Statistical optimization for subspace-based damage quantification
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ABSTRACT: The purpose of model updating is to minimize the misfit between the structural response measurements
and an assumed numerical model. In the context of damage quantification, this misfit is characterized by some features
computed from the response data measured on the faulty structure, and its Finite Element (FE) model in the healthy
condition. The FE model is parameterized so that the estimated features are related to the physical parameters of the
model. Therein, the parameterization size may be large. As a consequence of low instrumentation, different parameters
can have a similar effect on the estimated features, resulting in non uniqueness of the updating problem solutions,
even taking into account the inherent uncertainty errors, originating both from the model and the measurements. In
this paper a model updating-based damage quantification strategy is proposed. It involves the minimization of two
Hankel matrices, one computed from the data and another from the optimized model. The difference between those two
matrices is studied, in particular in the practical case where the ambient excitation is unknown. It yields a statistical
residual, whose deviations from zero can be evaluated through a statistical test. The resulting optimization is based
on the Generalized Likelihood Ratio test as an objective function and uses its 95 per cent quantile as a measure of
closeness for a stopping criterion for the optimization. Moreover, the large size of the finite element model to optimize
compared to the low instrumentation has to be taken into account by clustering the parameter space. This clustering
is proceeded using the well known stochastic subspace-based damage localisation method. The proposed framework is

validated on simulations of a simple mechanical system.
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1 INTRODUCTION

The damage diagnosis problem can be divided into damage
detection, localization, quantification and lifetime predic-
tion [1]. Whereas the detection of damages from vibra-
tion measurements is well established e.g. in [2-7], the
localization and quantification of damages is more com-
plex, and requires additional physical information on the
examined structure [8-11]. In this respect, few complete
frameworks for damage identification exist, e.g. [12-14].
Some methods consider a specific structural type in their
theory, e.g. beams [13], while other methods incorporate
the required physical information from a FE model, which
allows application to more complex structures. In this
context, the sensitivities of a damage feature computed
from the structural responses can be used to infer FE
model parameter changes in [12], under the assumption of
small damage extents. Contrary to these approaches, FE
model optimization-based methods are usually not limited
by the structural type or by the damage extent. Therein
model updating is a generic term encompassing a family
of many methods [15,16], that are often applied in the
damage quantification context [17-20]. However, model
updating methods are often poorly conditioned due to
the possibly large FE parameter space in comparison to
relatively few parameters that can be extracted from data,
and are prone to statistical uncertainty errors of the esti-
mated features. The objective of this paper is to develop a

cascade framework where the damage is first localized and
then quantified on the subset of the damaged parameter
space, and which explicitly considers data-based uncer-
tainties in the model optimization. An objective function
is proposed based on the statistical hypothesis test of a
residual composed from the Hankel matrices of output
covariances of the monitored system compared to a numer-
ical counterpart. The proposed residual unites simplicity of
the damage feature, robustness towards changing ambient
excitation conditions by an appropriate normalization, and
a sound statistical evaluation within the local approach
framework.

The paper is organized as follows. The considered model
optimization problem, the background on system model-
ing is stated in Section 2. The objective function based
on Hankel matrix difference is defined in Section 3. The
damage quantification framework based on the damage
localization-based parameter clustering and the stochastic
optimization scheme is presented in Section 4. The applica-
tion of the proposed framework on a numerical simulation
of a simple mechanical system is enclosed in Section 5.

2 BACKGROUND

The overall goal of this paper is the estimation of the
structural parameter change between a healthy reference
state and the current damaged state. Let 6 € © C RP be
the parameter vector that contains the damage-sensitive



parameters of the structural elements of interest for the
considered problem within a bounded parameter space
O. The parametrization is user-defined and adapted to
the specific monitoring problem at hand. It is assumed
that the parameter vector 6y in the healthy state of the
structure is known, and let 6, be the parameter vector in
the damaged state. It is the goal to obtain an estimate 0
of 6, from vibration measurements in the damaged states
for estimating the damage extent 6 = 6, — 0p. Finding the
optimal 6 can be formulated as an optimization problem,
where an objective function F'(f), also called cost function,
is minimized over the parameter space ©.

