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Abstract. Medical systems are composed of medical devices and apps
which are developed independently by different vendors. A set of commu-
nication patterns, based on asynchronous message-passing, has been pro-
posed to loosely integrate medical devices and apps. These patterns guar-
antee the point-to-point quality of communication service (QoS) by local
inspection of messages at its constituent components. These local mech-
anisms inspect the property of messages to enforce a set of parametrized
local QoS properties. Adjusting these parameters to achieve the required
point-to-point QoS is non-trivial and depends on the involved compo-
nents and the underlying network. We use Timed Rebeca, an actor-based
formal modeling language, to model such systems and asses their QoS
properties by model checking. We model the components of communica-
tion patterns as distinct actors. A composite medical system using several
instances of patterns is subject to state-space explosion. We propose a
reduction technique preserving QoS properties. We prove that our tech-
nique is sound and show the applicability of our approach in reducing
the state space by modeling a clinical scenario made of several instances
of patterns.

Keywords: Communication patterns, Actor, Message passing, Reduction

1 Introduction

Medical systems are composed of medical devices and apps which are developed
independently by different vendors. The ASTM F2761 standard [4] proposes an
architecture for integrated clinical environments (ICE) that enable a component-
based approach to medical systems. The AAMI-UL JC 2800 standards completes
F2671 by defining safety/security requirements for both the ICE architecture and
its development process. A set of communication requirements that enables dy-
namic composition of devices and apps has been identified [16]. As a solution,
a set of communication patterns has been proposed in [9] that can serve as the
schema to describe the communication needs of devices/apps. These communi-
cation patterns, based on asynchronous message-passing, facilitate development
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and forensic analysis of clinical scenarios. The use of message passing as the basic
communication model is quite common in Internet of Things applications. While
the individual components can be very different and operate independently, their
interactions typically expose and deliver important emergent properties [2].

These communication patterns consist of a set of components which are re-
sponsible to check a set of quality of service (QoS) properties locally. The com-
bination of these quality of service properties should guarantee point-to-point
communication requirements. These local QoS properties are parametrized by a
set of thresholds on timing behavior of messages like the interval time between
consequent messages, the lifetime of messages, etc. A medical system may use
several instances of such patterns among its constituent devices and apps. Ad-
justing these parameters is non-trivial and depends not only to the architecture of
the system but also the underlying network. Communication failures in medical
systems may result in loss of life. For example, the X-ray machine should stop af-
ter two seconds, otherwise it causes harmful prolonged exposure. We can exploit
formal methods to verify that the configuration of parameters results the point-
to-point communication requirements of medical systems at design time. We
use the actor-based formal modeling language of Rebeca [15, 11] to verify medi-
cal systems. Actor model is a computational model for event-based distributed
systems in which actors communicate by asynchronous message-passing. The
computation model of Rebeca helps to model the communication patterns with
minimal effort and mistake. We exploit the timed extension of Rebeca to ad-
dress local QoS properties defined in terms of the timing behavior of messages.
Timed Rebeca [10, 13] is supported by the Afra tool which efficiently verifies
timed properties by model checking. Timed Rebeca supports inheritance among
actors which facilitates modeling of communication patterns that their compo-
nents communicate with the shared network entity.

In this paper we model and analyze communication patterns in Timed Re-
beca using the implementation architecture proposed for the communication
patterns [9]. The components of patterns are modeled by distinct actors. Since
the timing behavior network have effect on satisfying QoS properties of pattern,
we also model network as a separate entity from actors. As the number of devices
increases in a medical systems, the resulting semantic model may explode which
prohibits application of the model checking technique. To tackle the problem,
we propose a partial reduction technique for merging states such that the QoS
properties of communication patterns are preserved. We prove the correctness
of our reduction. We have implemented the reduction technique in a tool in
Java which automatically reduces the semantic model generated by Afra. We
illustrate the applicability of our reduction technique through a case study on a
clinical scenario made of several instances of patterns. Our experimental result
shows that our reduction technique can minimize the number of states almost
to 30%.
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2 Preliminaries

As we model communication patterns by Rebeca, first we provide an outline of
patterns and then explain timed Rebeca.

