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Abstract

The pervasiveness of smartphones has shaped our lives, social norms,
and the structure that dictates human behavior. They now directly in u-
ence how individuals demand resources or interact with network services.
From this scenario, identifying key locations in cities is fundamental for
the investigation of human mobility and also for the understanding of so-
cial problems. In this context, we propose the rst graph-based method-
ology in the literature to quantify the power of point-of-interests (POIls)
over its vicinity by means of user mobility trajectories. Dierent from
literature, we consider the ow of people in our analysis, instead of the
number of neighbor POls or their structural locations in the city. Thus, we
modeled POIl's visits using the multi ow graph model where each POl is a
node and the transitions of users among POls are a weighted direct edge.
Using this multi ow graph model, we compute the attract, support, and
independence powers The attract power and support power measure how
many visits a POI gathers from and disseminate over its neighborhood,
respectively. Moreover, the independence powercaptures the capacity of
a POl to receive visitors independently from other POls. We tested our
methodology on well-known university campus mobility datasets and val-
idated on Location-Based Social Networks (LBSNs) datasets from various
cities around the world. Our ndings show that in university campus: (i)



buildings have low support power and attract power ; (ii) people tend to
move over a few buildings and spend most of their time in the same build-
ing; and (iii) there is a slight dependence among buildings, even those
with high independence powerreceive user visits from other buildings on
campus. Globally, we reveal that: (i) our metrics capture places that
impact the number of visits in their neighborhood; (ii) cities in the same
continent have similar independence patterns; and (iii) places with a high
number of visitation and city central areas are the regions with the highest
degree of independence.

1 Introduction

Internet devices and connections are growing faster than both the population
and Internet users, as foreseen by Cisco [13]. Forecasts mention global mobile
data tra c that will grow nearly twice as fast as xed IP tra c from 2017 to
2022: Smartphones account for most of this growth [13, 14]. As a consequence,
humans are immersed in a highly connected and ubiquitous cyber-physical con-
text.

Such pervasiveness of smartphones has remodeled our lives and made our
real-life and virtual activities seamlessly merged together. i.e., most of our ac-
tivities have now gone digital in some ways. In this context, mobile applications
create a digital footprint that directly re ects our routines and whereabouts.
Large datasets are currently being collected by various stakeholders to leverage
this digital footprint in order to better learn our tastes, habits, and social lives,
which also created new opportunities for research [18, 49].

This of course gave rise to deep studies of human activities and habits from
such large sets of various data types [1, 52]. Social norms and structure dictating
human behavior (e.g., mobility, interests) are now directly in uencing the way
individuals interact with the network services and demand resources or content.
Many works address these opportunities by means of user mobility prediction
and Point-of-Interest (POI) recommendation [52, 17, 29]. However, another
fundamental area of study in traditional urban literature is the investigation of
the way in which city neighborhoods become popular and how the movement
of citizens impacts the number of visitations in POIs [18, 17, 11, 20].

In fact, identifying key locations, which are places where persons spend a
considerable amount of time during the day or which they visit frequently [43], is
central to understand human mobility and social patterns. Such understanding
can, in turn, inform solutions to large-scale societal problems in elds as varied
as telecommunications, ecology, epidemiology, and urban planning [31]. In the
literature, many works address human mobility as a graph-based approach [11,
44] that creates an opportunity for identifying important locations by means of
power relationships, where one has the capacity to in uence others or events.

In his seminal work on power-dependence relations, Richard Emerson [22]
claims that power is a property of the social relation: i.e., saying X has power"
is vacant, unless we specify dver whont'. Based on this claim, [9, 8] de ne power
in the context of exchange networks, where the relationship in the network and



their weights involve the transfer of valued items (i.e., information, time, money,
energy). Dierent from centrality measures such as PageRank and closeness,
which state that a node is central if it is connected with central nodes, Bozzo and
Franceschet [9] consider that a node in a network is powerful if it is connected
with powerless nodes. This notion of power leads to two assertions concerning
the power of a node: (i) it is directly correlated with the number of its neighbors,
and (ii) it is inversely correlated with the power of its neighbors [9]. In fact,
the more ties a node has, the more powerful the node is. However, the second
property, which is not habitual, characterizes power well: powerful nodes can
impose their will on powerless nodes since the rst has many other options to
negotiate and the latter does not [8, 9].

Given the above context, in this paper, we propose the rst graph-based
methodology in the literature to quantify the power of POIs by means of user
mobility trajectories. Di erent from [9], which infer the power of nodes from the
sum of reciprocal node degreesye infer the power of a node from its visiting
ows and according to the following three distinct approaches:

First, the attract power, which is the capacity of a POI to receive people
from its vicinity.

Second,the support power which is the capacity of a POI to disseminate
people over its vicinity. In other words, given a large set of visits and
mobility trajectories made by people, we calculate the potential impact
[11], or in uence, a POI has in its neighborhood. Imagine, for instance, a
university campus and its impact on its nearby restaurants and bars when
it is closed for summer vacations.

Third and conversely, the independence powerwhich is the potential re-
silience a POI has to other POIs moving out from its neighborhood. Using
the same example, replacing (or shutting down) restaurants and bars in
the vicinity of the campus will probably not a ect its visitations much.

Table 1: Centrality values for di erent metrics

POIs attract power support power betweenness closeness

A 0 1.42 0 0
B 0.32 0.05 0 0.44
C 0.33 0 0 0.20
D 0.82 0.71 0.25 0.60
E 0.10 0.05 0.15 0.36
F 1.06 0 0 0.53

To exemplify the di erence from our approach to other traditional metrics
of centrality, we show in Figure 1 an example of a graph in which the nodes
are POIls and the number associated with each node represents the number of
visits to that node. The edges represent the ow of people between the POls
and the associated number represents the number of people who have made this
transition. Table 1 shows the centrality values for each metric for the dier-
ent POIs in the graph. Observe that for traditional centrality metrics such as



Figure 1: Example graph

betweenness and closeness, node D is considered to be the most important in
the network. However, according to our metrics, it would still be an important
node, but node F is the node with the highestattract power because it receives,
proportionally, most of the ow of visits from its neighbors D and E. Similarly,
node A is the node with the highestsupport power as it has the greatest pro-
portional impact on the number of visits in its neighborhood. In other words,
nodes B and C depend almost exclusively on node A. Also, node A is the node
with the highest independence powebecause the total visits it receives do not
come from other POlIs in the neighborhood, i.e., all the people who visited POI
A went directly to it. For more details about our metrics see Section 3.

Unlike traditional centrality metrics, our metrics tackle the modeling of ows
in exchange networks and identify places of poweBesides, they clearlydistin-
guish among the three types of power a POl can assumeamely power: to
disseminate, to gather people, and to be indi erent to the ow of people visit-
ing the POls in the vicinity. It is worth mentioning that some literature studies
analyzed the impact that a new business has on the local market ecosystem
[11, 17] or the resilience in terms of business survival characteristics [19, 56].
Di erent from these works, our work quanti es the impact of the POI in its
vicinity individually, without category dependence Besides, our work measures
the POI resilience by means of visitation independence, i.e.t is invariant to
the instability of vicinity visits . Section 2 describes in detail the state-of-the-art.

Although we applied the methodology in the context of urban mobility, it can
be used in other contexts, such as the analysis of the in uence on social networks
through the dissemination of information. Our metrics would help to identify
who are the most in uential people (support powep, i.e., a person who produces
a lot of content and is consumed and reposted by many users. Conversely, they
could help to identify the most passive people &éttract power), i.e., users who
consume from several other users but do not produce content. Additionally,
it can also be used to model epidemic dissemination as shown in Section 6.
In this problem, our metrics can help identify how much a neighborhood can



be aected if the most powerful POls in this region contaminate the people
who visit them. The e ectiveness of infection could be tested since our metrics
identify and quantify the most powerful places to spread and attract people.

In short, the main contributions of this work are vefold:

We propose a graph-based methodology nameiulti ow Graph Model
(MGM) to identify key locations, where each POI is a node and the tran-
sitions of users among POls are a weighted direct edge. The weight of the
edge is the number of transitions made by people who moved from one
POI to the other. Therefore, from mobility user trajectories, we modeled
the problem by means of Power relations among POIs.

From this MGM approach, we propose three di erent in uence measures:
the attract power and support power, which are, respectively, the capac-
ity of a POI to gather and to disseminate people, and theindependence
power, which is the POI capacity of receiving visitors independently from
others POls. Dierent from other metrics of Power, the independence
power, attract power, and support powerranked as powerful distinct POls
(Section 3).