The objective function is designed to represent the discrep-
ancy between 0, the estimate of a feature vector computed
from measurement data recorded under the (unknown)
system parameter 6., and its counterpart v(f) computed
from a parametric model. The optimal solution for 6 is
then obtained as

6 = arg min F(6). (1)

s

A classic feature vector ¢ for the design of the objective
function F'(f) in (1) is based on the modal parameters of
the monitored system [21], and their statistical uncertain-
ties obtained using e.g. [22-24]. In this work an objective
function is proposed based on the statistical hypothesis
test of a residual composed from the Hankel matrices of the
monitored system compared to a numerical counterpart.
An immediate advantage is to avoid the computation and
the correspondence between the numerical modes and the
estimated ones.

A decision whether the current parameter of the numerical
model 8 corresponds to the unknown parameter 6, needs
to take into account the uncertainty information of the es-
timated feature and its sensitivity towards the considered
parameterization. An approach to assess this equivalence
is to define a residual whose properties can be evaluated
properly as the number of samples goes to infinity. For
this, two hypotheses are defined

Ho: 0 = 6. (model matched), (2)
Hy: 60 =6, +r/VN (model mismatched),

where k = V/N(0 — 6,) is a change vector between the
assumed system parameter 6 and the the sought parameter
0. . Notice that the hypotheses Hg and H; are reversed
from the classical damage detection setup in [8], where Hg
represented the healthy reference state, whereas here it
represents the damaged state, which is now a reference for
the model updating.

2.1 System and models

Assume that the dynamics of the monitored system can
be modeled as linear time-invariant (LTI) with d degrees
of freedom (DOF'), which are described by the differential
equation of motion

MO(t) +D4(t) + KOq(t) = u(t) 3)
where t denotes the continuous time, and the matrices M?,
D? and KY € R¥*? denote the mass, damping and stiffness
matrices, respectively, which depend on the system param-

eter 6. The vectors ¢(t) € R? and u(t) € R? denote the
continuous-time displacements and the unknown external

forces, respectively. Observed at r sensor positions, e.g. by
acceleration, velocity or displacement sensors at discrete
time instants ¢ = k7 (with sampling rate 1/7), system
(3) can be transformed into the discrete-time state-space
model [25]
.TZ_,_]_ = Aell'g + wi (4)
yd = C%8 + vy

where xi € R"™ are the states, yz € R" are the outputs,
vectors wg and vg denote the white process and output
noise respectively, A’ € R"*", 0% ¢ R™*™ are the state
and observation matrices, and n = 2m is the model order.
The process noise vy, is assumed to be a stationary process
with zero mean and covariance matrix Q@ = E(vgv]),
wy, denotes the zero-mean output noise with covariance
matrix R = E(w,w] ), and the covariance between vy and
wy, is S = E(vgw]), where E(-) denotes the expectation
operator.

For simplicity, the (-)? notation is dropped in the remain-
der of this paragraph. Let R; = E(yzyl_,) = CA™1G be
the theoretical output covariances of the measurements,
where G = E(z+1y} ) = ALCT+S and X% = E(z2l) =
AY*AT 4+ Q. The collection of R; can be stacked to form
a block HanEel matrix

Ri Rz ... Ry S
R» Rz ... R
H= § 2 q.“é e R&Drxar (5
Rp+]_ Rp+2 PP Rp_g_q

where p and ¢ are chosen such that min(pr,gr) > n with
often p+1 = ¢. Matrix H enjoys the factorization property

H=0(C,A) C(A,G), (6)
where the observability and controllability matrices O(C, A)
and C(4,G) 2are de?fined as

c
CA

O(C,A):§ | Z C(A,G)= G AG ... A11G |, (7)
C AP

where (A, C) can be easily computed directly from M,
D, K [25], and G is obtained based on the chosen noise
properties after [26].

Consistent estimates 7 can be obtained from the output
covariances of the measurements {yj =1, N+p+q €8 DY

H=yry T, (8)
where the data Hankel matrices Y* and Y~ contain future
and past time horiZé)ns

yq+1 yq+2 yN+q
y+ B 1 g Yq+2 Yg+3 - yN+q+lé
WA o o ®
y§+q+l yp+q+2 e yp+q+3]\]
Yq Yg+1 - YN+g—1
1 Yg—1 Yq -+ YN+q-2
yo= L gl e mezg

VN :
Yy Y2 ... YN
The estimates of O(C,A) and C(A,G) are classically
obtained from a singular value decomposition (SVD) of
‘H thanks to the factorization property (6).



