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ABSTRACT
Finding the global minimum of a nonconvex optimization
problem is a notoriously hard task appearing in numerous
applications, from signal processing to machine learning.
Simulated annealing (SA) is a family of stochastic optimiza-
tion methods where an artificial temperature controls the
exploration of the search space while preserving convergence
to the global minima. SA is efficient, easy to implement,
and theoretically sound, but suffers from a slow convergence
rate. The purpose of this work is two-fold. First, we pro-
vide a comprehensive overview on SA and its accelerated
variants. Second, we propose a novel SA scheme called curi-
ous simulated annealing, combining the assets of two recent
acceleration strategies. Theoretical guarantees of this algo-
rithm are provided. Its performance with respect to existing
methods is illustrated on practical examples.

1. INTRODUCTION

Optimization is at the core of many problems in signal
processing and machine learning, e.g., in signal restoration,
supervised learning, dictionary learning, or image segmenta-
tion, to name a few. In those problems, nonconvexity can
arise from sparsity penalty [1], low-rank prior [2], non-linear
observation model [3], non-linear regressor [4], blind thus
multi-linear problem structure [5], or discrete variables [6].

Nonconvex optimization problems can present many lo-
cal minima, which can “trap” the algorithms iterates and be of
poor quality with respect to the problem at hand. Thus, global
optimization methods must be sought for, to escape local min-
ima and thus finding the global solution. To do so, stochas-
ticity is often a key ingredient. The stochastic optimization
algorithms builds a sequence of random variables converging
to the global minima. In this paper, we focus on an important
family of stochastic methods for global optimization, called
simulated annealing (SA), relying on the key concept of an-
nealing, a concept in physics describing the cooling of a solid
until reaching the configuration of minimal energy.

Note that SA is strongly related to the family of meth-
ods known as graduated nonconvexity (GNC) or continuation
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methods, that rely on a deterministic annealing procedure.
Even if in some cases, these methods have been shown to beat
SA [7], still few theoretical results support GNC [8]. More
theoretically sounded deterministic approaches for global op-
timization are branch and bound (B&B) and particle swarm
optimization (PSO) methods. In B&B, the original problem
is split into subproblems (i.e., branching) associated to dif-
ferent locations of the space, for which the computation of a
lower bound (i.e., bounding) gives information to create new
branches [9, 10]. B&B methods share connexions with the
stochastic approximation simulated annealing from [11], also
relying on a splitting of the space. In PSO, a population of
particles exchange information in order to find the optimum
of the objective [12]. Population-based implementations of
SA are actually strongly related to PSO [13].

The contribution of this paper is twofold. First, we review
SA-based global optimization strategies in an unifying man-
ner. We focused on the historical SA [14], fast simulated an-
nealing (FSA) [15] and sequential Monte Carlo simulated an-
nealing (SMC-SA) [16], which we retained for being highly
generic methods with solid convergence guarantees. Then,
building upon FSA and SMC-SA, a new scheme, called cu-
rious SA (CSA), is proposed. We show that CSA inherits
from the best convergence guarantees of its ancestors SMC-
SA and FSA. We also illustrate its performance on numerical
examples. The rest of the paper is organized as follows. Sec-
tion 2 formulates the problem and introduces notations. Then,
Section 3 presents SA, FSA, and SMC-SA, along with their
theoretical guarantees. In Section 4, we introduce our algo-
rithm CSA and its convergence theorem. Algorithms perfor-
mance are compared on two challenging nonconvex problems
in Section 5. Finally, conclusions are drawn in Section 6.

2. PROBLEM STATEMENT

We consider the optimization problem given by

minimizex∈X f(x), (1)

where X is a non-empty subset of Rd. Although this is not
always necessary [17], X is assumed compact. The objec-
tive function f is supposed to be defined on X , continuous
and thus bounded from below and above on X . Further, we



suppose, without lack of generality, that f(x) ≥ 0 for every
x ∈ X , and that the set S∗ := {x ∈ X , f(x) = 0} is non-
empty with null Lebesgue measure. For ε > 0, we also denote
Sε := {x ∈ X , f(x) ≤ ε} the lower level sets of f .

Throughout this work, the gap between the infimum and
the supremum of f is denoted ∆f := supx∈X f(x). || · ||∞
is the supremum norm and || · ||2 is the euclidean norm. The
Borel algebra of X is denoted B(X ). M(X ) is the set of
probability measures on (X ,B(X )). || · ||TV is the total vari-
ation norm on M(X ). The binary indicator function of a
set A is denoted ιA, and takes the value 1 for x ∈ A and
0 elsewhere. For x ∈ X , A ∈ B(X ), the Dirac measure
δx ∈ M(X ) is such that δx(A) = 1 if and only if x ∈ A. We
also introduce the function (·)+ such that for every x ∈ R,
(x)+ = max(0, x). Further, given a Markov kernel M :
X × B(X ) → R+, and m ∈ M(X ), mM ∈ M(X ) and
mM(dy) =

∫
X m(dx)M(x, dy). Readers can refer to [18,

Chapter 4] for an introduction to the above measure theory
concepts and notations.

