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Abstract

The Modal Phase Collinearity (MPC) is a modal indicator designed to decide whether the mode shape

used in its computation is a real or complex-valued vector. Its estimate inherits the statistical properties of

the corresponding mode shape estimate. While the statistical framework for the uncertainty quantification

of modal parameters is well-known and developed in the context of subspace-based system identification

methods, uncertainty quantification for the MPC estimate has not been carried out yet. In this paper,

the uncertainty quantification of the MPC estimates is developed when the corresponding mode shapes are

complex-valued vectors. In this case, the theoretical value of the MPC is strictly lower than 1 and it is

shown that the distribution of the MPC estimate can be approximated as Gaussian. The computation of its

variance and the resulting confidence intervals of the MPC estimate are developed. The proposed framework

is validated in Monte Carlo simulations and illustrated on experimental data of an offshore structure.

Keywords: Uncertainty quantification, Delta method, Ambient excitation, Modal Phase Collinearity,

Modal analysis, Mode shape complexity

1. Introduction

In Operational Modal Analysis, the modal parameters, i.e. natural frequencies, damping ratios and mode

shapes, are estimated from vibration measurements, where they are related to the eigenstructure of a linear

system [1]. Only the measured output data are required, such as accelerations, displacements, velocities

or strains, that are recorded on the structure during unknown, unmeasured, ambient excitation conditions.

The resulting modal parameter estimates are never equal to the exact parameters of the structure, since

they are computed from data of finite length that is moreover afflicted with measurement noise. They are

hence impaired with statistical uncertainties. These uncertainties can be quantified or accounted for, which

is often crucial in practice when interpreting the outcome from the related system identification algorithms.
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In this context, explicit expressions for the variance computation of the modal parameter estimates have

been developed e.g. for subspace-based system identification methods. For example, first-order perturba-

tion theory is used to express the variance of modal parameter estimates in covariance-driven output-only

stochastic subspace identification in [2], based on the developments of [3]. An efficient multi-order imple-

mentation of the latter scheme for the uncertainty quantification in the stabilization diagram was developed

in [4, 5], which achieved a significant improvement in the computational complexity compared to the orig-

inal version of the algorithm. This enabled the application of the uncertainty quantification of the modal

parameters in practical applications, e.g. for bridge measurements [6–8]. The framework in [4] was extended

to multi-setup subspace identification in [9], and subsequently generalized to the family of input-output and

output-only data-driven stochastic subspace identification methods in [10].

For finite element models, the frequencies and mode shapes are usually obtained from the eigenvalue

problem concerning the stiffness and mass matrices. System damping is often included by assuming that the

damping matrix constitutes a proportional contribution of both aforementioned matrices, and hence can be

diagonalized by the eigenvectors of the linear system. The resulting mode shapes are real-valued [11, 12].

While this assumption simplifies the modeling of the mechanical system, it does not apply for OMA, where

the estimated eigenstructure always yields complex-valued mode shape vectors [13]. Even when the “true”

mode shape of the structure is purely real-valued, its estimate from measurement data is slightly complex-

valued due to noise, where the complexity reduces with increasing data length. In other cases, mode shapes

can be truly complex-valued vectors due to e.g. non-classical damping [14], gyroscopic effects [15, 16], flutter

[17] or closely spaced modes [18]. In practical applications the eigenstructure of the vibrating system can

consist of both real and complex-valued mode shapes [19].

The interpretation of mode shapes estimated from the data is facilitated by so-called modal indicators.

One of the modal indicators is the Modal Phase Collinearity (MPC) [20], which is a quantity that measures

the complexity of a mode shape vector. It is also known under the name Modal Complexity Factor (MCF)

[21, 22]. The MPC indicator is bounded between 0 and 1, where 1 indicates a real-valued mode shape. The

smaller its value, the higher the mode shape complexity. The purpose of this paper is to characterize the

statistical distribution of the MPC estimates when the underlying mode shapes are complex-valued vectors.

The distribution of the MPC estimate is shown to be asymptotically Gaussian in this case. Subsequently,

expressions for its variance computation and the respective confidence intervals are provided. Consequently,

it can be assessed whether the underlying mode shape is a complex-valued vector, in particular when the

MPC is close but distinct from 1. The confidence intervals for the MPC are indeed a practical metric for

OMA, whose pertinence is also shown by their use in commercial software [21].

This paper is organized as follows. Some background on the considered problem is stated in Section 2.

The asymptotically Gaussian distribution of the MPC estimate is derived for complex-valued mode shapes

in Section 3 based on the delta method [23], from which the variance and confidence intervals follow. An
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application of the proposed framework to measurements from a meteorological mast located in the North

Sea is shown in Section 4.

2. Background on MPC

In this section, the vibration model is recalled and the statistical parameters of interest are defined.

The MPC indicator is introduced for the evaluation of the mode shape complexity, and the problem of

uncertainty quantification for this indicator is presented.

2.1. Mode shape identification

Assume that the vibration behavior of a viscously damped, linear time-invariant (LTI) structural system

with d degrees of freedom is described by the differential equation

Mq̈(t) + Cq̇(t) +Kq(t) = u(t) (1)

where t denotes continuous time, and matrices M , C, K ∈ Rd×d denote mass, damping and stiffness matrices,

respectively. Vectors q(t) ∈ Rd and u(t) ∈ Rd denote the continuous-time displacements and the unknown

external forces, respectively. Let system (1) be observed by sensors measuring e.g. accelerations at r degrees

of freedom of the structure. A “true” mode shape ϕ∗ ∈ Cr of the structure corresponds to an eigenvector of

system (1) at the observed r degrees of freedom. With Operational Modal Analysis (OMA), an estimate ϕ̂

of the mode shape can be obtained from the output-only vibration measurements at discrete time instants

tk = kτ , k = 1, . . . , N , where τ is the time step. For the computation of the mode shape estimate the use

of methods like stochastic subspace identification (SSI) is assumed, which identify the modal parameters

together with their covariance [2, 4, 10].

