma 3 - Invariant. Throughout the execution of the algorithm presented in the previous715

section, the tree T of prefixes of layouts of vertices remains “internally pruned” at all times716

Proof. The tree T starts off with one node for the empty sequence. It is therefore internally717

pruned.718

719

Suppose now that the tree of prefixes T is internally pruned at an intermediate step720

in the algorithm, then the next building step always consists in considering a leaf σ and721

executing step 1. and 2. of the algorithm. Several cases may arise:722

If all of the immediate extensions are such that {d–(σ) < d–(σ · u) ≤ k}, then no new723

SNEKFEs are generated when adding them to the tree. (if σ · u is a SNEKFE of some724

η up the tree, then σ is shorter and also non-expanding). After the addition of the725

immediate extension, the tree is therefore still internally pruned.726

If one of these immediate extensions verifies d–(σ · u) = d–(σ) but none of them verify727

d–(σ · u) < d–(σ), then one of these extensions is a SNEKFE of σ, and is kept while728

the others are pruned. However, this is the only SNEKFE introduced by the extension.729

Therefore, the pruning of immediate extensions other than the selected one is enough to730

keep the tree internally pruned.731

If one of the immediate extensions verifies d–(σ ·u) = d–(σ)−1, then one of the immediate732

extensions is selected and the others are pruned, as in the previous case. However, in733

addition, σ · u might be a new shortest non-expanding extension of a node η up the tree.734

If this is the case, then there is only one such η, per the definition of shortest non-expanding735

extensions.736

We argue that the conditions used in the algorithm indeed detect such an η.737

If σ · u is a SNEKFE of η, then the conditions described in the algorithm (that d–(σ · u) =738

d–(η), and d–(ρ) > d–(η) for any ρ on the path from η to σ · u) are verified.739

Conversely, if the conditions are verified, then suppose η has a shorter non-expanding740

extensions τ . τ cannot be on the path from η to σ · u as that would imply d–(τ) > d–(η).741

Since τ is shorter than σ · u, τ has been generated in a previous step of the algorithm. At742

this point, step 2.b of the algorithm would have pruned the path to σ, which cannot be743

visited, leading to a contradiction.744

745

Therefore, the potentially newly introduced SNEKFE is detected, and the corresponding746

pruning is carried out, leaving the tree internally pruned747

Therefore, after each extension of the tree throughout the algorithm, the tree remains748

internally pruned. ◀749

We quickly finish this sub-section with a proof of correctness of the algorithm.750

Lemma 4 - correctness. If the graph G allows for a full k-feasible solution, then there is751

such a solution among the leaves of the tree of prefixes T generated by the algorithm.752

Proof. Denote the set of full solutions S, and suppose all solutions are absent from T .753

∀σ ∈ S, there is some (possibly empty) prefix of σ in T .754

We pick σ ∈ S allowing for the largest prefix η ∈ T , i.e:755

σ = argmax
σ′∈S

[
max

η⊑σ′,η∈T
|η|

]

IPEC 2021

11:22 Parameterized Independent Set Reconfiguration

Take η the largest prefix of σ belonging to T . If the path from η to σ has been pruned,756

it is because η is on the path from η′ to τ , with τ shortest non expanding extension of η′,757

and τ is not a prefix of σ.758

The path from η to σ is pruned only when τ is visited. Hence τ ∈ T , otherwise, the path759

from760

Per the commitment lemma, τ is the prefix of a full solution σ′′. But |τ | > |η|, contra-761

dicting the choice of σ. ◀762

C.3.3 Signature analysis763

We show here that, at any point in the algorithm, thanks to the pruning, ∀i, |Si| = O(nk).764

Definition - signature . Consider σ ∈ Si for some i, within the internally pruned tree765

generated by the algorithm, valid partial layout. We call signature of σ the set of vertices766

obtained from V (σ) by removing, given any pair (η, ρ) of prefixes of σ such that ρ is a767

SNEKFE of η, all vertices in ρ \ η.768

Given σ ∈ Si, its signature can be easily computed by looking at the path from the root769

to σ: any vertex chosen out of several available possibilities is part of the signature, while770

any vertex that was the only possibility at the point of its choosing isn’t.771

Lemma 5 - Same signature same sequence. If sgn(σ) = sgn(τ) within the pruned tree772

of layouts and |τ | = |σ| then σ = τ773

Proof. When starting at the root and building τ and σ by going down the tree, at every774

node, there are two cases:775

Either the next move is part of a SNEKFE. In this case there are no choices to be made,776

the added vertex is not part of the signature, and is the same for σ and τ .777

Or the next move is not part of a SNEKFE. In this case, several choices are possible, and778

the next added vertex will be part of the signature. Since the signatures of σ and τ are779

the same, the same vertex is added to σ and τ .780

At the end of this process, σ and τ are therefore identical. ◀781

Lemma 6 - overall strictly decreasing = SNEKFE only. Consider τ ∈ Si for some i782

partial valid layout, and σ a prefix of τ such that:783

d–(σ) > d–(τ)784

For any ρ such that σ ⊑ ρ ⊑ τ , ρ ̸= τ , we also have d–(ρ) > d–(τ).785

Then, the suffix τ \ σ of τ corresponding to σ can be entirely partitioned into SNEKFEs. In786

particular, none of its elements are part of the signature of τ .787

Proof. We prove the lemma by induction on the length of the suffix τ \ σ. If |τ \ σ| = 1,788

then τ = σ · u and d–(τ) = d–(σ) − 1. τ is a type-(i) SNEKFE of σ and the lemma is true.789