2.1 Communication Patterns

Devices and apps involved in a communication pattern are known as components
that communicate with each other via a communication substrate, e. g., net-
working system calls or a middleware. Each pattern is composed of a set of roles
accomplished by components. We remark that a component may participate in
several patterns with different roles simultaneously. Patterns are parametrized by
a set of local QoS properties that their violation can lead to a failure. In addition,
each pattern has a point-to-point QoS requirement that should be guaranteed
by communication substrate. There are four communication patterns:

– Publisher-Subscriber: a publisher role broadcasts data about a topic and
every devices/apps that need it can subscribe to data. Publisher does not
wait for any acknowledge or response from subscribers.

– Requester-Responder: a requester role requests data from a specific re-
sponder and waits for data from the responder.

– Sender-Receiver: a sender role sends data to a specific receiver and waits
until either data is accepted or rejected.

– Initiator-Executor: an initiator role requests a specific executor to perform
an action and waits for action completion or its failure.

As the communication patterns of Sender-Receiver and Initiator-Executor pat-
terns resemble the Requester-Responder pattern, we only focus on Publisher-
Subscriber and Requester-Responder patterns in this paper

2.1.1 Publisher-Subscriber

In this pattern, the component with the publisher role sends a publish message to
those components that have subscribed previously. This pattern is parameterized
with the following local QoS properties:

– MinimumSeparation (Npub): if the interval between two consecutive publish
messages from the publisher is less than Npub, then the second one is dropped
by announcing a fast Publication failure.

– MaximumLatency (Lpub): if the communication substrate fails to accept
publish message within Lpub time units, it informs the publisher of time-
out.

– MinimumRemainingLifeTime (Rpub): if the data arrive at the subscriber late,
i.e., after Rpub time units since publication, the subscriber is notified by a
stale data failure.

– MinimumSeparation (Nsub): if the interval between arrival of two consecutive
messages at the subscriber is less than Nsub, then the second one is dropped.
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– MaximumSeparation (Xsub): if the interval between arrival of two consecu-
tive messages at the subscriber is greater than Xsub then the subscriber is
notified by a slow publication failure.

– MaximumLatency (Lsub): if the subscriber fails to consume a message within
Lsub time units, then it is notified by a slow consumption failure.

– MinimumRemainingLifeTime (Rsub): if the remaining life time of the publish
message is less than Rsub, then the subscriber is notified by a stale data
failure.

Each communication pattern owns a point-to-point QoS Requirement that
should be guaranteed by the communication substrate. In this pattern the re-
quirement is “the data to be delivered with lifetime of at least Rsub, commu-
nication substrate should ensure maximum message delivery latency (Lm) does
not exceed Rpub −Rsub − Lpub ≥ Lm”.

For example assume a pulse oximeter device which publishes pulse rate data
of the patient. A patient monitor application can subscribe to this data to get
the patients pulse rate. In other words, the application communicates with the
device using the Publisher-Subscriber pattern.

2.1.2 Requester-Responder

In this pattern, the component with the role requester, sends a request message
to the component with the role responder. The responder should replies within a
time limit as specified by its local QoS properties. This pattern is parameterized
with the following local QoS properties:

– MinimumSeparation (Nreq): if interval between two consecutive request mes-
sages is less than Nreq, then the second one is dropped with a fast Request
failure.

– MaximumLatency (Lreq): if the response message does not arrive within Lreq
time units, then the request is ended by a timeout failure.

– MinimumRemainingLifeTime (Rreq): if the response message arrives at the
requester with a remaining lifetime less than Rreq, then the requester is
notified by a stale data failure.

– MinimumSeparation (Nres): if the duration between the arrival of two con-
secutive request messages is less than Nres, then the request is dropped while
announcing a excess load failure.

– MaximumLatency (Lres): if the response message is not provided within the
Lres time units, the request is ended by a timeout failure.

– MinimumRemainingLifeTime (Rres): if the request message with the promised
minimum remaining lifetime cannot be responded by the responder, then re-
quest is ended by a data unavailable failure.

The point-to-point QoS Requirement defined for this pattern concerns the
delivery of response with lifetime of at least Rreq. So the communication sub-
strate should ensure that “the sum of maximum latencies to deliver the request
to the responder (Lm) and the resulting response to the requester (L′m) does not
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exceed Lreq +Rreq − Lres −Rreq ≥ Lm + L′m”.

For example assume a patient monitor application that communicates with
a blood pressure (BP) monitor using the Requester-Responder pattern. The
application requests blood pressure measurement from the BP which periodically
measures the blood pressure of the patient.

2.2 Timed Rebeca and Actor Model

Actor model [1, 3] is a concurrent model based on computational objects, called
actors, that communicate asynchronously with each other. Actors are encapsu-
lated modules with no shared variables. Each actor has a unique address and
mailbox. Messages sent to an actor are stored in its mailbox. Each actor is defined
through a set of message handlers to specify the actor behavior upon processing
of each message.