2.2. MPC computation

In classical mechanical engineering problems, the system matrices from (1) are assumed symmetric

and yield a real-valued eigensolution of (1), because M , C and K are diagonalizable by the eigenvectors.

In practice, however, the system in (1) can yield complex-valued eigenvectors due to e.g. non-classical

formulation of the damping matrix C. In addition, the mode shapes estimated from the measured responses

are complex-valued, even for simulations of a classically damped system, due to finite data length and noise.

In the first case the mode shape is complex-valued due to the physical properties of the system, in the latter

case due to estimation errors. Note that a complex-valued mode shape is denoted as complex-valued only

if it cannot be turned into a real-valued vector by multiplication with a scalar. In particular, mode shapes

with =(ϕ) = a<(ϕ) with a ∈ R correspond to real-valued mode shapes. For the analysis of the complexity

of mode shapes, the system is assumed to have distinct eigenvalues. Mode shapes corresponding to double
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modes are linear combinations of some basis vectors and can thus be arbitrarily complex, so complexity

indicators like the MPC cannot be directly applied in this case.

A geometric depiction of the components of a complex mode shape is illustrated in Figure 1. It can be

seen that the mode shape components plotted in the complex plain align around one axis and exhibit small

imaginary parts for a mode shape with low degree of complexity (left) and show significant dispersion in

the complex plain for a mode shape with high complexity (right).

Figure 1: Components of mode shape vector with low complexity (left) and high complexity (right).

The complexity of the mode shape can be quantified by the Modal Phase Collinearity (MPC), which is

also called Modal Complexity Factor (MCF), e.g. in [21, 22]. There are different definitions of this indicator

in the literature that are equivalent [24], and which are recalled here for the sake of completeness. Define

the scalar products Sxx = <(ϕ)T<(ϕ), Syy = =(ϕ)T=(ϕ) and Sxy = Syx = <(ϕ)T=(ϕ), and the matrix

S =

Sxx Sxy

Syx Syy

 ∈ R2×2. (2)

Then, the definition of MPC(ϕ) from [20, 25] states

MPC(ϕ) =∆
(
λS1 − λS2

)2(
λS1 + λS2

)2 , (3)

where λS1 and λS2 are the eigenvalues of matrix S. From this expression it follows

MPC(ϕ) =
(Sxx − Syy)

2
+ 4S2

xy

(Sxx + Syy)
2 . (4)

Furthermore, based on the definition of the Modal Assurance Criterion (MAC) [26]

MAC(ϕ,ψ) =∆
|ϕHψ|2

ϕHϕψHψ
=
ϕHψψHϕ

ϕHϕψHψ
,
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the MAC value between the mode shape and its complex conjugate is equivalent to the MPC, yielding

MPC(ϕ) = MAC(ϕ,ϕ). The equivalences are shown in detail in Appendix A. In the remainder of this

paper, expression (4) will be used.

Consequently, similar to the MAC, the MPC indicator is bounded between 0 and 1. For real mode shapes

its value is 1, and the lower the MPC the more complex the mode shape. Since the MPC is a function of the

mode shape, the statistical properties of the mode shape estimate propagate to the MPC estimate, based

on which its asymptotic distribution function can be inferred. The distribution of the MPC estimates is

referred to as MPC distribution in the following.

2.3. MPC distribution

Independent realizations of the MPC estimate yield a histogram showing the MPC distribution. Different

MPC distributions that may appear in practice are illustrated in the following example.

Consider a 6 DOF chain-like system as illustrated in Figure 2 that, for any consistent set of units, is

modeled with spring stiffnesses k1 = k3 = k5 = 100 and k2 = k4 = k6 = 200, mass mi = 1/20 and a damping

matrix C yielding both complex and real mode shapes, defined by

C =



0.2007 −0.0236 0.0595 0.1170 0.0736 0.1341

−0.0236 0.0192 −0.1054 −0.0748 −0.1617 −0.0773

0.0595 −0.1054 0.1263 −0.0297 −0.0843 0.0286

0.1170 −0.0747 −0.0297 0.2570 −0.0748 0.1227

0.0735 −0.1617 −0.0842 −0.0748 −0.0601 −0.1141

0.1341 −0.0773 0.0286 0.1226 −0.1142 0.2558


. (5)

This damping matrix is constructed such that theoretical mode shape 5 is slightly complex (MPC5 = 0.9787),

mode shape 1 is close to real (MPC1 = 0.9994), and mode shape 3 is purely real (MPC3 = 1). While no

particular physical interpretation for the components of the damping matrix is considered, the mechanical

system is stable and exhibits mode shapes of different complexity, which are used to illustrate different

representative cases of MPC distributions in this paper. The exact modal parameters of the system are

depicted in Table 1.

m1 m2 m3 m4 m5 m6

k1 k2 k3 k4 k5 k6

sensor 1 sensor 2 sensor 3

Figure 2: Illustration of 6 DOF chain system used for Monte Carlo simulation.
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Table 1: Exact modal parameters of the chain system.

Mode 1 2 3 4 5 6

Natural frequency fi (Hz) 1.936 5.618 8.682 14.494 15.798 17.007

Damping ratio ζi (%) 2 2.005 2 2 2 2.005

Modal phase collinearity MPCi 0.9994 ≈ 1 1 1 0.9787 0.9799

The system is excited by a random white noise signal in all DOFs and sampled with a frequency of

50 Hz for 2000 seconds. The responses are measured at DOFs 1, 2 and 5. Gaussian white noise with 5%

of the standard deviation of the output is added to the response at each channel. The computations are

performed in a Monte Carlo setup with m = 1000 realizations of the described signal. For the estimation

of the mode shapes, the output-only data-driven subspace-based system identification with the unweighted

principal component (SSI-UPC) [27] is used, where the estimates are obtained at system order 12, using 15

time lags for the computation of the data Hankel matrix. The six modes of the system are tracked in each

simulation. Figure 3 shows the histograms of the estimates of MPC5, MPC1, MPC3 that are computed from

the corresponding mode shape estimate of modes 5, 1 and 3, respectively.