If |τ \ σ| > 1 and we assume the lemma true ∀l < |τ \ σ|, then let us distinguish two cases790

related to the first element v of τ \ σ:791

if σ · v is a type-(i) or type-(ii) SNEKFE of σ, then we apply the induction hypothesis to792

the suffix τ \ (σ · v) of τ and we have the result.793

else, if d–(σ · v) > d–(σ), we know, since d–(τ) < d–(σ) and the d–-curve only decreases794

by steps of −1, that there must exist ρ such that d–(ρ) = d–(σ), σ ⊑ ρ ⊑ τ , and795

d–(ρ′) > d–(σ) for any ρ′ such that σ ⊑ ρ′ ⊆ ρ (ρ is the shortest prefix of τ which contains796

σ and has the same d– value). ρ is then a type-(iii) SNEKFE of σ by Lemma 4, and we797

may apply the induction hypothesis to τ \ σ798

◀799

L. Bulteau, B. Marchand and Y. Ponty 11:23

Lemma 7 - Signature size. ∀σ ∈ Si for some i partial layout of vertices, |sgn(σ)| ≤ d–(σ)800

Proof. The proof is by induction on |σ|. Suppose |sgn(σ)| ≤ d–(σ), and consider the801

extension σ · u, where u is a vertex.802

If σ · u is not a SNEKFE of σ, then |sgn(σ · u)| = |sgn(σ) ∪ {u}| = |sgn(u)| + 1 ≤803

d–(σ) + 1 ≤ d–(σ · u)804

If σ is a type-(ii) SNEKFE of σ, then sgn(σ) = sgn(σ · u) and d–(σ · u) = d–(σ).805

If σ · u is a type-(i) SNEKFE of σ, then consider η, the closest node (up the tree)806

such that d–(η) < d–(σ · u), and η · v its successor on the path to σ · u. We have807

d–(η) < d–(σ · u) ≤ d–(η · v), by definition of η. The path from η · v to u is either808

a type-(iii) SNEKFE or overall-decreasing. Therefore sgn(σ · u) = sgn(η · v). and809

|sgn(σ ·u)| = |sgn(η)|+1 ≤ d–(η)+1 by induction hypothesis, and |sgn(σ ·u)| ≤ d–(σ ·u).810

◀811

In particular, ∀σ partial layout, d–(σ) ≤ k. Since two different elements of Si need812

different signatures, we get the following corollary:813

Corollary. ∀i, at any point in the algorithm, |Si| = O(nk)814

The overall complexity of the algorithm is therefore O(nk+O(1)). More precisely, it is815

O(nk+2). (there are n levels of the tree to fill, ≤ nk nodes per level and O(n) work per node816

to generate the next level).817

D Detailed RNA reconfiguration example818

We provide in Figure 5 the intermediate sets of base pairs, and associated RNA secondary819

structures, for our running example, described in Figures 1 and 3.820

IPEC 2021

11:24 Parameterized Independent Set Reconfiguration

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20
1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5 10 15 20

Figure 5 Optimal (min barrier) refolding scenario between two RNA secondary structures. In
each intermediate state, the conflict graph is given, featuring the selected independent set of base
pairs (filled nodes), and the corresponding secondary structure.

	1 Introduction
	2 Preliminaries
	3 Connection to Directed Pathwidth
	3.1 Definitions
	3.2 Directed pathwidth Bipartite independent set reconfiguration

	4 An XP algorithm for independent set reconfiguration
	4.1 Definitions
	4.2 Separation lemma
	4.3 XP algorithm

	5 Benchmarks and Applications
	5.1 Implementation details
	5.2 Random bipartite graphs
	5.3 Computing energy barriers in RNA kinetics
	5.4 RNA specific optimizations

	6 Conclusion
	Appendix
	A Mixed MIS in bipartite graphs
	B Delayed proofs
	B.1 Making an interval representation nice
	B.2 Proof of Proposition 4:

	C Re-derivation of Tamaki's algorithm for directed pathwidth
	C.1 Commitment lemma - shortest non-expanding extensions (SNEKFEs)
	C.2 Algorithm
	C.3 Analysis
	C.3.1 Internally pruned trees of prefixes
	C.3.2 Invariant and correctness
	C.3.3 Signature analysis

	D Detailed RNA reconfiguration example