Rebeca [15, 11] is an actor model language with a Java-like syntax which aims
to bridge the gap between formal verification techniques and the real-world soft-
ware engineering of concurrent and distributed applications. Rebeca is supported
by a robust model checking tool, named Afra3. Timed Rebeca is an extension of
Rebeca for modeling and verification of concurrent and distributed systems with
timing constraints. As all QoS properties in communication patterns are based
on time, we use Timed Rebeca for modeling and formal analysis of patterns by
Afra. Hereafter, we use Rebeca as short for Timed Rebeca in the paper.

The syntax of Timed Rebeca [10, 13] is given in Figure 1. Each Rebeca model
contains reactive classes definition and main part. Main part contains instances
of reactive classes. These instances are actors that are called rebecs. Reactive
classes have three parts: known rebecs, state variables and message servers. Each
rebec can communicate with its known rebecs or itself. Local state of a rebec
is indicated by its state variables and received messages which are in the re-
bec’s mailbox. Rebecs are reactive, there is no explicit receive and the messages
trigger the execution of the message servers when they are taken from the mes-
sage mailbox. The timing features are computation time, message delivery time
and message expiration. These three primitives are supported by the statements
delay, after and deadline.

2.3 State-space of Rebeca models

The state-space of Rebeca models are generated as a state transition system to
show the behavior in a formal way. The global states change due to the handling
of messages by rebecs. Each rebec takes a message from its mailbox, modeled by
a bag, and execute its message server, and hence, the value of state variables may
update. Due to the encapsulation of rebec variables, intermediate values of each
rebec during execution of message servers are not observable to other rebecs.
Thus, semantics of Rebeca models are defined coarsely; each state transition

3 http://www.rebeca-lang.org/alltools/Afra
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Model ::= 〈Class〉+ Main

Main ::= main {InstanceDcl∗}
InstanceDcl ::= C r (〈r〉∗) : (〈c〉∗)

Class ::= reactiveclass C {KnownRebecs Vars MsgSrv∗}
KnowRebecs ::= knownrebecs {VarDcl}

Vars ::= statevars {VarDcl}
VarDcl ::= 〈T v〉∗;

MesgSrv ::= msgsrv m (VarDcl) {Stmt∗}
Stmt ::= v = e; | Call; | if(e) MSt [else MSt] | delay(t);

Call ::= r.m(〈e〉∗)[deadline e][after e]
MSt ::= {Stmt∗} | Stmt

Figure 1. Abstract syntax of Timed Rebeca. Angle brackets 〈 〉 denotes meta paren-
thesis, superscripts + and ∗ respectively are used for repetition of one or more and
repetition of zero or more times. Combination of 〈 〉 with repetition is used for comma
separated list. Brackets [ ] are used for optional syntax. Identifiers C, T , m, v, c, e,
and r respectively denote class, type, method name, variable, constant, expressions,
and rebec name, respectively.

shows the effect of handling of a message by a rebec. Floating Time Transition
System (FTTS), a variation of state transition systems introduced in [7], gives a
natural event-based semantics for timed actors, providing a significant amount
of reduction in the state space. For efficient analysis of Rebeca models, different
approaches are proposed for generating the semantic models [14, 5, 12]. FTTS
uses isolation of actors, i.e., no coupling among the actors [14]. The states of
FTTS are defined by the local states of rebecs. The local states of rebecs are
defined by the triple 〈v, q, t〉, where v defines the value of state variables, q the
message bag, and t the local time. In each state, different actors do not necessarily
have the same local time and the time floats across the actors in the state space
[7]. Note that at the level of Timed Rebeca models, actors have synchronized
local clocks (as opposed to the semantic level) which gives the modeler a notion
of global time.

Let ID denote the set of Rebeca identifiers, and S the set of global states.
Each global state s ∈ S is a mapping from the Rebeca identifier to its local
state. Assume Var , Value, and Msg be the set of variables, values, and mes-
sages, respectively. We use the notation bag(Msg) to represent the bag of mes-
sages and N to denote the local time of actors. So, the set of global states is
defined by mapping each rebec identifier to its local state, S = ID → (Var →
Value)×bag(Msg)×N. Each message m ∈ Msg constituted of three parts, namely
m = (msgsig , arrival , deadline), where msgsig is the message content, arrival is
the arrival time of the message, and deadline is the deadline of the message.
We use msgsig(m), arrival(m), and deadline(m) to indicate the corresponding
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part. The message content constitutes of the name of message and its parameter
values. We use Type(msgsig(m)) to show the name of the message content. Let
statevars(s(x)), bag(s(x)), and now(s(x)) denote the state variable valuation,
message bag, and the local time of the rebec with the identifier x ∈ ID . The
reduction introduced by FTTS merges the states s and s′ that the local time of
their rebecs has a fixed delay with each other, called shift equivalent.