Figure 3: Histograms of MPC from simulations of non-proportionally damped chain-like system with N = 100,000 samples.

MPC5 left, MPC1 middle, MPC3 right.

These histograms illustrate three distinctively different cases of MPC distributions. Indeed, it can be

observed that these distributions depend heavily on the complexity of the considered mode shape. It seems

that the distribution of MPC5 in Figure 3 (left) is Gaussian, corresponding to the complex mode shape,

and the distribution of MPC1 in Figure 3 (middle) corresponding to the close-to-real mode shape looks

more skew. However, the distribution of MPC3 in Figure 3 (right) corresponding to the real mode shape

is very different. In the following section, the distributions of MPC5 and MPC1 corresponding to complex

mode shapes are characterized in detail in order to quantify the uncertainty of single MPC estimates from

measurement data in appropriate confidence intervals. The case of MPC3, which corresponds to a purely

real-valued mode shape, is not treated in this work.
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3. Gaussian approximation for the distribution of MPC

In this section a Gaussian approximation is developed for the MPC estimate when the underlying the-

oretical mode shape ϕ∗ is complex, i.e. the theoretical value MPC(ϕ∗) is smaller than 1. Since the MPC

estimate is a function of the mode shape estimate, the statistical properties of the mode shape estimate

propagate to the MPC. We assume that the mode shapes originate from a system identification method

that provides Gaussian estimates together with an estimate of the covariance, e.g. subspace identification

[2, 4, 10]. A tool to propagate the covariance of a Gaussian variable is the delta method, which is applied

to the expression for the MPC in the next section.

3.1. Gaussian approximation of MPC distribution with the first-order delta method

The delta method is a statistical tool that helps to estimate the covariance of a function of a Gaussian

variable, from where confidence intervals can be derived. It has been applied successfully in engineering

problems over the last decade, in particular for the uncertainty quantification of modal parameters [7, 9, 10]

or vibration-based damage diagnosis [28–30].

With the first-order delta method, the probability distribution of a function of an asymptotically Gaussian

vector can be characterized as also asymptotically Gaussian. The MPC is a function of the mode shape,

which is assumed to be estimated from data with methods like stochastic subspace identification (SSI) [27].

For these methods, it has been shown that mode shape estimate ϕ̂ converges to the true mode shape ϕ∗

when the data length N increases, and that the estimates are indeed asymptotically Gaussian distributed

[10, 31]. This means that the probability distribution of the real and imaginary parts of the mode shape

estimate can be well-approximated by a Gaussian distribution when N is large enough. In mathematical

terms, this property is expressed by the Central Limit Theorem (CLT)

√
N

<(ϕ̂)

=(ϕ̂)

−
<(ϕ∗)

=(ϕ∗)

 L−→ N (0,Σϕ∗), (6)

where <(·) and =(·) are the real and imaginary parts of a complex variable, “L” denotes convergence in

distribution, N (µ,Σ) is a Gaussian distributed variable with mean µ and covariance Σ, and Σϕ∗ ∈ R2r×2r

is called the asymptotic mode shape covariance. The computation of a consistent estimate Σ̂ϕ∗ of the

asymptotic mode shape covariance is considered for different SSI methods e.g. in [2, 4, 10]. Remark that

thanks to property (6), the distribution of the mode shape estimate can be approximated by<(ϕ̂)

=(ϕ̂)

 ≈ N
<(ϕ∗)

=(ϕ∗)

 , 1
N Σ̂ϕ∗

 . (7)

Now consider the function MPC(ϕ) that computes the MPC indicator in (4). In order to apply the delta

method, its derivative JMPC
ϕ with respect to the real and imaginary parts of the mode shape is required,
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and it needs to be ensured that this derivative is non-zero at its limit value [23]. It writes

JMPC
ϕ =

[
∂MPC

∂<(ϕ)

∂MPC

∂=(ϕ)

]
∈ R1×2r, (8)

where, based on the definition of the MPC in (4), it follows

∂MPC

∂<(ϕ)
=

∂((Sxx−Syy)2+4S2
xy)

∂<(ϕ) c2 −
(
(Sxx − Syy)2 + 4S2

xy

)
∂c2

∂<(ϕ)

c4
(9)

=
4(Sxx − Syy)<(ϕ)

T
+ 8Sxy=(ϕ)

T

c2
− 4MPC(ϕ)<(ϕ)

T

c
,

∂MPC

∂=(ϕ)
=

∂((Sxx−Syy)2+4S2
xy)

∂=(ϕ) c2 −
(
(Sxx − Syy) + 4S2

xy

)
∂c2

∂=(ϕ)

c4
(10)

=
4(Syy − Sxx)=(ϕ)

T
+ 8Sxy<(ϕ)

T

c2
− 4MPC(ϕ)=(ϕ)

T

c
,

where c = Sxx+Syy. An estimate JMPC
ϕ̂ of the derivative JMPC

ϕ∗
is easily obtained by evaluating (9)–(10) at

the mode shape estimate ϕ̂. It can be shown that JMPC
ϕ∗

is non-zero if and only if the underlying theoretical

MPC value is different from 0 and 1, as detailed in Appendix B.1, i.e.