3. REVIEW ON SIMULATED ANNEALING
METHODS

3.1. Simulated annealing

SA is a widely used global optimization method, that was
inspired from statistical physics [19, 20], and that comes with
sound theoretical guarantees (see for instance [21, 14]). The
Boltzmann distributions play a crucial role in SA. They relate
the probability of a state x ∈ X , its energy f(x) and the
temperature T > 0 through:

πT (x) :=
1

ZT
exp

(
−f(x)

T

)
. (2)

The Boltzmann distributions concentrate on the set S∗ as
T goes to 0. In contrast, for T high enough, πT is easy to
sample from. SA exploits this feature, and aims at generating
points distributed with density πT for T ↘ 0, thus concen-
trating on S∗. One of the main feature of SA is the cooling

Algorithm 1: SA
Initialization with x0 ∼ µ0, µ0 ∈M(X )
for k = 1, ... do

Generate a candidate yk ∼ G(xk, dy)
Compute the acceptance probability

pk = exp

(
−
(
f(yk)− f(xk)

Tk

)
+

)
(3)

Set xk+1 =

{
yk with probability pk
xk with probability 1− pk

end

schedule, which is a non-negative sequence {Tk}k∈N decreas-
ing to 0. It controls how T goes to 0 and is critical for SA:
with a fast decay, iterates {xk}k∈N could get trapped in local
minima, while a slow one may imply slower convergence.

At iteration k ∈ N, SA uses a symmetric proposal Markov
kernel G(x, dy) to generate a candidate point yk, and then
computes the acceptance probability pk. If f(yk) ≤ f(xk),
xk+1 = yk with probability pk = 1. Indeed, Alg. 1 always
accepts proposals that improve the objective (in the sense of
the resolution of the optimization problem). Otherwise, the
acceptance probability decreases to 0 as Tk ↘ 0. This allows
the algorithm to escape local minima until reaching S∗.

Each iteration in Alg. 1 consists in fact in one transition
of a Markov Chain with stationary distribution πTk

[22]. The
associated kernel is the Metropolis-Hastings (MH) kernel de-
fined by

Pk(x, dy) := pk(y, x)G(x, dy) + (1− r(x))δx(dy), (4)

where r(x) =
∫
X pk(y, x)G(x, dy). With this kernel, we de-

fine µk(dx) := P(xk ∈ dx) = µk−1Pk, for k > 1, and with
µ0 being the initialization distribution.

We can now present a first convergence result, restating
Corollary 5.2 and Corollary 5.4 of [14] in a simplified way:

Theorem 1 (Convergence of SA [14]). Under suitable ergod-
icity hypothesis on G, if there exists ξ ∈ (0, 1) such that

Tk =
(1 + ξ)∆f

log(k + 2)
, ∀k ∈ N, (5)

then ||µk − πk||TV → 0 and

lim
k→+∞

P(xk ∈ Sε) = 1, ∀ε > 0. (6)

Theorem 1 states that {µk}k∈N is able to track {πk}k∈N
and thus generates iterates converging to S∗ provided that the
cooling schedule {Tk}k∈N has its inverse decreasing logarith-
mically.

3.2. Fast Simulated Annealing

The cooling schedule of SA is often considered as being
too slow. To circumvent this, FSA [23, 15] generalizes the
accept-reject rule used in the MH step in Eq. (3). In FSA,
this is generalized to any acceptance function q satisfying [15,
Hyp. 1], implying that the acceptance probability becomes

pk = q(ρk), where ρk :=

(
f(yk)− f(xk)

Tk

)
+

. (7)

This generalization of SA allows to use acceptance function q
decreasing more slowly than the negative exponential, such as
ρ 7−→ q(ρ) = 1

1+ρ . For such functions, the acceptance prob-
ability pk will tend to be higher as Tk ↘ 0, and convergence
can then be established with faster cooling schedules [15]. In
particular, let us state here Corollary 3.4 of [15]:



Theorem 2 (Convergence of FSA [15]). Suppose that f has
a finite number of isolated global minima in the interior of X ,
and that at each of them, f is locally C3 and its Hessian is
positive definite. Assume that we set, for γ ∈ (0, 1],

1

Tk
= (k + 1)γ log ((k + 1)γ) . (8)

Then, under suitable ergodicity assumptions on G and for the
acceptance function q(ρ) = 1

1+ρ , there exists Cε > 0 such
that

P(xk ∈ Sε) ≥ 1− Cε
(k + 1)γ

, ∀k ∈ N. (9)

This result implies (6), while also providing information
on the rate of convergence. Contrary to Theorem 1, there is
no result on the TV norm convergence of {µk−πk}k∈N. Still,
FSA allows much faster cooling schedules to be used, which
remains a noticeable improvement over SA. In the follow-
ing, the MH kernels (4) associated to the acceptance function
q(ρ) = 1

1+ρ will be denoted P (F )
k .