2.2 Hankel matriz normalization scheme

Model-based Hankel matrix parametrized with 6, and
Hankel matrix computed from data generated under pa-
rameter 6, can be compared by a simple objective func-
tion for a model optimization-based damage quantifica-
tion. Hankel matrices, however, are not only dependent
on the dynamics of the system, but also on the unknown
covariance of the noise processes (). Then, since the model-
based Hankel matrix can not be defined under the same
@ as its data-based equivalent, their comparison in search
of 0 is meaningless. To overcome this problem, a proper
normalization of the model-based Hankel matrix is recalled
after [27], where this normalization was introduced to com-
pensate change in the noise properties between different
data sets. Here, since there is only one data set, the matrix
Q@ is not changing but is still unknown, and the same
normalisation is useful.

Let Hzata and Hfmde, be two exact Hankel matrices of
rank n for a system in the state 6., subjected to process
noise with different covariances Qgata and Qmodel- A SVD
of the juxtaposed matrices Hyata and Hmodel Writes

Ds0 VI
HG 7‘[9 = [Us Uker} S sT ) (9)

data ’“model 00 Vker

6 6 _ 1
where rank  Hi . HE i = n, Us € ROFD™n con
tains the left singular vectors, Ds € R"*™ contains

the non-zero singular values and Vi € R2I™*™ contains
the right singular vectors, which are split into Vi =
Vg:ma V.gmodd corresponding to i, and HE o Te-
spectively. Now define

Zdata = DS‘/S,{(‘jata) Zmodel = stgmodela (10)

where both Zgata and Zmogdel are full row rank. The exact
Hankel matrices share the same image in the reference
state

0 0
Hdata Hmodel

To compare Hzata with H
tion is given by

= Us [Zdata Zmodel] .

0
mode

(11)
| an appropriate normaliza-
Hmodel = H%odeIZ:nodeIZdata, (12)

where Hmodel now shares the same C(A, G) as ”Hzata.

2.8 Hankel matriz difference-based residual for damage
diagnosis

Let 'Hﬁwde' be the model-based Hankel matrix generated
under some chosen process noise covariance Qmodel- Next,

let ’}:[zata be obtained from a data set of length N gener-
ated under a process noise covariance Qgata, With Qgata
different from Qmoder- Then, after (11) it yields

7'[r‘gnodelzr];odelzdata - 7'[Zata =0 iff 6=0,,
and

HY odel 21 oqer Zdata — Hopea 70 iff 0 #6.,  (14)
where Zgata and Zmnoder are obtained from an SVD of
Moot Hoogerl as in (9) but truncated at order n.

Based on both (13) and (14), the change detection residual
is defined as

29 def /= 0 2 z 10
¢ = j\f"eC(HmodelerfnodelZClata — Mata)>

(13)

(15)

where Zdata and Zmode. are defined from the following
SVD and partitioned at order n "

2 T T
7210 'HG U Uk Ds 0 s,data Vs,model
del S er ~ T T
data "Tmode 0 Dier Vker,data Vker,model
2 N T > A VT
as Zdata = DS‘/;dataa Zmodel = DSvs,model'

Then, (15) is zero if and only if the parameters 6 and 6,
correspond, up to some statistical considerations that will
be discussed in the next section.

Alternatively or concurrently to the difference of Hankel
matrices, other metrics can be used, based on modal
parameters or the kernel of the Hankel matrix used for
damage localization in [8]. The present metric has the
merits to relate to the classical Manhalobis distance [27].

3 OBJECTIVE FUNCTION BASED ON HANKEL
MATRIX DIFFERENCE

In this section an objective function for model optimiza-
tion is expressed by a difference between two Hankel ma-
trices. The statistical properties of the residual defined in
Section 2.2 are derived and a hypothesis test for data-
model correspondence is established. Then, an objective
function for optimization of the numerical model is con-
structed. Finally, a criterion for assessing the minima of
the objective function is derived based on the quantile of
the developed statistical distribution.

8.1 Residual distribution

To characterize the distribution of the residual (15) the
asymptotic local approach for change detection [28] is
used. Firstly, thanks to the Central Limit Theorem (CLT),
the local approach ensures that H,., is asymptotically
Gaussian, and it holds

- L
\/NVGC(’Hzata - Hzata) — N(07 Edata), (16)
where Ygata is the asymptotic reference Hankel matrix

covariance. Note that an estimate of Xgata can be easily
obtained from the sample covariance as in e.g. [29].