Definition 1 (shift-equivalent). Two states s and s′ are called shift equiva-
lent, denoted by s 'δ s′, if for all the rebecs with identifier x ∈ ID there exists δ
such that:

1. Condition on state variables: statevars(s(x)) = statevars(s′(x)),
2. Condition on local time: now(s(x)) = now(s′(x)) + δ,
3. Condition on bag content:

∀m ∈ bag(s(x))⇔ (msgsig(m), arrival(m) + δ, deadline(m) + δ) ∈ bag(s′(x)).

Intuitively, the local time of rebecs in s′ has the fixed shift value δ with
respect to the local time of rebecs in s. In other words, it can be considered
s′ as a state occurred in future of s, but with the same behavior. We remark
that the first and third conditions force the state variables of rebecs and the
message contents (including message parameters) of corresponding rebecs in the
two states be equivalent [6].

The bounded floating-time transition systems (BFTTS) 〈Sf , s0f , ↪→〉 of a re-
beca model is achieved by merging those states of its FTTS 〈S, s0,→〉 that are
shift equivalent. Formally speaking, if (s,m, s′) ∈↪→ in BFTTS as a consequence
of processing the message m, then there exists s′′ ∈ S such that (s,m, s′′) ∈→
and s′ 'δ s′′ for some δ. BFTTS preserve the timed properties of FTTS specified
by weak modal µ-calculus where the actions are taking messages from the bag
[7].

3 Modeling Patterns in Rebeca

We use the architecture proposed in [9] for implementing communication pat-
terns. We will explain the main components of publisher-subscriber pattern as
the others are almost the same. This architecture specifies two interfaces between
its constituent roles, e. g., publisher and subscriber, and the communication sub-
strate. These interfaces encapsulate details of patterns from low-level details of
various substrate layers. As illustrated in Figure 2, the client and service are
devices/apps which aim to communicate with each other. The components Pub-
lisherRequester and SubscriberInvoker are interfaces that check the local QoS
properties related to the client or service side, respectively, and the communica-
tion substrate component is responsible for transmitting data.

We model each component of this architecture as a distinct actor or rebec
in Rebeca. We explain the model of the Publisher-Subscriber pattern in detail.
Other patterns are modeled with the same discussion.
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Figure 2. Publisher-Subscriber Pattern Sequence Diagram

Figure 3 illustrates PublisherRequester reactive class, which is an interface
between the client (device/app) and the communication substrate. As we see in
lines 3 and 4, it has two known rebecs. The instances of this reactive class can
send messages to them. We define the state variable lastPub in line 5 for saving
the time of last publication message. We use this time for computing the interval
between two consecutive messages. This rebec has a message server named pub-
lish. We pass Lm and life parameters through all message servers in the model to
compute the delivery time and remaining lifetime of each message. To model the
communication delay between the interface and the communication substrate,
we define the variable clientDelay (in line 11) with non-deterministic values.
The parameters of Lm and life are updated in lines 12 and 13 regarding to
clientDelay. This interface is responsible for checking Npub and Lpub properties
as specified in lines 15-23. To check Npub, the interval between two consecutive
publish messages should be computed by subtracting the current local time of
rebec from lastPub. The reserved word now represents the local time of the re-
bec. As this reserved word can not be used directly in expressions, we first assign
it to the local variable time in line 14. If both properties are satisfied, it sends a
transmitPublish message to the communication substrate and an accepted mes-
sage to the client. These messages are delivered to their respective receivers with
a non-deterministic delay, modeled by clientDelay, using the statement after . It
means that the message is delivered to the client after passing this time. In case
that the Npub property is violated, it sends a message fastPublicationFailure to
the client. If the Lpub property is violated, it sends a message timeOutFailure.