∀ϕ∗ ∈ Cr : MPC(ϕ∗) /∈ {0, 1} ⇐⇒ JMPC
ϕ∗

6= 0. (11)

Hence, if a mode shape ϕ∗ is estimated with MPC(ϕ∗) /∈ {0, 1}, which in particular is the case for estimates

of complex mode shapes, then the derivative JMPC
ϕ∗

is non-zero. Subsequently, a first-order Taylor expansion

writes

MPC(ϕ̂) = MPC(ϕ∗) + JMPC
ϕ∗

<(ϕ̂)

=(ϕ̂)

−
<(ϕ∗)

=(ϕ∗)

+ o(||ϕ̂− ϕ∗||), (12)

and the distribution of the MPC estimate can be approximated as Gaussian by means of the delta method

[23], following from (6) and (12) as

√
N (MPC(ϕ̂)−MPC(ϕ∗))

L−→ N
(
0, σ2

MPC

)
, (13)

where σ2
MPC =∆ JMPC

ϕ∗
Σϕ∗(JMPC

ϕ∗
)T . Note that this property only holds if σ2

MPC 6= 0, which is shown in

Appendix B.2. Equation (13) shows two important results. First, it states that the distribution of the MPC

estimate is Gaussian when MPC(ϕ∗) /∈ {0, 1}, i.e. in particular when the mode shape is complex-valued.

Second, it provides a practical formula for the computation of the MPC variance. An estimate of σ2
MPC is

obtained as σ̂2
MPC = JMPC

ϕ̂ Σ̂ϕ∗(JMPC
ϕ̂ )T , and the variance of MPC(ϕ̂) is then easily computed based on

(13) as

var(MPC(ϕ̂)) ≈ 1
N σ̂

2
MPC = 1

NJ
MPC
ϕ̂ Σ̂ϕ∗(JMPC

ϕ̂ )T . (14)

Hence, the distribution of the MPC estimate can be approximated by

MPC(ϕ̂) ≈ N (MPC(ϕ∗),
1
N σ̂

2
MPC).
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Since the distribution is approximately Gaussian, confidence intervals can be easily determined for a given

confidence level. For example, the 95% interval is given by

(MPC(ϕ̂)− 2 · 1√
N
σ̂MPC, MPC(ϕ̂) + 2 · 1√

N
σ̂MPC). (15)

The procedure for the Gaussian approximation of the MPC estimate is summarized in Algorithm 1.

Algorithm 1: Gaussian approximation of the MPC distribution

Input : mode shape estimate ϕ̂ and corresponding covariance estimate Σ̂ϕ∗ (see (7)), e.g. from

subspace identification [2, 4, 7, 10]

Output: estimated MPC variance σ̂2
MPC;

confidence interval of the MPC estimate

1 compute JMPC
ϕ̂ based on (8), (9) and (10) using ϕ̂

2 compute σ̂2
MPC from (14)

3 compute confidence interval of Gaussian MPC estimate for the desired confidence level, e.g. as in

(15)

3.2. Assessment of the MPC distribution in Monte Carlo simulations

In this section the Gaussian approximation of the MPC distribution is validated in Monte Carlo simu-

lations for MPC5 and MPC1 that are computed on complex mode shapes, see also Figure 3.

For each Monte Carlo simulation j = 1, . . . ,m with m = 1000 consider the estimated MPC value

MPCMC,j and denote MPCMC ∈ Rm×1 the vector of all the MPC estimates from m Monte Carlo simulations.

Then it is straightforward to compute their sample mean MPCMC and their sample standard deviation

sMC =
√

var(MPCMC). The sample standard deviation sMC is an estimate of the standard deviation of the

MPC distribution evaluated for a fixed data length N , computed on 1000 data sets. The standard deviation

computed with the delta method in this paper is based on the Gaussian approximation, and requires only

one data set for its computation. Its validation is carried out as follows. The variance computation based

on the delta method (14) is considered for each of the Monte Carlo simulations, and denote σDM,j as the

standard deviation of the MPC computed from the j-th data set. Their mean σ̄DM should match the sample

standard deviation sMC, since both are estimates of the MPC standard deviation from the same number of

data sets. This is analyzed in the histograms of σDM,j along with sMC for MPC5 and MPC1, shown in Figure

4 and summarized in Table 2. It can be observed that the histograms of the standard deviations computed

by the delta method are centered around the sample standard deviation of the Monte Carlo simulations, and

sMC and σ̄DM are indeed close. Since sMC is computed from a finite number of Monte Carlo simulations, it

has some uncertainty that can be easily evaluated [32] considering the MPC distribution is approximately

9



Gaussian for N large enough. The respective 95% confidence intervals of sMC are [2.753, 3.006] for MPC1

and [22.740, 24.826] for MPC5, containing σ̄DM in both cases. This validates the correct computation of

the MPC standard deviation with the proposed method on average. Furthermore, the computed standard

deviations σDM,j exhibit small deviations among the different data sets. Their spread sσDM
can be evaluated

from the sample standard deviation of the computed σDM,j ’s and is shown in Table 2. Its values are around

9% for MPC5 and 25% for MPC1. This suggests that on average any variance estimate can be used to

approximate the histogram of the respective MPC.

Figure 4: Histograms of delta method-based standard deviations of MPC5 (left) and MPC1 (right).

Table 2: Comparison of the Monte Carlo and delta method-based statistical properties of MPC1 and MPC5.

Data length MPC sMC × 10−4 σ̄DM × 10−4 sσDM
× 10−4

N = 100,000
MPC1 2.874 2.926 0.739

MPC5 23.737 23.697 1.939

Finally, the delta method-based variance obtained from one data set is used to compute the Gaussian

distribution function of the respective MPC. The corresponding distributions are shown in Figure 5. It

appears that the proposed variance computation scheme is good for MPC5 (left) and adequate for MPC1

(right). Based on that it can be conjectured that the density approximation computed with the delta method

can be used to encompass the empirical distributions of the MPC5 and MPC1 well.

3.3. Influence of data length on the MPC distribution

As illustrated by Figure 5 (right), the histogram of MPC1 estimates cannot fully satisfy a Gaussian

assumption due to its proximity to the boundary at 1. Since the theoretical value of MPC1 is 0.9994, and

hence distinct from 1, Property (13) justifies a Gaussian distribution for the estimates of MPC1, provided
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Figure 5: Gaussian fits to empirical probability distribution of MPC5 (left) and MPC1 (right).

the data length N is large enough. This convergence property will be illustrated now with different data

lengths.