Then, it can be proved that the residual in (15) is asymp-
totically Gaussian with the following properties

Ho: (7 £ N(0,30), (17)
Hy : ¢ 5 N (TS k, 5e) (18)

where
ZC = k7’£[datazdata(t7’7§[data)T’ (19)

and j;idata = Ip+1yr @ UkerUlk,. The sensitivity of the

residual with respect to the chosen parameterization JGC
is defined as

T
j@C = (Zéatazdata) ® UkerUIZ;r k7(97-ldata7
where J;t%= = dvec (Haata)/0 (6.).

(20)

Notice that the sensitivity matrix Jg{da‘a is not computed
from the unknown model 6,, but from the data alone. In
that sense, the sensitivities are expressed with respect to a
data-driven parameterization, which consists in the modal
parameters. As such, a consistent estimate of Jeﬁdata can



be computed using the modal parameter estimates, as in
[30].

3.2 Objective function for model optimization

Let 2 and B respectively be consistent estimates of jeg
and X¢. Then a Generalized Likelihood Ratio (GLR) test
to decide between Hg and H; writes as

GLRY = ()T H-1h bTH-1h -t PO (o)

Assuming ¥ to be invertible, under Hy, GLR? follows a
X2 distribution with rank(Jg ) degrees of freedom.
The test value from (21) can be directly used in the
objective function for the model optimization as

F(6) = GLR’. (22)
The qyantile g,2 of the underlying x? distribution, satis-
fying Oq : fy2(x)dx =, where 7 is a desired confidence
level, can be used to define an acceptance region

© = {0: GLR? < ¢,2},

which comprises all parameter vectors 6 that yield H

(23)

0
model

to comply with the estimated reference 'Hzata under the
statistical distribution of the GLR. Thus, © comprises
the statistically acceptable solutions for 8, with regards
to the considered models, and a stopping criterion of the
optimization search can be formulated for 6 € ©.

Notice that the stopping criterion and the objective func-
tion do not involve computation or matching of the nu-
merical modes for any model. Only the modes identified

from the data set are needed in the computation of ﬁ It
yields a very direct and simple computational scheme for
optimization.

4 DAMAGE QUANTIFICATION STRATEGY

In the previous section, an objective function has been
elaborated whose set of minima corresponds to models
that are statistically compliant with the Hankel matrix
computed from measurements. As such, looking for the
minima of this function will yield the sought models. This,
however, is not trivial.

For example, some optimization strategies might be stuck
in local minima due to the rugged nature of the proposed
objective function. Moreover, the lack of identifiability for
parameters of large FE models requires clustering in order
to estimate the change over subsets of similar parameters,
and consequently to quantify the possible damage. In this
paper, it is proposed to chain a damage localization ap-
proach with a model optimization procedure to minimize
the designed objective function (22) over the subset of
parameters that have been recognized as damaged by the
localization approach. In this way, the search domain for
the optimization approach can be reduced efficiently. The
resultant damage quantification framework is summarized
in Figure 1.

For damage localization, the subspace-based damage local-
ization approach [8] is chosen, and the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [31] is adapted
as the optimization approach. Both methods are outlined

in the following subsections. Similarly, other localization
methods and other optimization methods can be chosen
for this framework. The damage quantification procedure
comprising the aforementioned strategies is summarized in

Algorithm 1.

[ Measurement data under 6, ] [ Model: K%, M?, D ]

[ Sensitivity-based clustering ]

— —

Figure 1. Damage quantification flow chart
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4.1 Damage localization and statistical sensitivity-based
clustering

Due to a possibly large FE model-based parametrization
f on one side and limited measurements regarding the
number of sensors on the other side, the sensitivity of the
optimized feature vector with respect to some components
of 6 may be equal or be very close. Thus, such parameter
components are indistinguishable, and clustering of the
parameters is performed to estimate their total change
over some localized subset.

For this purpose the statistical sensitivity clustering,
which is a part of the subspace-based damage localization
[30,8,32] is used. The output of such a procedure is a subset
of the parameter vector 6, denoted by #'°°, which con-
tains all parameters of the clusters that are recognized as
damaged. Hence, it can be considered that the remaining
parameters in 6 are unchanged. Subsequently, the damage
extent can be quantified by updating only the parameter
subset 0'°°. Thus, linking the damage localization with
an adequate model optimization method should lead to
a damage quantification scheme, where the dimension of
the search domain is reduced by the localization approach.
Clustering the parameter space is essential for large pa-
rameterization. However, this will not be detailed in the
considered numerical applications for proof of concept
where all elements are well separated statistically.