We tested our methodology on well-known University Campus mobil-
ity datasets and validated on Location-Based Social Networks (LBSNSs)
datasets from various cities around the world (Section 4.1). Our ndings
show that in University campus: (i) buildings have low support powerand

attract power; (ii) people tend to move over a few buildings and spend
most of their time in the same building; and (iii) there is a slight depen-

dence among buildings, even those with higlindependence powereceive
user visits from other buildings on campus.

Globally, we reveal that: (i) our metrics capture places that impact the

number of visits in their neighborhood; (ii) cities in the same continent

have similar independence patterns; and (iii) places with a high number
of visitation and city central areas are the regions with the highest degree
of independence (Section 5).

We propose a practical application of our metrics in a case study of epi-
demic dissemination (Section 6).

Finally, we conclude and comment on the perspectives of our work in Sec-
tion 7. To the best of our knowledge, this is the rst work in the literature
that uses power relations, in terms of impact and independence, to infer the
importance of a POI in its vicinity.

2 Related Work

The literature is rich in solutions that aim to leverage human mobility. The rise
of mobile technologies and collective sensing in the last decade has contributed



to the generation of large datasets that describe activity dynamics in cities and
has created new research opportunities [18, 49]. Thus, researchers addressed
this challenging task using di erent data sources, such as location-based social
networks and mobility traces.

Such mobility data sources have been used in the study of POl recommenda-
tions [59, 58]. The general idea of such works is to exploit the social connections
and the favorite POIs of users to recommend new places to be visited. Ye et
al. [58], for instance, explored user preference, social in uence, and geographical
in uence to provide a POl recommendation service. Similarly, Zhang et al. [59]
proposed a new approach called LORE to exploit the sequential in uence of
locations on users' check-in behaviors for location recommendations.

There are also works that analyze mobility data to predict, as accurately as
possible, the future location of individuals and their friends [46, 50, 57]. D'Silva
et al. [18], for instance, treated venue categories as proxies for urban activities to
forecast the weekly popularity dynamics of a new venue establishment. Alterna-
tively, Feng et. al. [23] proposed an attentional recurrent neural network model
for predicting human mobility from lengthy and sparse trajectories. Moreover,
Silveira et. al.[50] proposed a family of data-driven models, called MobHet, to
predict human mobility using heterogeneous data sources. Comparably, Sadilek
et. al. [46] explored the interplay between people's location, interactions, and
social ties. Then, they proposed a system that predicts the location and social
ties in online social networks.

Another relevant research problem is the identi cation of relevant (or im-
portant) locations in mobility traces, i.e., personal places of interest (PPOIs):
home, work, or any place where persons spend a considerable amount of time
during the day or which they visit frequently [43]. Based on this problem,
Pavan et al.[43] proposed a mapping scheme of POls onto a feature space to
identify those important locations. Alternatively, Isaacman et al. [31] proposed
techniques based on clustering and regression for analyzing anonymized cellu-
lar network data, and to discern semantically meaningful locations. Similarly,
Cambe et al. [11] proposed a framework to examine the role of new businesses in
their respective local areas. Using urban activity, they measure the impact, ei-
ther positive or negative, that retail facilities have on each other. Contrastively,
since POls are sometimes di cult to be identi ed, Belcastro et al. [4] propose
a technique that exploits the indications contained in geotagged social media
items to discover regions of interest (Rol).

Di erent from this work, the method proposed in [11] is dependent on the
POI category and uses a di erent impact percentage scale that varies around
1. Additionally, Cambe et al. [11] only analyze the impact of a location in its
vicinity and do not identify the most important places (see Section 3.2). Finally,
the authors do not take into account the independence of one location about its
neighborhood (see Section 3.3).

Another way to infer the importance of POls is by analyzing user transitions
among them as an exchange network [9, 3]. Some studies addressed this problem
as arelation of power, where the relationship in the network involves the transfer
of valued items (i.e., information, time, money, energy)[9, 8, 3]. Moreover, it



is advantageous to be connected to those who have few options. This type of
relational power is endogenous concerning the network structures, meaning that
it is a function of the position of the node in the network [8].

Additionally, the study of power has a long history in economics (in its
acceptation of bargaining power) [39, 45] and sociology (in its interpretation of
social power)[15, 8, 24]. In this work, we use the de nition of power found in
[9, 8]. However, we tackle this problem di erently, taking into account the ow
of people to identify powerful locations, not only the number of neighbors or its
structural location in the network.

In fact, many works in the literature use a graph approach to model human
mobility [25, 11, 9]. According to Kivela et al. [32], in these graphs, a set of
entities interact with each other in complicated patterns that can encompass
multiple types of relationships, which can change in time, and include other
types of complications layers of connectivity, which improve the understanding
of complex systems. They de ne these types of graphs as multilayer networks,
which consist of multiple networks or include disparate and/or multiple inter-
actions between entities. The most common types of these networks in the
literature are: monoplex (i.e. single-layer) networks [10], multiplex networks
[42], interdependent networks [21], and networks of networks [26].

In the context of multilayer networks, there are some studies that address
the problem of human dynamics. For instance, Gallotti et al. [25] quanti ed
the e ciency of ow exchange between areas of a city in terms of integration
and segregation. They reveal that large cities tend to be more segregated and
less integrated. Also, they unravel how human behavior in uences, and is in u-
enced by, the urban environment, suggesting quantitative indicators to control
integration and segregation of human ows. Also, Landsman et al. [36] leverage
geo-tagged data from many public datasets of St. Petersburg for building a
multi-layered social activity network. They reveal meaningful socio-economic
patterns across the city and provide valuable insights into the urban structure.

In this paper, we address a speci c case of multilayer networks named edge-
colored networks [32, 55, 16, 6]. We use a general de nition of eolor as a label,
so edges that are incident to a node in the same layer are allowed to have the
samecolor. Therefore, we can aggregate all the graphs in a single intra-layer
network, in which each color of the edge corresponds to a layer in a multilayer
network [32].

Summarized remarks:  The literature on power inference is broad, special in
the economy and sociology domains. Although some interesting observations
have emerged, the existing studies have several limitations. The proposed mo-
bility graph approaches do not enable the identi cation of power relationships
among POls. The important places are not globally identi ed and the indepen-
dence of places is not investigated.

Therefore, in comparison to other graph-based mobility works from the lit-
erature, our work o ers the following contributions:

A multilayer network model named Multi ow Graph Model is built from



the ow of people and helps to quantify the power of a POI in relation to
its neighborhood.

Three di erent new metrics that quantify the power of a POI: the attract
power and support power, which are, respectively, the capacity of a POI
to gather and to disseminate people, and thendependence powerwhich
is the POI capacity of receiving visitors independently from others POls.

Moreover, in a preliminary version of this work [40], we propose theMulti ow
Graph Model and the metrics derived from it (attract power, support power, and
independence powerand evaluate them in the Dartmouth campus dataset [34].
We here build on this prior e ort by presenting a much more comprehensive
investigation and o ers:

An extension of the methodology to incorporate a measure of uncertainty
about the POI location.

We evaluate our metrics in two more well-known University Campus mo-
bility datasets and in three Location-Based Social Networks (LBSNSs)
datasets from various cities around the world.

We delve deeper into the investigation of the results, assessing whether
POls ranked as powerful aect the visitation in the neighborhood and
whether these locations change at di erent times of the day. Moreover,
we investigated the di erent POls independence patterns from di erent
cities, and we compared regions with the highest proportions of POIls
independence.

Finally, we propose a practical application of our metrics in a case study
of epidemic dissemination.

3 Methodology

In this section, we describe theMulti ow Graph Model where each location is
a node, and transitions of users between locations de ne the weighted directed
edges in the graph. From this graph, we compute theattract power, support
power, and independence powemetrics, as described in the following. Notations
used throughout this section are provided in Table 2

3.1 Multiow Graph Model

The input necessary to construct the Multi ow Graph Model is a set of visitsC
over a set of POIsP made by a set of userdJ. For simplicity, we organize the
set of visits C into disjoint ordered sets Cq; ;Cjuj, where C; = fch;? g
corresponds to all the visitsd made by useru;, in chronological order. A visit
d is a tuple < t;p >, where't is the time the visit started and p is the POI
where it took place. We denote byt(d ) and p(d) the timestamp and the POI
of visit d, respectively.