Three histograms of MPC1 estimates together with the delta method-based PDF fits are shown in

Figure 6 for different data lengths. It can be observed that the density approximations get closer to the

histogram as the data length increases. This suggests that the MPC1 estimate is indeed Gaussian, and that

the first-order delta method can accurately approximate the distribution when a sufficient amount of data

is available. However, when not enough data are available the distribution fits do not lie entirely in the

unit interval [0, 1]. In particular, the resulting confidence intervals would contain the value 1 and be in part

outside the unit interval, which is a contradiction to the assumption of the mode being complex and makes

a Gaussian approximation indeed questionable in this case. Thus, complex mode shapes with MPCs close to

1 require a sufficient amount of data for an appropriate Gaussian approximation. Since the variance of the

distribution is decreasing with N , the confidence intervals are likely to become small enough to be within

the unit interval for large N .

The corresponding sample means and standard deviations of the Monte Carlo simulations, together with

the mean values of the standard deviations computed with the delta method (σ̄DM) and their spreads (sσDM
)

are depicted in Table 3. As N increases, the mean of the Monte Carlo histogram stabilizes around the exact

value of MPC1, as expected. The mean of the standard deviations computed with the delta method for

each of the Monte Carlo simulations and the Monte Carlo sample standard deviation are close, and nearly

identical for higher N . The standard deviation decreases, and its spread also decreases from 57% at N =

10,000 to 9% at N = 1,000,000.

These examples show that for almost real and only slightly complex mode shapes, for which the MPC

is close to the boundary, the Gaussian assumption may require long data sets to be realistically satisfied.

For example, MPC5 has a satisfying approximation for N = 100,000 whereas MPC1 requires 10 times the

amount of data for a similar fit. Moreover, when the mode is purely real and the MPC is at the boundary
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Figure 6: Histograms of MPC1 estimates with different data lengths

Table 3: Comparison of the Monte Carlo and delta method-based statistical properties of MPC1.

Data length MPC1 MPCMC sMC × 10−4 σ̄DM × 10−4 sσDM
× 10−4

N = 10,000 0.9994 0.9989 10.58 14.760 8.443

N = 100,000 0.9994 0.9994 2.874 2.926 0.739

N = 1,000,000 0.9994 0.9994 0.872 0.881 0.083

(such as MPC3), the Gaussian assumption is not feasible anymore as shown by (13). Such cases require the

proposed approach to be replaced by a better suited framework, whose development is beyond the scope of

this paper.

4. Application

This section presents a practical application of the uncertainty quantification framework from Section 3.

The tested structure is a full scale meteorological mast, located in the west of the Dogger Bank site in

the North Sea, supported by a novel concept of offshore foundation at that time, namely a Mono Bucket

foundation. The foundation and the meteorological mast are shown in Figure 7.

The vibration response of the structure to ambient excitation (wind, waves and current) is continuously

recorded by 8 accelerometers at a sampling frequency of 20 Hz, and the measurements are decimated to

6.67 Hz. A data set of length N = 400,000 is selected to estimate the modal parameters and subsequently

to perform the statistical analysis of the MPC estimates. The modal parameters are estimated at model

orders ranging from nmin = 10 to nmax = 40 using the data-driven SSI-UPC algorithm. The covariances

of the modal parameters are computed using the numerically efficient implementation developed in [4] in

combination with [10]. The variances of the MPC estimates are computed with (14) from Section 3, as

detailed in Algorithm 1.

One of the engineering tools in OMA is a stabilization diagram, which is used to identify the physical
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Figure 7: Twin Mono Bucket foundations on board of the installation vessel (left). Meteorological mast at Dogger Bank (right).

Both photos available by the courtesy of Universal Foundation A/S.

structural modes, considering the order of the system is unknown. The system order determines the number

of identified modal parameters. Different system orders result in different estimates of the modal param-

eters that may vary at different orders. Some of those parameters correspond to non-physical, noise and

mathematical poles. Conversely to the physical poles, which are stable in the stabilization diagram, the

spurious estimates have high dispersion. One of the applications of the uncertainty quantification of modal

parameters is to filter the stabilization diagrams from modes that exhibit high variances, as showed e.g. in

[4, 7]. In the following, a threshold on the coefficient of variation of the natural frequency estimates is set

to 0.001 to filter the uncertain modes, see Figure 8.

Figure 8: Stabilization diagram of natural frequencies for maximum model order 40.

Four fundamental frequencies of the mast are then easily identified, as detailed in Table 4. Modes 1

and 2, as well as modes 3 and 4 have close but distinct frequencies. Indeed, the meteorological mast is

not axis-symmetric [33] and its modes are not double modes. Subsequently, the MPCs computed from the

corresponding mode shape estimates are analyzed. An illustration of the real and imaginary components

13



Table 4: Modal parameters of the mast estimated at model order 40.

Mode 1 2 3 4

Natural frequency fi (Hz) 0.296 0.340 1.020 1.060

Damping ratio ζi (%) 1.044 0.562 1.534 1.010

Modal phase collinearity MPCi 0.9992 0.9992 0.8466 0.8234

Figure 9: Plots of real and imaginary components of the first (left) and the second (right) mode shape with their corresponding

confidence ellipsoids. Both plots established in ARTeMIS Modal Pro 6.0.

of the first two mode shapes, together with their confidence intervals, is presented in Figure 9. It can be

observed that the estimated components are aligned around one direction and their dispersion is very low.

This indicates that their complexity is also low and consequently the underlying MPC estimates are in the

vicinity of 1 for the first two modes. As shown in Table 4, the MPCs for all mode shapes are strictly smaller

than 1, but some are so close to 1 that a confidence interval is needed to decide about the complexity of the

mode shape.