3.3. Sequential Monte Carlo simulated annealing

In the SMC-SA algorithm of [16], described in Alg. 2, at
iteration k ∈ N, a population of Nk particles is propagated
using the Markov kernels Pk (see (4)), while SA uses only
one particle. Also, particles interact through resampling and
reweighting, performed at each iteration. This is linked with
sequential Monte-Carlo (SMC) methods [18], which aim at
sampling from a sequence of distributions. However, in SMC,
convergence is often stated in the limit N → +∞, while the
convergence of SMC-SA is stated when k → +∞, which
relates the iterates with the cooling schedule.

Algorithm 2: SMC-SA

Initialize the algorithm x
(n)
k ∼ µ0 for 1 ≤ n ≤ N0;

for k = 1, ... do
Compute the self-normalized weights
w

(n)
k ∝ πk

πk−1
(x

(n)
k−1)

Resample {x̃(n)k }
Nk
n=1 from {x(n)k−1, w

(n)
k }

Nk
n=1

Generate {x(n)k }
Nk
n=1 propagating the points

{x̃(n)k }
Nk
n=1 with the MH kernel Pk(x, dy)

end

Let us now state the main theorem of [16] (Theorem 2 and
Corollary 2.1 in [16]):

Theorem 3 (Convergence of SMC-SA [16]). Consider
µk(dx) = 1

Nk

∑Nk

n=1 δx(n)
k

(dx) and Fk the history of all
past samples until iteration k of Alg. 2. Then, if the cooling
schedule is logarithmic and the sequence {Nk}k∈N increases
fast enough, under ergodicity hypothesis on G, there exists a

sequence {ck}k∈N ↘ 0, such that for any bounded function
φ,

E [|µk(φ)− πk(φ)| | Fk−1] ≤ ck||φ||∞. (10)

The above result states that µk and πk are getting closer in
a sense that is weaker than in the TV norm sense of Theorem
1, with an equivalent cooling schedule. The assumption on
the growing number of particles Nk is made explicit in [16]
but is difficult to satisfy in practice since it requires to know
ck−1 and ∆f . Also, [16] shows that the reweighting and the
resampling in SMC-SA improve upon parallel SA runs pro-
vided the distributions µk and πk are close enough.

4. PROPOSED CURIOUS SA

4.1. Proposed algorithm

FSA and SMC-SA improve upon SA in different direc-
tions. Combining them is a natural idea, schematized below,
that we propose to explore in this section.

SA −→ SMC-SA
↓ ↓

FSA −→ Curious SA

The proposed combination yields a novel algorithm,
which we call curious simulated annealing (CSA), described
in Alg. 3. The change of acceptance function, reminiscent
from FSA, should allow better state space exploration, while
the weighting and resampling steps inherent to SMC-SA
should allow meaningful exchange between particles.

Algorithm 3: CSA

Initialize the algorithm x
(n)
k ∼ µ0 for 1 ≤ n ≤ N ;

for k = 1, ... do
Compute the self-normalized weights
w

(n)
k ∝ πk

πk−1
(x

(n)
k−1)

Resample {x̃(n)k }Nn=1 from {x(n)k−1, w
(n)
k }Nn=1

Generate {x(n)k }Nn=1 propagating the points
{x̃(n)k }Nn=1 with the MH kernel P (F )

k (x, dy)
end

4.2. Convergence analysis

We state below our convergence theorem, for the pro-
posed CSA method, along with a schematic proof of it.

Theorem 4 (Convergence of CSA). Denote µk(dx) =
1
N

∑N
n=1 δx(n)

k

(dx) and Fk the history of all past samples
until iteration k. Then, under the hypothesis of Theorem 2,
for any ε > 0, there exists Cε > 0 such that

E[µk(Sε) | Fk−1] ≥ 1− Cε
(k + 1)γ

, ∀k ∈ N. (11)



Moreover, if {xk}k∈N is a sequence generated by CSA, then

E[µk(Sε) | Fk−1] ≥ P(xk ∈ Sε), ∀k ∈ N. (12)

In Theorem 4, Eq. (11) is akin to (6) or (9). In contrast
with Theorem 3, no assumption is made anymore on the num-
ber of particles. CSA benefits from the fast cooling schedule
of FSA, which was not the case of SMC-SA. Furthermore,
Eq. (12) shows that the additional steps of CSA are beneficial
and improve upon FSA performance.