4.2 Model optimization with modified CMA-ES

Starting with the initial value § = 6jnjt corresponding
to the model in the reference state, the CMA algorithm
consists in generating A model candidates 0?, j=1,... A,
in each population g, by sampling a multivariate Gaussian
distribution. The model candidates are only modified on
the parameter subset '°° that is given by the localization
approach. The sampling is carried out on the considered
parameter subset for the subsequent population g + 1 as

(H}OC)g"'l =m?+¢;, ¢ ~dIN(0,C7), (24)
where 7 = 1,...,\ and mY is a weighted mean of the
model candidates (9}“)9 in the parent generation. Then,
the parameter subset of the full parameter vector G?H is

updated with (9}°°)9+1. Equation (24) represents a mu-
tation and recombination into offsprings, for which the



CMA-ES algorithm adapts the parameters C'Y and o9 in
each generation. The covariance matrix CY9 of the added
Gaussian noise represents the amplitude for the sampling
to occur, and the scaling factor o9 determines the range
of the considered mutation. Consequently, the optimiza-
tion continues and the best parent solutions replace the
offspring until it converges to a solution. For CMA-ES,
the covariance matrix CY9 is incrementally updated with
rank-one matrices representing the direction between the
best parent solutions at two consecutive generations, such
that the likelihood of previously successful search steps is
increased [31].

For the convergence to a solution, a stopping criterion is
included in the algorithm that is adapted to the acceptance
region (23). Since the acceptance region consists of all
models that are equally optimal in the statistical sense,
the algorithm can stop once a number #opt of population
model candidates are inside the region, where topt > 1. A
higher value leads to more confidence in the set of retained
solutions. Once inside the acceptance region, there is no
need to further minimize the objective function, avoiding
unnecessary additional computations. 10

© 0w N e A

Then the final solution is computed as the mean of the'
selected model candidates ng-k € O in the last population
g that are lying in the acceptance region, with 12

09, (25)

Finally, the change in the parameter vector is evaluated
for damage quantification. Since the changes in the pa-
rameter components of each cluster are indistinguishable
as described in the previous section, only the global change
for each cluster can be evaluated, while the separate eval-
uation of changes of different parameters within the same
cluster is impossible. Then, the change in any damaged
cluster ¢ can be evaluated as

D¢
2 ic(k ic(k
Oc = asof ) - aini(t) (26)
k=1
where i.(1),...,i.(p.) are the indices of the components

of parameter vector 6 that correspond to cluster ¢, and p.
is the number of elements in c.

5 NUMERICAL APPLICATION

In this section, the proposed damage quantification frame-
work is applied in a numerical experiment on a 6 DOF
mechanical chain-like system that for any consistent set of
units is modeled with spring stiffness k1 = k3 = ks = 100
and k» = ks = ke = 200, mass m; = 1/20 and a
proportional damping matrix such that all modes have a
damping ratio of 3%. The chain is illustrated in Figure 2.
The system is excited by a white noise acting at all DOFs
whose covariance yields Q = bbT where b € R®*® is a
matrix whose entries are drawn from a standard normal
distribution. The structural accelerations are simulated at
DOFs 1, 3 and 5 at a sampling frequency of 50 Hz, and
white measurement noise with 5% of the standard devia-
tion of the output is added to each response measurement.
Each measurement comprises N = 200,000 samples.

Algorithm 1: Model optimization

Input : output measurements {yx}x=1,.. N-+p+q
physical parameter finit;
parameterized model K¢, M?, D ;
optimization parameters from Table 1 ;
Output: estimated parameter value 6o and

estimated total change § for each cluster ;
compute ’Hfma from (8) and the estimate of Yqata ;
create KC%nit, MOinic COnic and compute HEME | from
(6) and (7) ;
compute the residual ¢? (15), the estimate of 3¢ (19)
and JOC (20) ;
evaluate F'(Oinit) in (22) ;
repeat
get A model candidates 61,...,60) in (24) ;
repeat steps 2, 3 and 4 with 641,...,0) ;
update CMA-ES parameters after [31] ;
count the number ¢ of model candidates 6; with

0; € © in the acceptance region, see (23) ;
until ¢ > topt;
compute 5o in (25) as the mean of all model
candidates in © ;

compute the change in the parameter value 5. for
each damaged cluster ¢ in (26)

I o ol
sensor 1, sensor 2, sensor 3,
—_— —_— —_—

Figure 2. 6 DOF chain system sketch

In total 1000 data sets for each case of @ are realized.
In each data set the damage is modeled as a stiffness
reduction of the 4-th spring by 5%. Hereafter let 6 be
the collection of the element stiffness ki_g. Albeit the
damages considered herein relate to the stiffness changes,
the proposed approach is general and can be formulated
to quantify changes in any parameter of the numerical
model for which the modal parameter sensitivities are non-
zero. For damage quantification the procedure outlined in
Algorithm 1 is used.