The evaluation of the mode shape complexity is carried out by using the confidence intervals computed

based on the MPC variance estimates from Algorithm 1. In Figure 10 the 95% confidence intervals are

shown for the modal alignments of the first four modes.

First, it can be observed that the MPC estimates of the first two mode shapes are close to 1. For the

first mode shape, whose components are aligned around one axis in Figure 9 (left), the confidence interval

of the MPC estimates severely surpass the theoretical boarder of the MPC domain at 1 for nearly all model

orders. This suggests that the assumption of a complex-valued mode shape that has been made in the

present uncertainty quantification framework is not satisfied, and thus the first mode shape may be real-

valued. Note that the MPC distribution for real-valued mode shapes cannot be approximated by a Gaussian

function, and its analysis is outside the scope of this paper. The confidence bounds for the MPC estimates

corresponding to the next three modes are (nearly all) well separated from the boarder at 1, indicating that

a Gaussian distribution is a possible fit for them, since for each case, the confidence interval around the

14



Figure 10: Modal alignments of the MPC with 95% confidence bounds computed from the mode shapes of the first four modes.

MPC estimate lies within the unit interval.

Based on the analysis above, it can be assumed that the mode shapes corresponding to the second, third

and fourth mode are plausibly complex-valued vectors. For the other modes, longer data set could confirm

the same assumption. Deciding that the first mode is real-valued would require a more profound analysis

for the derivation of confidence interval for real mode shapes.

5. Discussion

With the proposed method, confidence intervals are computed based on a Gaussian approximation of

the MPC distribution that has been derived for complex mode shapes. The approach assumes that the data

length N is large enough for the approximation to be adequate. In particular, it has been illustrated that

the Gaussian approximation improves as N increases in Section 3.3, which can also be deduced from the

Central Limit Theorem (13) showing a rate of convergence of 1/
√
N .

When applying the method to the uncertainty quantification of the MPC computed from experimental

data, it is in general unknown if the underlying mode shape is real-valued or complex-valued. However,

the resulting confidence interval is meaningful only for complex mode shapes, where the theoretical MPC is

strictly below 1. Since the MPC distribution is restricted to the unit interval [0, 1], meaningful confidence

intervals also need to lie within this interval. However, the computed confidence intervals are based on

the Gaussian distribution and may overlap 1 in some cases. In such a situation, a problem with the

underlying assumptions is revealed: either the data length N has been too short for an adequate Gaussian

approximation, or the underlying mode shape is not complex-valued but real-valued. In the former case,

a longer data set may yield a better Gaussian approximation with shorter confidence intervals that do not
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contain the value 1. If for large N , the confidence interval still contains 1, then the considered mode shape

could be real-valued. In this case, the theory investigated in the current paper reaches its limits, as condition

(11) is not satisfied. Further work should be dedicated to the analysis of the MPC of real mode shapes,

which is beyond the scope of this paper.

6. Conclusion

In this paper, confidence intervals for the estimate of the Modal Phase Collinearity indicator have been

investigated for complex-valued mode shapes. It has been shown that a Gaussian approximation of the

distribution of the MPC indicator is adequate for complex mode shapes when the data length is large

enough. A computational scheme has been derived to obtain the variance of the MPC estimate, based on

the mode shape covariance that is available from modal analysis. This results in a practical method to

obtain confidence intervals for the MPC estimate, which is particularly useful to analyze mode shapes whose

MPC is high but different than 1. The approach has been validated in Monte Carlo simulations, where the

impact of the data length has been analyzed when the MPC is close to 1. Finally, the methodology has

been applied to experimental data from a meteorological mast, where the mode shape complexity has been

investigated. Future work includes the statistical analysis of the MPC for real-valued mode shapes.
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Appendix A. MPC computation

The eigenvalues λS1 and λS2 of S in (2) write

λS1 =
(Sxx + Syy) +

√
(Sxx − Syy)2 + 4S2

xy

2
, λS2 =

(Sxx + Syy)−
√

(Sxx − Syy)2 + 4S2
xy

2
. (A.1)

Plugging (A.1) into (3) gives directly expression (4). The MPC can be also expressed as a MAC value

between a mode shape and its complex conjugate. It writes as follows

MAC(ϕ,ϕ) =
ϕHϕϕTϕ

ϕHϕϕTϕ

=
(<(ϕ)T − i=(ϕ)T )(<(ϕ)− i=(ϕ))(<(ϕ)T + i=(ϕ)T )(<(ϕ) + i=(ϕ))

(<(ϕ)T − i=(ϕ)T )(<(ϕ) + i=(ϕ))(<(ϕ)T + i=(ϕ)T )(<(ϕ)− i=(ϕ))

=

(
Sxx − 2i<(ϕ)T=(ϕ)− Syy

) (
Sxx + 2i<(ϕ)T=(ϕ)− Syy

)
(Sxx + Syy)

2

=
(Sxx − Syy)

2
+ 4S2

xy

(Sxx + Syy)
2 = MPC(ϕ).
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Appendix B. Gaussian approximation of MPC distribution

Appendix B.1. Proof of Property (11)

For the computation of JMPC
ϕ∗

in (8), the partial derivatives (9)-(10) are evaluated in ϕ∗ and yield

∂MPC

∂<(ϕ)
=

4(S∗xx − S∗yy)<(ϕ∗)
T

+ 8S∗xy=(ϕ∗)
T − 4MPC(ϕ∗)c∗<(ϕ∗)

T

(c∗)2
, (B.1)

∂MPC

∂=(ϕ)
=

4(S∗yy − S∗xx)=(ϕ∗)
T

+ 8S∗xy<(ϕ∗)
T − 4MPC(ϕ∗)c∗=(ϕ∗)

T

(c∗)2
, (B.2)

where the respective scalars S∗xx, S∗yy, S∗xy and c∗ correspond to Sxx, Syy, Sxy and c computed with ϕ∗.