Communication substrate abstracts a network like Ethernet, wireless net-
works, Controller Area Network (CAN) bus [8] by specifying the effects of the
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1 reactiveclass

PublisherRequester (20){

2 knownrebecs{

3 CommunicationSubstrate cs;

4 Client c;}

5 statevars {int lastPub ;}

6
7 PublishRequester (){

8 lastPub = 0;}

9
10 msgsrv publish(int Lm,int

life){

11 int clientDelay =?(1 ,2);

12 Lm=Lm+clientDelay;

13 life=life -clientDelay;

14 int time = now;

15 if(time -lastPub <NPUB){

16 c.fastPublicationFailure ()

;}

17 if(clientDelay >LPUB){

18 c.timeOutFailure ();}

19 else{

20 lastPub = now;

21 cs.transmitPublish(Lm ,life)

after(clientDelay);

22 c.accepted () after(

clientDelay);

23 }}}

Figure 3. Modeling Publisher Interface in Timed Rebeca

network on transmitting messages. To this aim, it may consider priorities among
received messages to transmit or assign specific or non-deterministic latency for
sending messages. A specification of communication substrate reactive class is
shown in Figure 4. It handles transmitPublish messages by sending a RcvPublish
message to its known rebec, a rebec of SubscriberInvoker class in line 11. It
considers a non-deterministic communication delay for each message, modeled
by the local variable netDelay in line 8. We remark that this rebec updates the
parameters Lm and lifetime based on netDelay before sending RcvPublish in
lines 9 and 10.

1 reactiveclass

2 CommunicationSubstrate (20)

3 {

4 knownrebecs{

SubscriberInvoker si;}

5 statevars {}

6 CommunicationSubstrate (){}

7 msgsrv transmitPublish(int

Lm ,int life){

8 int netDelay =?(1 ,2);

9 Lm=Lm+netDelay;

10 life=life -netDelay;

11 si.RcvPublish(Lm,life)

after(netDelay);}}

Figure 4. Modeling Communication Substrate in Timed Rebeca

The SubscriberInvoker reactive class, given in Figure 5, is an interface be-
tween the communication substrate and the service (device/app). It has only one
known rebec that is the destination for the messages of its instances. We define
a state variable lastPub in line 5 to save the time of the last publication message
that arrived in this rebec. This reactive class is responsible for checking Nsub,
Xsub, Rpub, Rsub, and Lpub properties (see Subsection 2.1). Message servers in
this rebec are RcvPublish and consume. It checks Nsub, Xsub, Rpub, and Rsub
properties in the message server RcvPublish. To model the communication de-
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lay between the interface and the service, we define the variable serviceDelay
(in line 11) with non-deterministic values. It computes the interval between two
consecutive RcvPublish messages in line 13 to inspect Nsub in line 14 and Xsub in
line 16. It checks Rsub and Rpub properties using life and Lm parameters in line
19. Any violation of these properties will result in sending a failure message to
the service or dropping the message. With satisfying the properties, it saves the
local time of the actor in lastPub and sends a consume message to the service
using after statement. The message server consumed checks Lsub property in
line 31 and sends a failure to the service.

1 reactiveclass

SubscriberInvoker (20){

2 knownrebecs{

3 Service s;}

4
5 statevars{int lastPub ;}

6
7 SubscribeInvoker (){

8 lastPub = 0;}

9
10 msgsrv RcvPublish(int Lm,int

life){

11 int serviceDelay =?(1 ,2);

12 int time = now;

13 int interval=time -lastPub;

14 if (interval <NSUB){

15 self.drop(Lm);}

16 if (interval >XSUB){

17 s.slowPublication(Lm)

18 after(serviceDelay);}

19 if (life <RSUB||Lm>RPUB){

20 s.staleData(Lm)

21 after(serviceDelay);

22 }

23 else{

24 lastPub = now;

25 s.consume(Lm+serviceDelay)

after(serviceDelay);

26 }

27 }

28 msgsrv consumed(int Lm){

29 int time = now;

30 int serviceDelay =?(1 ,2);

31 if (time -lastPub >LSUB){

32 s.slowConsumption(Lm+

serviceDelay)

33 after(serviceDelay);

34 }}

35 msgsrv drop(int Lm){...}}

Figure 5. Modeling Subscriber Interface in Timed Rebeca

4 State-space Reduction

A medical system is composed of several devices/apps that communicate with
each other by using any of communication patterns. With the aim of verifying
the QoS requirements of medical systems at the early stage of development, we
use model checking technique by using Rebeca framework. As we explained in
Section 3, each communication pattern is at least modeled by five rebecs. It is
well-known that as the number of rebecs increases in a model, the state space
grows exponentially. For a simple medical system composed of two devices that
communicate with an app, there exist nine rebecs (as communication substrate
in common) in the model. In a more complex system, adding more devices may
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result in state-space explosion, and model checking cannot be applied. We pro-
pose a partial reduction technique at the semantic level FTTS which merges
those states with regard to the local QoS properties of communication patterns.
In other words, such states not only satisfy the same local QoS properties but also
preserve the same class of timed properties specified by weak modal µ-calculus
where the actions are taking messages from the bag [7].