Table 2: Notations

Notation  Description

C Set of visits
P Set of POIs
u Set of Users
c A visit made by useru
p POl visited by user u
Ci All visits ¢ made by useru, in chronological order
t(d) Timestamp from visit ¢
p(d) POI from visit d
S Set of trajectories
S All trajectories of user u;
Trajectory signature
sk A trajectory composed of a sequence of chronologically ordered POls visited by usef
H Home. An arti cial special location at the beginning and at the end of each usertrajectory Sik
n() Number of trajectories with signature
S Ordered sequence of POIs de ned by signature
iSj Size ofS
G Multi ow Graph Model

\% Vertices that represent POls in the graph G
E Multi-Edges that represent user transitions between POls
w Edge weights
w(p';p; ) Edge weight from p' to p in the trajectory
Nout (P') Set of outgoing neighbors of nodey
Nin (p') Set of incoming neighbors of nodegy
M All messages posted in a given city present in the dataset
GPS-latitude
GPS-longitude
Message timestamp
the range-impact function
Np Set of all messages posted within a POI
d Radius
Sum of the range-impact harmonic means

Then, from each ordered setC;, we construct the corresponding set ofra-
jectories S; of useru;. S contains all trajectories useru; made during her social
days, i.e., the distinct placesu; visited in chronological order. More formally,
we transform every ordered setC; = fc';c?; ginto asetS; = fS%;S?;, g,
where SK 2 S is a trajectory composed of a sequence of chronologically ordered
POls visited by user u;, i.e., Sk = fp';p?, g. This transformation is done by
adding, in chronological order, the POIp(d ) of each visitd 2 C; to a sequence
Sk2s.

The methodology we follow to construct the set of trajectoriesS; is here-
after described and guarantees that any constructed trajectory has the following
properties: (i) all transitions between consecutive POls belonging to the same
trajectory Sk happen in less than 6 hours (see item 1 hereafter); (ii) all visits
of the same trajectory occur on the same social day, which begins at 6:00 and
ends at 5:59 am of the next day (see item 2 hereafter); (iii) all POls of a trajec-
tory are distinct (see item 3 hereafter), i.e., each user trajectorySk is a simple
directed path with no cycles (see item 4 hereafter).

The process starts with the rst user trajectory St, by making k = 1 and by
adding the POI p(ct) of the rstvisit c! to St. Then, for each of the following
visits d, we do the following:



1.1f t(d) t(d ') 6 hours, make k= k+1 and add p(d) to SK;
We restricted t(d) t(d 1) < 6 hours because Kotz et al. [33] suggested
that around 90% of user session durations are less than 6 hours. So, for
dierences t(d) t(d 1) greater than or equal to 6h, we consider that
the user has started a newtrajectory .

2. Else If t(d) 6:00am and t(d 1) 5:59am, make k= k+1 and
add p(d) to Sk,
We consider the user has started a new trajectory if two consecutive visits
happen on di erent social days.

3. Else if p(d)== p(d 1), do nothing and process POl  p(d*);
This ensures a trajectory has only distinct POIs.

4. Else If p(d) 2 Sk, make k= k+1 and add p(cd) to SK;
This prevents cycles to be formed. In special, if in a sequence of visits,
the user returns to a POI already present in this sequence, we break this
sequence and start a new trajectory from this latter visit.

5. Else, add p(d) to SK;

Some trajectories are dense and clearly represent what the user did in that
day. On the other hand, other trajectories are composed by a single visit.
In order to give the sense of ow to every trajectory, we added an arti cial
special locationH at the beginning and at the end of each usetrajectory Sk,
simply called Home. Thus, eachtrajectory Sk = fp!; ;p"gis transformed to
sk = fp%pt;  ;p";p"*tg, wherep® H and p"**  H. For simplicity, we
will keep denoting each trajectory by Sk = fp!; ;p"g, but with p' = H and
p" = H for all trajectories.

As the last step before constructing theMGM , we assign asignature to
each trajectory Sk = fp';p?; ;p"g, which is simply de ned by the ordered
sequence of POIs present ir8¥, i.e., (SK)= p'p?( )p". Note that trajecto-
ries with the same signature may exist within a set S; and across di erent
sets of users' trajectoriesS; and S;. All trajectories that have the same sig-
nature denote sequences of visits, or trajectories, over the exact same POls.
Additionally, we denote by n( ) the number of trajectories with signature
We also denote byS the ordered sequence of POIp!;p?; ;p" dened by
signature , which from now on we calla signature trajectory S . The size ofS
is denoted by|S j. Finally, we denote by S the set of all signature trajectories
S.

From the trajectories in S, we assemble theMulti ow Graph Model using the
process described in Algorithm 1, which can be viewed asdge-colored multi-
graphs [32]. Therefore, for eachcolor (i.e. trajectory signature) S 2 S, we
traverse its sequence of locations in such a way that, for each pair of locations
p' and p with the same color, we create, inline 4, the edgee(p';p'; ) between
the POIs p' and p' with color . Additionally, in line 5, we assign to the edge
the weight w(p';p'; ) equal to the value from n( ).
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Algorithm 1:  Multi ow Graph Model - (MGM)

1 Data: Trajectory set S
2 for S 2S do
3 fori 1tokS k 1do

4 eP;p; );

5 wpp; )=n();
6 end

7 end

Figure 2 shows a gurative example of theMulti ow Graph Model that we
represent as a single intra-layer networkG(V; E; W), where: (i) verticesp2 V
represent POls; (ii) the multi-edge arrows e 2 E represent the user transitions
between POls; and (i) the weights w(p';p'; ) 2 W are represented on the
arrows from p' to p'.

In the Figure 2, the trajectory signature is represented in colors, e.g.,
the trajectory from Academic building A to Restaurant building R, passing by
Library building L that is colored in red.

Note that 10 users' trajectories start in A (red arrow), visit L and nish in
R. Thus, the weight w(p'; p'; ) 2 W represents the total number of trajectories
from users who visitedp' just after visiting p', using the trajectory . Nodes
Academic A, Library L, and Restaurant R represent campus buildings and
nodesH represent the single arti cial node Home. Although we representH as
multiple nodes in the gures, this is done only to ease the visualization.

Figure 2: Multi ow graph example (better seen in color).
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3.2 Attract and Support power computation

In this section, we show how to compute thesupport power and attract power of
POls using the Multi ow Graph Model previously introduced. In other words,
how to infer respectively, the capacity of a POI to disseminate and to receive
people over and from its vicinity.

3.2.1 Attract power of POls

The attract power of POIs are dependent on the out-degree distribution of edge
weights. Therefore, we rst compute the out-degree proportion for each weight
w(p';p; ) 2 W associated to each edge 2 E as shown in Algorithm 2, line
3. This is done, in Eq. 1, by dividing the edge weightw(p';p'; ) by the total
sum of the edges weightsv from the outgoing neighbors of nodep', given by
the function Nyt .

p WP )
P 2Naw (p) WP PS-)
We denote by Nyt (p') the set of outgoing neighbors of node'. Similarly, we
denote by Nj, (p') the set of incoming neighbors of nodg'. Figure 3a shows the

resulting out-degree proportion for each weight of the MultiDiGraph G(V; E; W)
example of Figure 2.

1)

Algorithm 2: W, edge weights out-degree proportion
1 Data: Edge weight setW, Outgoing neighbors function Nyt
2 for w(p';p'; )2 W do o
- w(pp'; )
3 W, P ; P —
out (P05 ) o 2N (pI)W(pl;p] )

4 end

Then, after computing the out-degree proportions, we discard the HomeH
edge values as shown in Figure 3b. Finally, we compute thattract power of each
node p' according to the Algorithm 3, as follows. First, for each nodep' 2 V,
we initialize, in line 3, its attract power value with 0. Then, for each trajectory
S 2'S, we traverse all nodesp' of this trajectory and sum cumulatively the
proportions of edge weightw,y (p' ;pi; ), given by Eq. 1, associated to the
edgee(p' 1;p'), line 8. At the same time, for each nodep' that we traverse, we
add the cumulative total to its attract power, line 9.

The intuition of this algorithm is that POl p' attracts a portion of the people
who left the POI p' ! and, throughout the trajectory, each POI p' is indirectly
responsible for this portion of visits in its predecessors: this is the reason why
we use the cumulative sum.