First it is proved that MPC(ϕ∗) ∈ {0, 1} ⇒ JMPC
ϕ∗

= 0. First consider the case MPC(ϕ∗) = 1. From the

definition of the MPC in (4) it follows

(
S∗xx − S∗yy

)2
+ 4
(
S∗xy
)2

=
(
S∗xx + S∗yy

)2
,

⇒ 4S∗xxS
∗
yy = 4S∗2xy,

⇒ ||<(ϕ∗)||2||=(ϕ∗)||2 = ||<(ϕ∗)||2||=(ϕ∗)||2 cos2(<(ϕ∗),=(ϕ∗)),

⇒ cos2(<(ϕ∗),=(ϕ∗)) = 1.

Hence, the angle between the real and imaginary part of ϕ∗ is 0 when the MPC is 1. Then, assuming

without loss of generality that the real part is non-zero, the imaginary part must be a multiple of the real

part with a · <(ϕ∗) = =(ϕ∗), where a ∈ R is a scalar. Consequently, (B.1) and (B.2) write as

∂MPC

∂<(ϕ)
=

4(S∗xx − a2S∗xx)<(ϕ∗)
T

+ 8a2S∗xx<(ϕ∗)
T − 4(S∗xx + a2S∗xx)<(ϕ∗)

T

c2∗
= 0,

∂MPC

∂=(ϕ)
=

4(a2S∗xx − S∗xx)a<(ϕ∗)
T

+ 8aS∗xx<(ϕ∗)
T − 4(S∗xx + a2S∗xx)a<(ϕ∗)

T

c2∗
= 0.

Similarly, for the case MPC(ϕ∗) = 0 it follows (S∗xx − S∗yy)2 + 4(S∗xy)2 = 0 from (4), thus S∗xx = S∗yy and

S∗xy = 0. Plugging this into (B.1) and (B.2) yields ∂MPC
∂<(ϕ) = 0 and ∂MPC

∂=(ϕ) = 0, which concludes the first part

of the proof.

Second it is proved that JMPC
ϕ∗

= 0⇒ MPC(ϕ∗) ∈ {0, 1}. Since (B.1) is zero, this yields

4(S∗xx − S∗yy)<(ϕ∗)
T

+ 8S∗xy=(ϕ∗)
T − 4MPC(ϕ∗)<(ϕ∗)

T (
S∗xx + S∗yy

)
= 0. (B.3)

Consider two cases, namely S∗xy 6= 0 and S∗xy = 0. In the first case, multiplying (B.3) from the right side

with =(ϕ∗) (which is 6= 0 since S∗xy 6= 0) yields

4(S∗xx − S∗yy)S∗xy + 8S∗xyS
∗
yy = 4S∗xyMPC(ϕ∗)

(
S∗xx + S∗yy

)
4(S∗xx + S∗yy) = 4MPC(ϕ∗)

(
S∗xx + S∗yy

)
⇒ MPC(ϕ∗) = 1.
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In the second case when S∗xy = 0, distinguish furthermore the cases S∗xx = S∗yy and S∗xx 6= S∗yy. When

S∗xx = S∗yy, then in particular S∗xx 6= 0 and <(ϕ∗) 6= 0, otherwise the mode shape would be 0. From (B.3) it

follows then directly MPC(ϕ∗) = 0. When S∗xx 6= S∗yy, then since both terms (B.1) and (B.2) are 0 it holds

also ∂MPC
∂<(ϕ) · <(ϕ∗)− ∂MPC

∂=(ϕ) · =(ϕ∗) = 0 and thus

4(S∗xx − S∗yy)(S∗xx + S∗yy)− 4MPC(ϕ∗)(S
∗
xx + S∗yy)(S∗xx − S∗yy) = 0 ⇒ MPC(ϕ∗) = 1.

Thus, all the possible cases for the second part of the proof lead to MPC(ϕ∗) = 0 or MPC(ϕ∗) = 1, which

concludes the proof.

Appendix B.2. Proof of Property (13)

In order to apply the first-order delta method, it is required that σ2
MPC = JMPC

ϕ∗
Σϕ∗(JMPC

ϕ∗
)T 6= 0. Since

JMPC
ϕ∗

6= 0 due to property (11), it remains to show that (JMPC
ϕ∗

)T is not in the null space of Σϕ∗ . Since

the mode shape estimate is defined up to a constant, it may be the direct unnormalized result of the eigen-

value decomposition, or a normalization may be applied depending on the identification procedure, which

determines the properties of Σϕ∗ . Here it is assumed that the identified mode shape is either unnormalized,

or that one of two widely used normalization schemes has been applied either with respect to one mode

shape component (called Normalization 1 [2]), or additionally with respect to the norm of the mode shape

(Normalization 2 [9]).

When no mode shape normalization has been applied, Σϕ∗ is full rank, assuming no dependencies between

the estimates of the mode shape components. Hence there is no null space and thus σ2
MPC 6= 0.

When mode shape normalization has been applied, denote ϕ̃ the unnormalized mode shape estimate.