We relax those conditions of shift-equivalent relation that are applied on
state variables and the message contents in the bags. We consider those state
variables that are used for measuring the interval between two consecutive mes-
sages like lastPub. Such variables grow as the local time of rebecs proceeds.
However, always now − lastPub are used to check local QoS properties like Nsub,
Npub, and Xsub and the value of lastPub is not used anymore. Intuitively, two
semantic states are shift-equivalent if their instances of PubliserRequester have
the same value for all state variables except lastPub. As the behaviors of such
instances depend on now − lastPub, the value of their lastPub variable can be
shift-equivalent similar to their local time (see Section 2.3). This idea can be
generalized for such variables (measuring interval) in other types of classes.

Assume two states with an instance of SubscriberInvoker. This instance has
a RcvPublish message in its bag. The value of its life parameter is used by its
message server to check the local QoS property Rsub. This variable is not used
anymore and hence, the value of this variable has no effect on the future behavior
of the rebec. Intuitively, if the value of this parameter in the message in these
assumed states leads to the same satisfaction of Rsub, these messages can be
considered equivalent.

Definition 2 (relaxed shift-equivalent). Two semantic states s and s′, de-
noted by s ∼δ s′, are relaxed shift-equivalent if for all the rebecs with identifier
x ∈ ID there exists δ such that:

1. Condition on state variables:

∀v ∈ Var \ {lastPub, lastReq} · statevars(s(x))(v) = statevars(s′(x))(v),
lastPub ∈ Dom(s(x))⇒ statevars(s(x))(lastPub) = statevars(s′(x))(lastPub) + δ,
lastReq ∈ Dom(s(x))⇒ statevars(s(x))(lastReq) = statevars(s′(x))(lastReq) + δ.

2. Condition on local time: now(s(x)) = now(s′(x)) + δ.
3. Condition on bag content:

∀m ∈ bag(s(x)) ∧ Type(msgsig(m)) 6∈ {RcvPublish,RcvResponse} ⇔
(msgsig(m), arrival(m) + δ, deadline(m) + δ) ∈ bag(s′(x)),

∀(RcvPublish(Lm1, life1), t, d) ∈ bag(s(x))⇔
(RcvPublish(Lm2, life2), t+ δ, d+ δ) ∈ bag(s′(x))∧

Lm1 = Lm2 ∧ (life1 > Rsub ⇔ life2 > Rsub),

∀(RcvResponse(Lm1, life1), t, d) ∈ bag(s(x))⇔
(RcvResponse(Lm2, life2), t+ δ, d+ δ) ∈ bag(s′(x))∧

(Lm1 = Lm2 ∧ life1 > Rres ⇔ life2 > Rres).

We merge states that are relaxed shift-equivalent. The following theorem
shows that the FTTS modulo relaxed shift equivalency preserves the properties
of the original one.
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Theorem 1. For the given FTTS 〈S, s0,→〉, assume the states s, s′ ∈ S such
that s ∼δ s′. If (s,m, s∗) ∈→, then there exists s∗∗ such that (s′,m, s∗∗) ∈→ and
s∗ ∼δ s∗∗.
Proof. Assume that (s,m, s∗) ∈→ by handling the message m by the rebec i.
Regarding the third condition of Definition 2, there is also a message m′ such
that Type(msgsig(m′)) = Type(msgsig(m)) in the bag of Rebec i in the state
s′. Assume s∗∗ is the resulting state as the consequence of handling m′ in the
state s′. We show that s∗ ∼δ s∗∗. Regarding Type(msgsig(m)), three cases can
be distinguished:

– Type(msgsig(m)) 6∈ {RcvPublish,RcvResponse}: The message m′ handled by
the rebec i is (msgsig(m), arrival(m) + δ, deadline(m) + δ) ∈ bag(s′(x)). The
assumption s ∼δ s′ implies that all the variables except {lastPub, lastReq}
have the same values while the value of variables {lastPub, lastReq} have
δ-difference. We remark that all variables except {lastPub, lastReq} may be
accessed/updated during execution of the message handler. So, all variables
except {lastPub, lastReq} are updated by the message handler m and m′

similarly. As rebec i has only access to its own variables, the variables of other
rebecs do not change. Thus the state s∗∗ and s∗ satisfy the first condition.
Furthermore, the local time of rebec i in the both states s∗ and s∗∗ are
progressed by the message handler m and m′ similarly and hence, their
local timers have still δ-difference. So, the second condition is satisfied. The
messages sent to other rebecs during handling m and m′ are sent at the same
point. As their local timers have δ-difference, the arrival and deadline of sent
messages have δ-difference. So, the third condition is also satisfied.

– Type(msgsig(m)) = RcvPublish and m ≡ (RcvPublish(Lm1, life1), t, d): By
the third condition, the message m′ ≡ (RcvPublish(Lm2, life2), t+ δ, d+ δ).
As Lm1 = Lm2 ∧ (life1 > Rsub ⇔ life2 > Rsub) holds, the same state-
ments, as shown in Figure 5, are executed by the rebec i during handling
m and m′. We remark that the value of interval is the same for both as
statevars(s(x))(lastPub) = statevars(s′(x))(lastPub) + δ. As no variable is
updated, the states s∗ and s∗∗ satisfy the first condition. As no delay state-
ment is executed, still the second condition holds for s∗ and s∗∗. The mes-
sages sent by handling m and m′ are all parametrized by Lm1 and Lm2

which are equal. So, the third condition is also satisfied.
– Type(msgsig(m)) = RcvResponse: This case is discussed in the same way of

the previous case.

The relaxed shift equivalency preserves the conditions of shift equivalency
on all variables except the variables defined for checking local QoS proper-
ties, i.e., {lastPub, lastReq}. Furthermore, it preserves the conditions of shift
equivalency on all message content in the bag except for messages of type
{RcvPublish,RcvResponse}. But the relaxed condition of the value of life ensures
that the same statements will be executed. Therefore, by Theorem 1 FTTS mod-
ulo relaxed shift equivalency not only preserve the local QoS properties of the
original one but also preserves the Timed properties defined on events (taking
messages from the bag).
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5 Case Study

Reduction technique is more applicable when using several patterns and devices
in a medical system. For recovering a patient from an operation, he is controlled
by a fixed dose of analgesia connected to an infusion pump. In addition, he is
hooked up to a pulse oximeter to measure his pulse rate and oxygen saturation
(SPO2) and to a capnometer to measure the concentration of carbon dioxide in
his respiratory gases (end-tidal co2[ETCO2]) and respiratory rate. A monitoring
application is composed of the pulse oximeter, capnometer, and infusion pump
as shown in Figure 6 to control the activation of the infusion pump based on the
measurements of the devices. If the application detects any deterioration in the
patient’s condition, it will deactivate the infusion pump and alert the nurses.

Capnometer

Oximeter

Monitoring
Application

Pump Infusion

ETCO2
Respiratory Rate

SPO2
Pulse Rate

Command

Figure 6. Communication between entities in the clinical scenario.

Capnometer and oximeter publish data through the publisher-subscriber pat-
tern, and monitoring application detects if data stray outside of the valid range
and sends the appropriate command to pump infusion. There are two instances
of the publisher-subscriber pattern and one of the requester-responder pattern
in the resulting Timed Rebeca model of the application. To avoid modeling some
components like communication substrate that is common in the patterns, we
use the inheritance concept in Rebeca. We implement a base reactive class for the
communication substrate of patterns as shown in Figure 7 named Base inspired
by the approach of [17].

1 reactiveclass Base (20){

2 statevars {int id;}

3 Base find(int _id) {

4 ArrayList <ReactiveClass > allActors = getAllActors ();

5 for(int i = 0 ; i < allActors.size(); i++){

6 Base actor = (Base) allActors.get(i);

7 if (actor.id == _id) {return actor ;}

8 }}}

Figure 7. Base Reactive Class
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We define the state variable id in line 2 to uniquely identify rebecs. This class has
a method named find to get the rebec with the given identifier. In this method
we define an array of reactive classes and initiate it with all actors specified in
the model (in line 4) then we get ids of all actors that are derived from the Base
(in line 6) actor and search through them for finding the specified one (line 7).