Due to the simplicity of the examined system, each param-
eter is reported in a separate cluster, indicating that the
sensitivities of the estimated residual w.r.t. the considered
system parameters are distinguishable. Moreover, a large
probability for damage in the 4-th spring is reported by
the subspace-based damage localization method, correctly
mapping the location of damage. Since the parameter-
ization is small enough, the full parameter set can be
used for the damage quantification with Algorithm 1. In
practice, however, the optimization would be only run on
the detected clusters. The parameters used to initialize the
optimization algorithm are depicted in Table 1.

Firstly, the proposed objective function is examined. The
function F(0) in (22) maps the p-dimensional parameter
space to a multidimensional hyperplane whose shape can
easily be illustrated for p = 2. Consider the estimate

of Hgata computed from the available data, and HY 4e



Table 1. CMA-ES optimization parameters

ot

min—max

A topt

60% A

i
Oinit einit

60 150 75-225 1000

parametrized with spring stiffnesses k;. The corresponding
function F'(0) is displayed for the parameter pair (ks, k4) in
Figure 3 and (k4, ks) in Figure 4. Note that the remaining
spring stiffnesses are (k1 = 100, k, = 200, kg = 200).
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Figure 3. Objective function F(#) for the parameter pair
ks and k4.
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Figure 4. Objective function F'(#) for the parameter pair
k4 and ks.

It can be viewed that F(6) is convex in the considered
parameter region. The global minimum of F(0) is well-
aligned with the value F(6.) at the exact parameter pair
(100, 190) for the parameters k3 and k4 and (190, 100) for
the parameters k4 and ks. A group of parameters around
the true value satisfies the uncertainty-based stopping cri-
terion. This is a consequence of the statistical uncertainty

introduced by estimating ’Hzata in F(0).

Secondly, the optimization results based on a single mea-
surement set are analyzed. Fach optimization population
contains A parameters, from which tqpt parameters are re-
quired to be within the acceptance region for the algorithm
to stop. As such, the estimated change can be examined
for every parameter set in each iteration of the algorithm,
illustrating its performance. This is depicted in Figure 5.

Figure 5 shows the iterations of the estimated change oy,

and SkA until the last iteration. Notice that within the
last iteration not all the parameters are compliant with
the stopping criterion. Those parameters are characterized
with a higher objective function value, which indicates
that at least one considered model is not corresponding to

first iteration
O last iteration - parameters not satisfying the stopping criterion
last iteration - parameters satisfying the stopping criterion

10°

10"

F(0)

10°

100 J
100

N 0 -100 2
51Cs 61€.\

Figure 5. CMA-ES optimization of the change in
parameters k3 and kg.

measurements. The model optimization takes 12 iterations
to converge to a feasible solution, which together with the
acceptance region is visualized in Figure 6.

last iteration - parameters satisfying the stopping criterion
¢ true dy,, Oy,
®  chosen solution

10°

5 - -2
51‘»4 -20 5 0 . -5 -10 15 0
Oy

Figure 6. Zoom on the changes in k3 and k4
corresponding to the acceptance region in the last
iteration.

A zoom on 5k3 and 3k4 illustrated in Figure 6, corresponds
to the parameters complying with the stopping criterion.
The estimates are spread around the exact value, whereas
the mean solution is close to the exact value.

Next, consider estimating b, for each of the 1000 mea-
surement realizations. Each data set yields different esti-

mates ﬁgata governed by the same statistical distribution.
Consequently, the variability of each o) stems from the
statistical uncertainty of ”Hzata. Thus computing by from
independent data sets should yield a histogram whose
variance corresponds to the variance of the estimate of

0. The histograms of 5y for each system parameter are
plotted in Figures 7-9.

It can be viewed that for each parameter case the mean

value of 8, from all histograms aligns with the true change
value, and the 5% damage in k4 is correctly quantified.