Consider Figure 3b as an example. To compute theattract power of the
restaurant R, we sum the weights from incoming edges fromA and L: 0:3 +
0:4+0:2+0:2 = 1:1. Note that we cumulatively sum the weights of the red
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Algorithm 3:  Attract Power

Data: out-degree edge weight seW,; , Trajectory set S, Vertices setV
for p 2 V do
| attract[p'] 0;
end
for S 2S do
tot O;
fori 2tokS k 1do
tot+= Wou (p' 5;p'5 ) ;
attract [p']+ = tot ;
10 end
11 end

© o N O U A w N R

edges from POIA to R. Similarly, to compute the attract power of the Academic
building A, we use the unique income edge with a value of:® (arrow purple).
Finally, for library L, we use the unique value @ (arrow red). In short, the
attract power of POl A is the cumulative sum of importance from each POI in
its incoming neighborhood.

It is important to mention that the attract power has two substantial mean-
ings. First, it shows the capacity of the restaurant R to gather people and,
consequently, how powerful POIR is. Second, if the locationR closes its doors
in this period, probably, 1:1 places will be impacted, because POR will stop
receiving visitors from these places.

3.2.2 Support power of POls

Contrarily to attract power, the support power computation depends on the in-
degree distribution of edge weights. Thus, we compute the in-degree proportion
for each weightw(p'; p'; ) 2 W associated to each edge(p';p'; ) 2 E as shown
in Algorithm 4, line 3. For each edge weightw(p';p'; ) 2 W, we compute the
in-degree proportion by dividing its weight by the total sum of the edges weights
w from the incoming neighbors of nodep' , given by the function N;, , as shown
in Eq. 2.

o WP )
P'2Nin (pJ)W(plrpl 17)

Figure 4a shows the resulting in-degree distribution for each weight of the
MultiDiGraph G(V;E; W) of Figure 2.

Then, after computing the in-degree proportions, we discard the HomeH
edge values as shown in Figure 4b. Theupport power of each nodep' is then
computed according to Algorithm 5 described. More speci cally, for each node
p' 2 V, we rstinitialize its support power value with 0. Then, for each trajec-
tory S 2 S, we traverse all nodesp' of this trajectory and sum cumulatively
the proportions of edge weightwi, (p' ;p'; ), given by Eq. 2, associated to

)
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(a) Out-degree distribution

(b) Attract Power

Figure 3: Attract Power of locations in Multi ow Graph Model (better seen in
color)

the edgee(p' !;p'). At the same time, for each nodep' ! that we traverse, we
add the cumulative total to its support power.

Note that di erent from attract power, to cumulatively calculate the support
power, we traverse the path in reverse order, i.e. from the destination to the
starting POI. The intuition of this algorithm is that POl p' ! disseminates a
portion of people who arrives in the POl p' and, throughout the trajectory, each
POI p' 1 is indirectly responsible for the portion of visits in its successors. This
explains why we use the cumulative sum.

Consider the example shown in Figure 4b. To compute thesupport power of
the academic buildingA , we sum the weight of all its outgoing edges: @+0:4+
0:3 = 0:9. Note that we cumulatively sum the weights of the red edges from POI
A to R. Similarly, to compute the support power of the library building L, we
sum the outgoing edges' weights 1 +0:2+0:1 = 0:4. Finally, for restaurant R,
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Algorithm 4: W, edge weights in-degree proportion
1 Data: Edge weight setW, Incoming neighbors function N
2 for w(p';p'; )2 W do o
i w(p';p; )
3 win (P'; P ; P _
in (PP ) N (pl)w(p|;p|;7)

4 end

Algorithm 5:  Support Power

1 Data: In-degree edge weight seW, , Trajectory set S, Vertices setV
2 for p 2V do

3 | support[p'] O;

4 end

5 for S 2S do

6 tot O;

7 fori k Sk 1to2do
8 tot+= win (P 5p' )
9 support[p’ 1]+ = tot;
10 end

11 end

the sum is 0, because there is no outgoing edge. In short, theupport power of
POI A is the cumulative sum of importance given by each POI in its outgoing
neighborhood.

(a) In-degree distribution (b) Support Power

Figure 4. Support Power of locations inMulti ow Graph Model (better seen in
color).

Similar to attract power, support power also has two substantial meanings.
First, it shows the capacity of academic building A to disseminate people and,
consequently, how powerful POIA is. Second, if the locationA closes its doors
in this period, probably, 0:9 places will be impacted, becausé will stop sending
visitors to these places.
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3.3 Independence Power

The Multi ow Graph Model also enables us to compute another important met-
ric that we call independence power which shows the capacity of a POI to
receive visitors independently from other POls.

Using the specialH location associated with each POI in theMGM , we can
infer how many POls haveH as a starting point, in the support power case, and
how many haveH as an ending point, for the case ofttract power.

More formally, Algorithm 6 shows how to compute the independence powenf
a POI. For each nodep' 2 V, we sum to the variablein, line 6, the proportions of
the incoming edges' weightsw(H; p'; ) 2 W, computed by dividing its weights
by the total sum of the edges weightsw from the incoming neighbors of node
p', as shown in Eq. 3.

p W(Hip' )
pr2ng, (o) WP P )
Also, in line 9, we sum to the variable out the proportions of the outgoing
edges’ weightsw(p';H; ) 2 W, computed by dividing its weights by the total
sum of the edges' weightsv from the outgoing neighbors of nodep', as shown
in Eq. 4.

®3)

p_ W(pLH )
P 2N (p) WP PSL)
Finally, in line 11, the nodep''s independence poweis given by the harmonic
mean between the variablesn and out values, as shown in Eq. 5.

(4)

(in  out)
(in + out)

®)

Similar to the F1 Score, the harmonic mean is appropriate for situations
when the average of rates is desired.

Furthermore, the independence powewalue of a node ranges from0to 1, i.e.,
from totally dependent to totally independent from other POls. Have a high
independence powemeans that a POI receives visits regardless of the variation
of visits in its neighborhood.

3.4 Assigning missing Points of Interest to geo-localized
data

The selected datasets used in this study contain the exact information on which
POI the data collection occurred, except the Twitter dataset [51]. For this latter,
either it does not have the POI information or it is inaccurate [2, 4]. Therefore,
we use the Bendler et al. [5] approach that uses a measure of uncertainty about
the POI named range-impact . Figure 5 illustrates a random sample of a map
detail from San Francisco. The red dots represent positions of POIls, while the
blue dots indicate Twitter messages. For each POI there is a neighborhood,

16



Algorithm 6:  Independence Power

1 Data: Edge weight setW, Vertices setV
2 for p 2V do
3 | independencdp'] O0;
4 in,out  0O;
5 | for w(H;p'; )2 W do
. I
6 in+= P w(H:p"; ) —
pr2n, (o) WP P
7 end
g8 | for w(p';H; )2 W do
(I .
9 out += P w(p'; H; ). —;
pl 2N (o) WP PSS
10 end
11 independencdp']=2 (in out)=(in + out)
12 end

indicated by the black circles, and the neighborhood distance/radius, indicated
by the dashed lines. A Twitter message is assigned to a POI whenever its geo-
tag is situated within the respective neighborhood. If the message was posted
in an intersection area, we assign the message to the nearest POI.

Figure 5: Example of Point of Interest

More formally, hereafter, we de ne the available points of interest in a given
city as the set of POIsP, where each locationp 2 P is represented by a 3-tuple
<Cp; p; p>,denedbyEgs. (6a) and (6b), wherec, is the category that the
POl belongs, , and , de ne respectively, the GPS-latitude and GPS-longitude
that marks the center of the POI's geographic coordinate. For this task, we use
the OSMnx tool [7] that helps scholars to acquire, constructing, analyzing, and
visualizing complex street networks.

P = fpi;p2; i Pepkd (6a)
P2 P 7! (¢ pi p) (6b)

Furthermore, we de ne as the setM (Eq.(7a)), all messages posted in a
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given city present in the dataset. Each messagen 2 M dened in Eq. (7b)
is represented by a 4-tuple< Um; m; m; m > in which u, 2 U is the user
who posted the message, , and , refer respectively to the GPS-latitude
and longitude where the message was posted. The attribute,, represents the
timestamp in which the message was published.

M = fmg;mg; Mgk O (78)
m2M7! (Um; ms m» m) (7b)

Since we have sef and M, we use therange-impact [5] to assign to a
POI the messages that were posted within its neighborhood. As illustrated in
Figure 5, we denote as\, the set of all messages (blue dots) posted within the
black circle around the reference POI (red dot), subject to a radius ofd.