For the considered normalization schemes it holds:

Normalization 1: The normalized mode shape is ϕ̂ = ϕ̃/ϕ̃k for some component k with asymptotically

ϕ̃k 6= 0. Its asymptotic covariance is given by Σϕ∗ = Jϕ̂,ϕ̃Σϕ̃J Tϕ̂,ϕ̃, where the estimate of Jϕ̂,ϕ̃ yields [2, 9]

Ĵϕ̂,ϕ̃ =

<(Ĵ cϕ̂,ϕ̃) −=(Ĵ cϕ̂,ϕ̃)

=(Ĵ cϕ̂,ϕ̃) <(Ĵ cϕ̂,ϕ̃)

 , where Ĵ cϕ̂,ϕ̃ =
1

ϕ̃k

(
Ir −

1

ϕ̃k
ϕ̃eTk

)
(B.4)

and ek ∈ Rr is the unit vector with entry 1 at component k. Notice rank(Σϕ∗) = rank(Jϕ̂,ϕ̃). Since J cϕ̂,ϕ̃
is the sum of the identity matrix and a dyadic product, rank(Jϕ̂,ϕ̃) ≥ r − 1. It holds eTk J cϕ̂,ϕ̃ = 0, thus

rank(J cϕ̂,ϕ̃) = r − 1 and rank(Σϕ∗) = rank(Jϕ̂,ϕ̃) = 2r − 2. The two null space vectors n1, n2 ∈ R2r of Σϕ∗

follow as nT1 = [eTk 0], nT2 = [0 eTk ]. To show σ2
MPC 6= 0, it needs to be shown that there exist no scalars

a1, a2 ∈ R such that

JMPC
ϕ∗

= a1n
T
1 + a2n

T
2 . (B.5)

Assume the contrary, namely that (B.5) actually holds. Then, a contradiction appears by multiplying (B.5)

with certain vectors, namely t1 =∆ [<(ϕ∗)
T =(ϕ∗)

T ]T and t2 =∆ [−=(ϕ∗)
T <(ϕ∗)

T ]T that yield on the left
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hand side JMPC
ϕ∗

t1 = 0 and JMPC
ϕ∗

t2 = 0 which follows immediately from (B.1), (B.2) and (4). Since ϕk = 1,

on the right hand side it follows nT1 t1 = 1 and nT2 t1 = 0 thus a1 = 0, and nT1 t2 = 0 and nT2 t2 = 1 thus

a2 = 0. Then JMPC
ϕ∗

= 0 in (B.5), which is a contradiction to JMPC
ϕ∗

6= 0. Hence, (B.5) cannot hold, thus

(JMPC
ϕ∗

)T is not in the null space of Σϕ∗ and σ2
MPC 6= 0.

Normalization 2: The normalized mode shape is ϕ̂ = ϕ̆/||ϕ̆|| with ϕ̆ = ϕ̃/ϕ̃k. A first-order perturbation

yields ∆ϕ̂ = − ϕ̆
||ϕ̆||3<(ϕ̆H∆ϕ̆) + 1

||ϕ̆||∆ϕ̆, thus

∆

<(ϕ̂)

=(ϕ̂)

 = Ĵϕ̂,ϕ̆ ∆

<(ϕ̆)

=(ϕ̆)

 with Ĵϕ̂,ϕ̆ = − 1

||ϕ̆||3

<(ϕ̆)

=(ϕ̆)

<(ϕ̆)

=(ϕ̆)

T +
1

||ϕ̆||
I2r,

and the asymptotic covariance of the normalized mode shape follows as Σϕ∗ = Jϕ̂,ϕ̆Jϕ̆,ϕ̃Σϕ̃J Tϕ̂,ϕ̆J Tϕ̂,ϕ̆ with

Jϕ̆,ϕ̃ as in (B.4). Notice rank(Σϕ∗) = rank(Jϕ̂,ϕ̆Jϕ̆,ϕ̃). Since Jϕ̂,ϕ̆ is the sum of the identity matrix and a

dyadic product, rank(Jϕ̂,ϕ̆) ≥ 2r − 1. It holds [<(ϕ̆)T =(ϕ̆)T ]Jϕ̂,ϕ̆ = 0, thus rank(Jϕ̂,ϕ̆) = 2r − 1. Since

[
<(ϕ̆)T =(ϕ̆)T

]ek
0

 6= 0 but
[
<(ϕ̆)T =(ϕ̆)T

]
Jϕ̂,ϕ̆ = 0,

the left null space vector [eTk 0]T of Jϕ̆,ϕ̃ cannot be in the image of Jϕ̂,ϕ̆ and it follows rank(Σϕ∗) =

rank(Jϕ̂,ϕ̆Jϕ̆,ϕ̃) = 2r − 2.

Thus, there are two null space vectors n1, n2 ∈ R2r of Σϕ∗ that follow as nT1 = [<(ϕ̆)T =(ϕ̆)T ], and

nT2 = [0 eTk ] since [0 eTk ]Jϕ̂,ϕ̆ = 1
||ϕ̆|| [0 eTk ] which is in the left null space of Jϕ̆,ϕ̃. To show σ2

MPC 6= 0, it needs

to be shown that there exist no scalars a1, a2 ∈ R satisfying (B.5) analogously to the first normalization,

by multiplying t1 and t2 to (B.5). Since =(ϕk) = 0, it follows nT1 t1 = 1 and nT2 t1 = 0 thus a1 = 0, and

nT1 t2 = 0 and nT2 t2 = <(ϕk) 6= 0 thus a2 = 0. Hence, (B.5) cannot hold, thus (JMPC
ϕ∗

)T is not in the null

space of Σϕ∗ and σ2
MPC 6= 0.

References

[1] E. Reynders, System identification methods for (operational) modal analysis: review and comparison, Archives of Com-

putational Methods in Engineering 19 (1) (2012) 51–124.

[2] E. Reynders, R. Pintelon, G. De Roeck, Uncertainty bounds on modal parameters obtained from stochastic subspace

identification, Mechanical Systems and Signal Processing 22 (4) (2008) 948–969.

[3] R. Pintelon, P. Guillaume, J. Schoukens, Uncertainty calculation in (operational) modal analysis, Mechanical Systems

and Signal Processing 21 (6) (2007) 2359–2373.

[4] M. Döhler, L. Mevel, Efficient multi-order uncertainty computation for stochastic subspace identification, Mechanical

Systems and Signal Processing 38 (2) (2013) 346–366.
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[29] M. Bhuyan, G. Gautier, N. Le Touz, M. Döhler, F. Hille, J. Dumoulin, L. Mevel, Vibration-based damage localization

with load vectors under temperature changes, Structural Control and Health Monitoring 26 (11) (2019) e2439.

20
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