Sketch of the proof of Theorem 4: Let k ∈ N. Starting
from µk−1, Alg. 3 generates three distinct distributions, cor-
responding respectively to the reweighting, resampling, and
propagation steps. Following the proof of Theorem 2 in [16],
each step is controlled independantly. The effect of the MH
kernels P (F )

k (x, dy) can be controlled using the same tech-
nique as in the proof of Theorem 3.3 in [15] (see [15, Eq.3.3]
in particular). The control of the reweighting and resampling
steps effects is omitted due to a lack of space.

5. NUMERICAL EXPERIMENTS

The numerical experiments have been performed using
the Julia language (Version 1.4.2) [24]. Contrary to SA and
FSA, SMC-SA and CSA are population-based algorithms so,
we chose to compare them against multistart implementations
of SA and FSA meaning that N particles follow indepen-
dantly SA or FSA iterations. This allows to allocate the same
computation efforts to each iteration (i.e., temperature value).
We studied the record values of the runs in the population af-
ter κ iterations, that is f∗κ := min{f(x

(n)
k ), 1 ≤ k ≤ κ, 1 ≤

n ≤ N}. In our experiments, we set N = 250 and all the
particles {x(n)0 }Nn=1 were initialized with a Gaussian kernel
centered at a given point x0: x(n)0 ∼ N (dy;x0, 0.05I). SA
and SMC-SA have been run with a logarithmic cooling sched-
ule Tk = 1

log(k+1) , FSA and CSA with the faster schedule
Tk = 1

(k+1) log(k+1) . The algorithms used the proposal kernel
G(x, dy) = N (dy;x, 14I).

5.1. Test Problems

Two test problems have been used, highlighting the per-
formance in two different contexts. Both are designed so that
their minimum value is 0.

The objective of Problem (P1) is the Rosenbrock function
in R10, which is ill-conditionned with a unique minimizer that
is difficult to find in a large banana-shaped valley:

f1(x) :=

9∑
i=1

5(xi+1−x2i )2 + (1−xi)2, ∀x ∈ R10, (13)

minimized at x∗ = (1, 1, ...1)T . Problem (P2) aims at min-
imizing the Rastrigin function which is highly multimodal

SA FSA SMC-SA CSA

(P1)

〈f∗50〉 6.31 6.49 6.41 4.05
σ∗50 0.829 0.732 1.15 1.17
〈f∗500〉 3.64 3.72 5.06 2.19
σ∗500 0.761 0.778 1.26 0.447

(P2)

〈f∗50〉 3.29 3.36 3.26 3.23
σ∗50 0.425 0.453 0.521 0.484
〈f∗500〉 2.52 2.64 2.62 2.47
σ∗500 0.320 0.304 0.413 0.502

Table 1: Performances over 50 runs of the algorithms

with regularly distributed local minima:

f2(x) := 10 +

10∑
i=1

x2i − cos(2πxi), ∀x ∈ R10, (14)

minimized at x∗ = 0. We will set x0 = 0 for (P1) and
x0 = (1, 1, ..., 1)T for (P2), respectively.

5.2. Results

For each problem, 50 runs of the algorithms were con-
ducted. We computed the average best record value after
κ = 50 iterations 〈f∗50〉 and after κ = 500 iterations 〈f∗500〉,
as well as the corresponding standard deviation σ∗50 and σ∗500.
This shows the performance of the algorithm with a low time
budget and a higher one, as well as the consistency between
runs. Table 1 shows the results, with the best ones in bold
font.

CSA performs clearly better than all the other algorithms
on (P1), showing the best values for both small and large κ,
as well as good consistency among runs. On Problem (P2),
CSA also performs best, although the gap is smaller than pre-
viously. The multistart algorithms tend to have the lowest
standard deviations. This may be explained by the lack of
resampling which lowers the variability of the algorithms.

6. CONCLUSIONS

SA algorithms are widely used in global optimization
as they are easy to implement and offer sound theoretical
guarantees. In this paper, we have proposed a novel scheme,
the curious simulated annealing algorithm, which combines
the features of two improved SA implementations: FSA and
SMC-SA. We have illustrated its efficiency on two global
optimization benchmarks. Moreover, we have described a
sketch of its theoretical properties that would explain its good
performance. Due to lack of space, we leave as a future work
the completion of this theoretical analysis.
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