Then, for each messagen 2 Ny, we compute its range-impact on POI p
using the range-impact function (p; m) described in Eq. (8). The function
takes as parameters the messagm and POI p and returns the range-impact of
messagem on POI p. Internally, the  function uses the coordinates ofm and
p to compute the haversine distance between the two locations. The haversine
function is commonly used to calculate the spherical distance between two points
on the Earth's surface in meters, given their latitude and longitude values.

1+ 1, haversinep; m)

(p;m) = 53 ] ); where (p;m) 7! R; (8)

The range-impact function is modeled as a shifted and scaled cosine to t
the range of [Q 1] on both x and y-axes, as illustrated in Figure 6. Messages
that are quite close to the geographical origin of the POIp can still be seen as
closely related to the locations and, thus, should be penalized on a negligible
basis. On the other hand, tweets that are far from the origin can be penalized
with a substantially greater value but may still be related to the location itself
[5]. This trade-o between a higher weight at short distances and a lower weight
at far distances complies with the context stated by Tobler [53] in his rst law
of geography, i.e.,\[...] everything is related to everything else, but near things
are more related than distant things"

Figure 6: Range Impact function.
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Finally, we adapted the MGM algorithm 1 to take the range-impact into
consideration. First, we transform each visitd 2 C from tuple < t;p > to
3-tuple <t;p; > . The is the range-impact value of visit d given by (p;d),
Eq. (8), where p is the nearest POI from visit d .

Next, at line 5 of Algorithm 1, we initialize the edge weight w(p';p'; ) with
the value, as described in the Algorithm 7, instead ofn( ). More speci cally,
Algorithm 7 takes as parameters the trajectory setS, the trajectory signature
S , and the iteration index I. Then, it returns  value, which is the sum of the
range-impact harmonic means between the POIg' and p' present in the user
trajectories SX 2 S, containing the signature S . It is important to mention
that the value of the edge weight still represents the ow of people who made
the trajectory between the POIs p' and p' (as in the original MGM ) but now
weighted according to the haversine distance between messages and these POls.

Algorithm 7: - MGM Edge Weight
1 Data: Trajectory set S, Trajectory signature S , iteration index |
2 =0;

3 for Sk2S do

4 | if Sk== S then

5 x= (p;d)2sk;

6 y= (p;c")2Sf;

7 +=2  (xy)=(x+y);

8 end

9 end
10 return ;

It should be pointed out that the Bendler et al. [5] approach presented in
this subsection has some limitations. For example, depending on the size and
shape of the POI, the neighborhood circle may not cover the total area of the
POI which could lead to false negatives. Conversely, in the small POI case,
the neighborhood circle may be too big, which consequently takes into account
visitations that were not in reality related to the POI, thus leading to false pos-
itives. Therefore, choosing the radius size is of fundamental importance for the
proper functioning of the method, to which we pay close attention. In this con-
text, we incorporated the range-impact to the MGM . This function minimizes
false-positive problems described above. In addition, we tested di erent radius
values and the best result was a radius equal to 30 m. Despite our e orts, the
results presented in Section 5 for Twitter dataset [51] using this methodology
have to be interpreted parsimoniously.

4 Evaluation methodology
4.1 Dataset

To evaluate and validate our proposed methodology, we use two groups of pub-
licly available datasets, summarized in Table 3. The rst group consists of
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campus mobility datasets from Dartmouth [34], KTH [41], and USC [30] uni-
versities. From now on, we call themtest datasets since they are well known and
have been explored in several papers. The second group consists of Location-
Based Social Networks (LBSN) check-ins/posts from di erent cities around the
world, which we call from now on, validation datasets since we use LBSN data
in which we have less control over the location information of users and the area
where the collection was performed. This group contains the following datasets:
Gowalla [37], Weeplaces [37], and Twitter [51].

Table 3: Datasets Description.

Trace source Time/duration of trace Start/End time  Granularity Unique locations City

usc 2006 summer semester 01/25/06 - 04/28/06 Building 137 buildings  Los Angeles
Test datasets Dartmouth Fall 2003 and Winter 2004 terms  11/02/03 - 02/28/04 Building 61 buildings  Dartmouth

KTH 16 months  01/01/14 - 04/30/15 Building 49 buildings Stockholm

Twitter most of 2014-2017 03/14 - 04/17 Lat-Lon > 80M tweets 11 Cities

Validation datasets ~Gowalla 32 months 02/09 - 10/10 Lat-Lon > 6M checkins 15 Cities
Weeplaces - 11/03 - 06/11 Lat-Lon > 7M checkins 15 Cities

Test datasets:

According to Henderson et al. [28], the Dartmouth College campus has over
190 buildings on 200 acres. In the Dartmouth [34] dataset, we focus on Syslog
messages collected during the Fall 2003 and Winter 2004 terms, 17 weeks from
2 November 2003 to 28 February 2004, inclusive. In this work, we kept the
building name and removed the AP number to eliminate cases where computers
were associating and reassociating with several APs many times in succession.

The USC [30] data set was collected during 2003-2005 at the University of
South California campus, where the number of WLAN users was over 4500. The
USC trace has switch port location granularity which approximately corresponds
to buildings on campus.

Finally, the KTH [41] dataset is the most recent available dataset (since 2019-
07-01) and contains records of authenticated user associations to the wireless
network of the KTH Royal Institute of Technology in Stockholm. The KTH
wireless network provides coverage for buildings on one large and four small
campuses located within the metropolitan Stockholm area. At the time of the
trace collection (2014-2015) the university had around 18000 active students
and employees, most of them accessing the wireless network via smartphones,
laptops, and other portable devices.

Validation datasets:

Weeplaces [37] is a website that aims to visualize users' check-in activities in
LBSNs. All the crawled data is originally generated in Foursquare. This dataset
contains 7,658,368 check-ins generated by 15,799 users over 971,309 locations
from various cities.

Gowalla [12] is an LBSN which had more than 600,000 users since November
2010 and was acquired by Facebook in December 2011. This dataset contains
6,442,890 check-ins made by 196,591 users from various cities. Finally, Twitter
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[51] contains more than 80 Million geotagged tweets from around 15 cities for
most of 2014-2017.

4.2 Performance metrics

To evaluate the e ciency of the three here-above-presented power measures, we
use the following metrics:

Powerful building identi cation: we identify and rank the most power-
ful buildings for the di erent power metrics using the test datasetsthat
provides a baseline for comparison.

Relation among power metrics: we compare how our power metrics relate
to each other, using thetest datasetsas a baseline.

Neighborhood impact: we assess whether POls ranked as powerful a ect
the visitation in the neighborhood and whether these locations change at
di erent times of the day. For this task, we used some cities from the
validation datasetswhich made it possible to nd external information for
validation.

Independence power among cities: we investigate the di erent POIs inde-
pendence patterns from di erent cities present in the validation datasets
Also, we compare regions with the highest proportions of POls indepen-
dence across di erent cities.

Also, when speci ed, we compare the performance of our power measures
with the following literature ones:

Betweenness centrality (betweenness): a graph measure based on shortest
paths.

PageRank (pagerank): computes a ranking of the nodes in a graph based
on the structure of the incoming links. We usealpha = 0:85.

in-degree centrality (in_dg_cen): computes a fraction of nodes connected
to the incoming edges of a node.

Out-degree centrality (out_dg_cen): computes a fraction of nodes con-
nected to the outgoing edges of a node.

Eigenvector centrality in (eigcen.in): computes the eigenvector for the
largest eigenvalue of the adjacency matrix of a directed graph.

Eigenvector centrality out (eigcen_out): computes the eigenvector for the
largest eigenvalue of the adjacency matrix of a reversed directed graph.

Bozzo and Franceschet power (hfpower): computes the sum reciprocal
node degrees to identify the powerful nodes.
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5 Performance evaluation

In the following, we evaluate the MGM methodology as well as the three power
measures. For this task, the two sets of presented datasets, i.e., thtest datasets
and the validation datasetsare used. Note that, as discussed in Subsection 4.1,
the test datasetscontains data which collection sampling is more regular, due
to the way the data is collected (i.e., wireless network connectivity). On the
other hand, the validation datasetsrelies on the LBSN usability by users, and
consequently, may have long temporal gaps. Because of its sampling proper-
ties and literature documentation, the set of test datasets allow a more precise
veri cation of the results given by our measures.