The communication substrate reactive class extends Base class. As illustrated
in Figure 8, this class has a parameter id in its constructor for assigning the id
variable of the parent class (in line 2). This class has no known rebecs as opposed
to the one specified at Figure 4. Instead, rebecs append their identifier to their
messages during their communication with the substrate. The communication
substrate uses the find method for finding the rebec that wants to send data
based on their ids (lines 6 and 11). As the communication substrate class is com-
monly used by the components of publisher-subscriber and requester-responder
patterns, it has two message handlers transmitPublish and transmitRequest to
transmit their messages, respectively.

1 reactiveclass CommunicationSubstrate extends Base (20){

2 CommunicationSubstrate(int _id){id = _id;}

3 msgsrv trasmitPublish(boolean data ,int topic ,int Lm,

4 int life ,int subscriberId){

5 int csDelay = ?(1, 2);

6 SubscribeInvoker si=( SubscribeInvoker) find(subscriberId

);

7 si.publish(data ,topic ,Lm+csDelay ,life -csDelay)

8 after(csDelay);}

9 msgsrv transmitRequest(boolean data ,int Lm,int

responderInvokerId){

10 int cs1Delay = ?(1, 2);

11 ResponderInvoker ri=( ResponderInvoker) find(

responderInvokerId);

12 ri.request(data ,Lm + cs1Delay) after(cs1Delay);}

13 msgsrv transmitResponse(boolean data , int Lm, int life ,

int requesterId) {

14 int cs2Delay = ?(1, 2);

15 RequestRequester rr = (RequestRequester) find(

requesterId);

16 rr.response( data , (Lm + cs2Delay), (life -cs2Delay))

after(cs2Delay);

17 }

18 ...

19 }

Figure 8. Modeling Communication Substrate using Inheritance in Rebeca
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All interfaces that communicate through communication substrate should ex-
tend the Base class. As two devices (capnometer and oximeter) send data by
using the publisher-subscriber pattern, we define two instances of PublisherRe-
quester and SubscriberInvoker interfaces in main, as shown in Figure 9. The
instance of CommunicationSubstrate, called cs, is used by all the components
which send message to Communication Substrate in the patterns.

1 main{

2 Capnometer c(pr_c):(0);

3 PublishRequester pr_c(cs):(1, 0, 2);

4 SubscribeInvoker si_c():(2, 10);

5 Oximeter o(pr_o):(5);

6 PublishRequester pr_o(cs):(6, 5, 7);

7 SubscribeInvoker si_o():(7, 10);

8 CommunicationSubstrate cs() :(12);

9 MonitoringApp ma(si_c , si_o , rr):(10);

10 RequestRequester rr(cs):(11 ,10 ,13);

11 ResponderInvoker ri(cs):(13, 14, 11);

12 Pump p(ri):(14);

13 }

Figure 9. Main Part of Medical System Model in Timed Rebeca

5.1 Experiment Results

We applied our reduction technique on the three cases we have modeled in Timed
Rebeca. We developed a code in Java which automatically reduces the resulting
FTTSs of these models generated by Afra4. We got 23% and 32% reduction in the
model of requester-responder and publisher-subscriber patterns, respectively. In
the clinical scenario which is a medical system using several patterns as explained
in Section 5 we have 29% reduction in the state space.

Model No. states No. states Reduction
before reduction after reduction

Requester-Responder 205 157 23%
Publisher-Subscriber 235 159 32%

Case Study 1058492 753456 29%
Table 1. Reduction in patterns and their composition

4 The Rebeca models and the Java code for the reduction of semantic models are
available at fghassemi.adhoc.ir/shared/MedicalCodes.zip
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6 Conclusion and Future Work

In this paper, we formally modeled the four communication patterns proposed
for interconnecting medical devices in Timed Rebeca modeling language and
then analyzed the configuration of their parameters separately by Afra tool us-
ing the model checking technique. Since modeling many devices using several
patterns resulted in state-space explosion, we proposed a reduction technique by
extending FTTS merging technique with regard to the local QoS properties. We
inspected a medical system which used three devices and one app communicat-
ing by two patterns and we applied our reduction technique on this system. We
used inheritance concept in Rebeca for modeling this system in order to have
a common communication substrate between patterns. Our results show that
there are possible reductions regarding the behavior of message handlers.

Elaborating our approach on more case studies or non-trivial orchestration
patterns of communication [9] are among of our future work. We aim to generalize
this approach by automatically deriving constraints on state variables like the
one for lastPub or message contents to relax shift-equivalence relation in other
domains. To this aim, we can use the techniques of static analysis.
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