5.1 Comparing the Campus Routine

Before showing the results for our proposed metrics, we perform a simple san-
ity check by examining the initial and nal locations of the trajectories. For
this task, we use the Dartmouth dataset which we consider representative for
test datasets We conjecture that if the trajectories represent daily routines on
campus, then we expect a substantial amount to start and end at residential
buildings. Table 4 shows the percentage of times each type of building started
and ended a trajectory and its most ranked buildings. Observe that, as ex-
pected, most of the trajectories start and end at residential buildings. Also,
it is expected that a large number of trajectories do not start and end at res-
idential buildings, as some students do not live on campus or do not turn on
their computers before leaving or after arriving home by the end of the day.
Furthermore, in a similar analysis, Henderson et al. [28] and Kotz et al. [33]
ranked most of these top buildings as the busiest on campus, given that these
are communal areas visited by many, if not most students. These results lead us
to conclude that our conjecture was correct and that our methodology captured
the daily routine on campus.

Table 4: Buildings with highest starting and ending number of trajectories

Building type start (%) end (%) top start top end
Academic 0.31 0.33 Academic 2 Academic 2
Administrative 0.03 0.04 Administrative 1 ~ Administrative 1
Athletic 0.02 0.02 Athletic 3 Athletic 3
Library 0.13 0.17 Library 2 Library 2
Residential 0.43 0.36 Residential 2 Residential 8
Social 0.08 0.08 Social 1 Social 1

5.2 Identifying the Powerful Buildings

Given that our approach captured the student transitions routine on campus,
then in this section, we compute the support power, attract power, and inde-
pendence powerfor all test datasets as described in Section 3.2.

Furthermore, we compare our approach with the aforementioned metrics:
Betweenness (betweenness), PageRank (pagerank), in-degree centrality (ffg_cen),
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out-degree centrality (out_dg_cen), eigenvector centrality in (eigcenin), eigen-
vector centrality out (eigcen_out) and Bozzo and Franceschet power [9] (bfbower).

Results are shown in Table 5, in which the meaningless names of buildings
were changed for their functions. Note that the most powerful buildings are the
social ones, such as libraries (Library 1, Library 2, Library 3, Library 4, Library
5), academics (Academic 2, Academic 1, Academic 4, Academic 10, Academic
14, Academic 16), and restaurants/social areas (Social 1, Social 3, Social 6).
These buildings are hubs, i.e., they receive and disseminate students from and
to all over campus, and are, in general, the busiest areas on campus [28].

Regarding the di erences among the metrics, observe that in the Dartmouth
dataset the attract power rank has two buildings that do not appear in the
baselines' ranks: Academic 2 and Athletic 3. Intuitively, having a high attract
power means that these buildings are responsible for receiving a large fraction of
students from other campus buildings. Similarly, the support powerrank has two
buildings that do not appear in the baselines' ranks: Academic 2 and Athletic
3. Having high support power means that these buildings are responsible for a
substantial fraction of people arriving at other campus buildings.

The independence powerrank has all buildings that do not appear in the
baselines' ranks. Having highindependence powermeans that a substantial
fraction of people have these buildings as unique destinations on campus. Ad-
ditionally, these buildings with high independence powerare, in the minority,
administrative (Administrative 1), sports (Athletic 1, Athletic 2), and health
(Health 1, Health 2, Health 3) buildings, and, in the majority, they are residen-
tial buildings (Residential 3, Residential 4, Residential 5, Residential 7), what
corroborates with [33], since users spend more hours in residences than in other
buildings.

It is important to mention that the rst two positions of the rankings in the
di erent datasets are very similar. As mentioned earlier, this is because these
POls, in general, are hubs. However, if we look at the entire rank for the di er-
ent metrics, we can see that they are di erent. Moreover, the di erences seen
in our proposed power metrics are the consequence of an aspect that is not cap-
tured by the other baseline metrics: the ow of people and the inter-dependence
of ows among the buildings. In this direction, note how the bf_power has a
contrasting rank about our power metrics. Recall that the bf_power is com-
puted using only the number of neighbors of the node, i.e., it ranks as powerful
the buildings connected to the ones with the lowest degree. In the context of
mobility transitions, it is not necessarily related to the interdependence among
neighboring locations. Similarly, the metrics in_.dg_cen and outdg_cen only con-
sider the degree of the vertices and rank as powerful as the buildings with the
highest degrees. However, the metrics PageRank, eigcem, and eigcenout rank
as important nodes the ones that are connected with other important nodes or,
in the betweenness case, nodes that are most recurrent when calculating the
shortest paths in the network. Nevertheless, they contrast with the de nition
of power in networks [9, 22], and do not capture the inter-dependence of ows
among the buildings.
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Table 5: Top 5 College powerful buildings

Dataset Power 1st 2nd 3rd 4th 5th
betweenness Library 1 Library 2 Social 3 Social 1 Residential 2
bf_power Academic 1 Social 2 Residential 1 Library 1 Library 2
Dartmouth in_dg.cen L?brary 1 L?brary 2 Soc@al 3 Soc@al 1 Academ?c 3
out_dg.cen Library 1 Library 2 Social 3 Social 1 Academic 2
eigcenin Library 1 Library 2 Social 3 Academic 3 Social 1
eigcenout Library 1 Library 2 Social 3 Academic 3 Social 1
pagerank Academic 2 Library 1 Library 2 Athletic 3 Residential 2
independence  Administrative 1 Athletic 1 Residential 4 Residential 3 Athletic 2
support Library 1 Library 2 Academic 2 Social 3 Athletic 3
attract Library 1 Library 2 Academic 2 Athletic 3 Social 3
betweenness Other 1 Library 3 Academic 4 Residential 5 Academic 5
bf_power Other 1 Library 3~ Academic 4 Other 2 Administrative 2
usc in_dg.cen Other 1 Academic 4 Library 3 Residential 5 Academic 6
out_dg-cen Other 1  Academic 4 Residential 5 Library 3 Academic 6
eigcenin Other 1 Academic 4 Residential 5 Library 3 Academic 7
eigcenout Other 1 Academic 4 Library 3 Residential 5 Academic 7
pagerank Other 1 Library 3~ Academic 4 Residential 5 Library 4
independence Health 1 Other 3 Health 2 Residential 6 Residential 7
support Other 1 Library 4 Library 3 Academic 6 Residential 5
attract Other 1 Library 3 ~ Academic 6  Academic 4 Residential 5
betweenness Academic 8  Academic 9 Academic 10 Academic 11 Administrative 2
bf_power Social 4 Academic 12 Academic 10  Academic 8 Academic 13
KTH in_dg.cen Academic 10 Academic 14 Academic 15 Social 6 Academic 16
out_dg.cen Academic 10 Academic 14 Social 6 Academic 16 Academic 15
eigcenin Academic 10 Social 6 Academic 15 Library 5 Academic 14
eigcenout Academic 10 Social 6 Academic 15 Academic 14 Library 5
pagerank Academic 10 Social 6 Library 5 Academic 14 Academic 15
independence Other 3  Academic 17 Health 3 Other 4 Social 5
support Academic 10 Social 6 Academic 14 Academic 16 Academic 18
attract Academic 10 Social 6 Academic 14 Academic 15 Library 5

5.3 Relation among power metrics

In the previous Subsection 5.2, we ranked the buildings according to the three
introduced power metrics in test datasets From these ranks, we analyze how
our metrics of power relate to each other for the most powerful buildings. For
this task, we use the Dartmouth from test datasets since we have the works of
[33, 28] as a comparison baseline. Figure 7 shows the scatter plot of the top
10 ranked buildings from the Dartmouth dataset according to attract power,
support power, and independence power While the union set among the top 10
buildings for each metric totalizes 22 buildings, the intersection set results in
8 buildings. This shows that these metrics complement themselves, although,
as expected, some natural overlap exists, especially betweettract power and
support power.

First, note in Figure 7 that there are three clusters of POls: \cluster high"
containing POIls with high support power and attract power (3 to 5),
and low independence power(< 0:6); \cluster medium" containing POls with
medium attract power, support power( 1to 3) and low independence power
(< 0:6); and \cluster low" containing POls with low attract power and support
power (1), and high independence power 0:6). We use the K-Means algo-
rithm to create the clusters, whose inertia values stop decreasing signi cantly
with k = 3 (best number of clusters).

More speci cally, observe in Figure 7 that \cluster high" contains Lib 1, Lib
2 and Aca 2 buildings that stand out as the three most powerful according
with attract power and support power, with values ranging from 3 to 5.
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Intuitively, this means that these buildings have the potential to a ect the
visitation activity corresponding to the total amount of visits received by 3
to 5 other buildings. Furthermore, note that the highest-ranked buildings are,
in the majority, social and library buildings, which is expected. According to
[28], users spent less time in social and library than other buildings. Moreover,
since these are communal areas, many users have those buildings in their routine
trajectories, which explains their high power of disseminating and of gathering
users.

Regarding the independence poweras we see in Figure 7, the most powerful
building is Adm 1, with independence powerof 0:921. Intuitively, this means
that 92:1% of its visits do not come from or go to other buildings, i.e., are com-
pletely independent. Also, note that the buildings in cluster high have moderate
independence powerbetween 037 and Q59. Conversely, the buildings in cluster
low have smallattract power and support power and large independence power
between Q78 and Q92. Additionally, these buildings with high independence
power are, in the majority, residential buildings, which corroborates with [33],
since users spend more hours in residences than in other buildings.

Figure 7: Relation of power among metrics

In conclusion, the results shown in this section reveal that mobility in Dart-
mouth traces is very limited. People tend to move over a few buildings and
spend most of their time in the same buildings. A similar conclusion was found
in [28], which showed that 50% of users spend 74.0% of their time associated
with a single access point. However, we identify a slight dependence among
buildings as well as the tendency of people to be mostly stationary in a few
buildings with short transit periods among them.
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5.4 Neighborhood Visitation Impact

Previously, we identi ed in test datasetsthe most powerful buildings according
to attract power, support power, and independence power In this section, we
use the validation datasets to investigate whether powerful buildings impact
the visitation on POls in their neighborhood. Table 6 shows the top 5 powerful
buildings according to support power and attract power metrics for the cities of
Pittsburgh - PA and Austin - TX. We chose these datasets due to the ease of
nding events that occurred in the same periods and locations of the collection
of the dataset which provided a baseline for the validation of the results.

Table 6: Top 5 Cities powerful buildings

Dataset Power 1st 2nd 3rd 4th 5th
D support  University Parking Church Bank Co ee shop
Twitter - Pittsburgh attract Conv. Center University Church Bar Ice cream shop
j . support  Conv. Center Hotel Airport Co ee shop Supermarket
Weeplaces - Austin attract Conv. Center Rock club Hotel Pub Airport
Gowalla - Austin support ~ Conv. Center Hotel Conv. Center Conv. Center Bar
attract Conv. Center Hotel Restaurant Conv. Center Hotel

Therefore, to assess the claim that a POIA impacts on POI B, we need to
consider a counterfactual theory of causation of the formif A had not occurred,

B would not have occurred"[38]. However, Shrier and Platt [48] state that the
counterfactual outcome may be dichotomous (e.g. the restaurant is open/closed)
or continuous (e.g. if the number of people on campus varies, the number
of visits to restaurants will vary). Indeed, the continuous counterfactual is a
common method to investigate causality and it has been employed in most of the
evidence-based sciences, where modi cations in a variable change the outcome
during a natural experiment. These evidence-based sciences include medicine
[47], economics [60], and information systems [35, 5]. Hence, to estimate the
impact of a POI on its vicinity, we need an exogenous variation in the availability

of such POI. Such a variation is provided by events that occurred at the POI,
which can be used as counterfactual to show that the number of visits in the
neighborhood increases (decreases) if the POI is opened (closed).

To address this problem, we rst search for POls that were ranked as pow-
erful using the support power and attract power metrics in validation datasets
Then, we identify which relevant events occurred at these POls. Next, for each
POI, we obtained the distributions of the number of visits in its vicinity during
these events (isteent ) @and compared it to the distribution of visits in a close
period (distcose). For this comparison, we use the two-sample Kolmogorov-
Smirnov (KS) test, a statistic that quanti es a distance between the empirical
distribution of two samples. The null hypothesis is that the two samples are
drawn from the same distribution (p-value >= 0:05) or if they are drawn from
di erent distributions (p-value < 0:05).

Our hypothesis:

H1: there are changes in the number of visits.
HO: there are no changes in the number of visits.
If the p-value of the KS test is greater than 0.05, then we have no evidence
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that changes in the number of visits on the POI a ected their vicinity, i.e., the
distributions disteyent and distgese are drawn from the same distribution and
we cannot reject hypothesis HO. Otherwise, we accept hypothesis H1.

Applying the aforementioned methodology in validation datasets we ob-
tained for the city of Pittsburgh - PA, in the Twitter dataset, that Point Park
University was ranked as powerful using our metrics. Moreover, as counterfac-
tual, we look at the academic calendar from the interval comprising the dataset
and identify 2 periods in which the university paralyzed its academic activities.
The rst period was thanks-given recess from Nov 16 to 30, 2014 and the second
was the winter recess from Dez 13, 2014 to Jan 05, 2015. Then, for thanks-given
recess, we compared the distribution of visits in the neighborhood with the aca-
demic activities period from Nov 1 to 16, 2014. For this event, we obtained the
p-value from the KS test equals 00005, which rejects the HO null hypotheses,
indicating changes in the number of visits. A similar result was found in winter
recess which we compared with the return to academic activities period from
Jan 06, 2015, to Feb 13, 2015. Also, we obtained the p-value equalsO2-13,
which rejects the HO hypothesis. Both examples indicate thus, that changes in
the activities of the university during thanks-given and winter recess a ected
the number of visits in its neighborhood.

A compared result was found for the city of Austin - TX, in the Weeplaces
dataset. Our metrics ranked Austin Convention Center as powerful. Then,
we searched for the main events that occurred at this location to identify a
counterfactual. We found the SXSW conference, an annual conglomeration
of parallel Im, interactive media, music festivals, and conferences organized
jointly that take place in mid-March. Then, for each year that comprises our
dataset (2009, 2010, and 2011), we compared the distribution of visits in the
neighborhood of Austin Convention Center during the SXSW week with the
week before the event. Thus, for each year, we obtained from the KS the
respective p-values (003, 17e-83 and 50e-39) which indicate changes in the
number of visits in the Austin Convention Center neighborhood, rejecting the
HO hypothesis. This is an interesting result since the impact of the SXSW
on the neighborhood occurred over three dierent years. Moreover, we also
identi ed the same location as powerful in the Gowalla dataset for the year
2010. Similarly, we apply the same methodology and obtained the p-value for
the KS test equals 20e-21, which also rejects the HO hypothesis. Thereforaye
provided for three di erent datasets, two di erent cities, and three di erent years
examples of counterfactual for the claim that a POIA impacts the visitation on
POI B i.e. \If A varies, B also varies".

5.5 Neighborhood Impact in Di erent Periods

We showed that POls ranked as powerful by our metrics actually impact the
number of visits in their neighborhood. However, one question that arises is
whether this impact occurs throughout the day or at speci c periods. To an-
swer this question, we rst aggregated the hours of the day over eight-hour time
windows, corresponding to three periods of the day: morning (06:00-14:00),
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afternoon (14:00-22:00), and night (22:00-06:00). Also, we aggregated by week-
days and weekends. Then, we applied our methodology to the data from the
cities of San Francisco and Pittsburgh, considering the three distinct periods of
the day. These two cities were chosen because they have the largest amount of
data. Finally, for each city, we sampled the most powerful POI by metric and
by the period of the day.

Table 7: Powerful places by period of the day

San Francisco - Weeplace Pittsburgh - Twitter

attract support attract support
weekdays Airport Airport Cafe Cafe
weekends Park Airport Cafe Hospital
06:00-06:00 Airport Airport Convention Center  University
06:00-14:00 Fast-Food Airport Convention Center Residential Parking
14:00-22:00  Store Airport Cafe Hospital
22:00-06:00 Airport Airport University Commercial Parking

The results are shown in Table 7. For the city of San Francisco, the Inter-
national Airport was ranked as powerful to disseminate and to gather people.
However, during the morning, a fast-food restaurant stood as the one that most
attracted people and, during the afternoon, a large electronics store. It is inter-
esting that during the weekdays the powerful POIs do not change, but during
the weekend the POI that attracts the most is a park where people do leisure
activities.

Di erently, for the city of Pittsburgh, when we do not separate by the period
of the day, the Convention Center was ranked as the highesattract power and a
University was ranked as the highestsupport power. However, when we separate
by the period of the day, each period has a di erent POI ranked as powerful.
During the morning the one with the highest attract power was the Convention
Center and, the one with the highest support power was residential parking.
Also, during the afternoon a co ee shop stood as the most powerful to attract
people, and a hospital, the one that disseminated the most, which is similar
when looking at weekdays and weekends periods. Finally, during the night, a
university had the highest attract power and commercial parking had the highest
support power.

These results show that in di erent cities there are totally di erent behaviors
that vary according to the period of the day. Some places are very important in
the city and act as hubs, disseminating and attracting people, others are pow-
erful depending on the time of day. These behaviors in di erent cities ask for a
deeper investigation of human dynamics in urban areas, through the comparison
of similar patterns across di erent cities [49].

We also applied our methodology in the Dartmouth dataset. We separate the
dataset month by month to assess the change in rankings over time for di erent
metrics. Table 8 shows the top 3 buildings per metric for each month. It is
possible to note that although there are no signi cant changes in the periods
in which there are academic activities, the rankings change during the recess in
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December. Forattract power and support power, the Social 3 building, which
is a restaurant, increases its importance while for theindependence powerthe
athletic buildings become the most independent, surpassing the residential and
administrative buildings. Possibly due to the return of students to their home
cities and the recess of administrative activities.

Table 8: Top 3 Dartmouth powerful buildings per metric and per month

Power metric Month
11-03 12-03 01-04 02-04
Library 1 Library 1 Library 1 Library 1
attract Library 2 Social 3 Academic 2 Library 2
Academic 2 Library 2 Library 2 Academic 2
Library 1 Library 1 Library 1 Library 1
support Academic 2 Academic 2 Academic 2 Library 2
Library 2 Social 3 Library 2 Academic 2
Residential 4 Athletic 3 Administrative 1 ~ Administrative 1
independence  Administrative 1 Athletic 2 Athletic 1 Residential 4
Athletic 2 Athletic 3 Residential 4 Residential 5

5.6 Independence Power Among Cities

In section 5.2 we show that even powerful POIs have a certain degree of in-
dependence from their neighborhood in campus scenario's datasets. However,
is this same behavior found in urban scenario's datasets? More, is there any
di erence in the pattern of independence of POls for di erent cities?

To answer these questions we show in Figure 8 the cumulative distribution
functions (CDFs) of POI independence for each city fromvalidation datasets
Figure 8a shows these CDFs for the Gowalla dataset, where we can easily visu-
alize two distinct groups of cities. The rst group is formed by U.S. cities that
have a lower degree of independence compared to the other group. About 50%
of POls have at least 30% independence. The second group is formed by Eu-
ropean cities and has greater independence from POIls compared to U.S. cities.
About 50% of POlIs have at least 50% independence.

Moreover, in the Gowalla dataset, it is possible to note that between 30%
and 50% of POls in di erent cities are completely dependent on their neighbor-
hood (independence = 0), and between 10% and 25% of POls are completely
independent (independence = 1).

A similar analysis can be done in the Weeplaces dataset in Figure 8b. It is
possible to note that there are two groups of cities. The rst group is formed by
U.S. cities and the second group is formed by di erent cities around the world,
however, these groups are not evident as in the Gowalla dataset. Furthermore,
U.S. cities have more dependence among POIs, and 50% of them have at least
25% of independence, while for the other cities POIs are slightly more indepen-
dent and 50% of them have at least 35% of independence. Also, between 30
and 50% of POls are completely dependent on their neighborhood and between
10% and 20% are completely independent. These results show that there are
patterns in human mobility behavior in di erent countries and regions, possibly
due to cultural di erences that need to be further investigated.
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(a) CDF Gowalla Cities

(b) CDF Weeplaces (c) CDF Twitter

Figure 8: Most independent locations in the cities

Di erent from the others, the Twitter dataset in Figure 8c contains U.S.
cities only. These cities have a greater degree of independence from other POls,
around 50% of them have at least 70% of independence. The city of San Fran-
cisco contains the most dependent POIs among the analyzed cities. Possibly
because it is the most touristic city of the dataset, therefore people tend to have
longer trajectories among POIs. In contrast, the city of San Antonio has the
highest degree of independence among analyzed cities, around 50% of POls are
visited regardless of their neighborhood. Moreover, it is important to note that
the Twitter dataset has a larger number of independent locations than other
datasets for the same city. This divergent behavior can be explained by the
greater number of uniqgue POIs and short trajectories with recurring visits to
the same POIs when compared to other datasets. However, as can be seen in
Figure 9, our metrics captured almost the same independent regions in the same
cities from di erent datasets.

Therefore, another way to analyze theindependence poweris by means of
identi cation of city areas with greater independence among POIs. To tackle
this problem, we divided the cities into geohash [27] cells with size 159m
1524m. Then, for each cell, we sum the POIs independence. Finally, for each
city, we normalized the grid distribution to values between 0 and 1 using the
max value and plotted over the city map. Figure 9 shows in green color the
most independent areas. It is possible to note that these areas follow a pattern
among di erent cities, i.e., these points are usually concentrated in central areas

30



of cities or areas with a high number of visitations such as airports or shopping
malls. More interesting, our metrics captured almost the same independent
regions in the same cities from di erent datasets, which shows that in fact, our
metrics capture patterns that reveal characteristics of di erent cities.

(a) Chicago Weeplace (b) Chicago Twitter (c) Seattle Gowalla (d) Seattle Weeplace

(e) Dallas Gowalla (f) Dallas Twitter

(g) Austin Gowalla (h) Austin Twitter (i) Austin Weeplace

Figure 9: Most independent locations in the cities

6 Practical considerations and perspectives

As a practical application of our metrics, we propose to analyze them in a case
study of epidemic dissemination. In this case study, our goal is to evaluate how
much the neighborhood visitation is a ected by the top POIs of each power
metric. For this task, rst, we exclude from the dataset D POls with less than
10 visits and, then we grouped the dataseD = fdy;dy;:::; dyg with a monthly
frequency. Then, for each monthly setd; we created theMulti ow Graph Model
and computed the power metricsM . After this step, for each power metric
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ma 2 M, we listed the top 10 POls with highest power fankn,,). Thus, for
each pair of metricsm,; my, we removed the POI intersection betweerrank
andrankpn,, becomingrank ., andrank, ,and compared them in the epidemic
dissemination scenario. In this scenario, we initially infected the POls inrank ,, |
and rank, , so that all people who went through one of the contaminated POls
in the period comprising d; became infected. Finally, at the end of the period
comprising d;, we veri ed the average percentage of infected people who visited
the POIs in m, and my, neighborhoods, given by theMulti ow Graph Model .
Therefore, our intention is to verify how the neighborhood of the most powerful
POls are impacted by the ow of people who have visited these places.

(a) Austin Gowalla (b) Dallas Gowalla (c) Oslo Gowalla

Figure 10: Epidemic case study

To evaluate the described epidemic scenario, we used the three largest sets
of cities from the Gowalla dataset. Moreover, in addition to the previously used
metrics, we created a new \joint" metric that adds the values of the support
power and attract power metrics, becoming a single new metric. Also, to validate
our results, we use the Kruskal-Wallis H-test [54], which is a non-parametric
method for testing whether samples originate from the same distribution. This
test is a non-parametric version of ANOVA that is used for comparing two or
more independent samples of equal or di erent sample sizes.

Figure 10 shows the result of the case study. Although we can observe a
large variance in all metrics, our metrics of power have the median equal to or
higher than the other metrics. The results of the statistic test show that, for the
city of Dallas, there was statistical signi cance for the advantage of thesupport
power in relation to all other metrics. There was also statistical signi cance for
the advantage of the attract power and all other metrics, except betweenness
However, for the city of Austin, there was statistical signi cance only between
the support powerand eigcenout and the attract power and bf_power. Similarly,
for the city and Oslo, there was statistical signi cance between thesupport power
and the betweennessin _dg cen, and bf_power metrics.

In this context, the support powerwas shown to be superior in some cases be-
cause of its ability to capture the dispersion of people around the neighborhood.
However, in this evaluated context, joining the attract power and support power
metrics in a single metric did not result in a better outcome. The \joint" metric
had better results than attract power and worse thansupport power alone.

In addition to the previous scenario, we also used the described epidemic
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scenario to evaluate the POI clusters (high, medium, and low) from Figure 7
in the Dartmouth dataset. The results in Figure 11 show that all clusters had
a smaller variance when compared to the previous scenario. In addition, as
expected, the cluster high had a greater impact on its neighborhood with a
median of people infected in these POIls around 72%. Soon afterward comes
the cluster medium with a median of around 65% of infected people, and nally
the cluster low with a median of around 23% of infected people. Unlike the
clusters high and medium, the cluster low has smalkupport power and attract
power (< 2) and large independence power(> 0:6), which explains this huge
di erence for the other clusters. In addition, we veri ed that there is statistical
signi cance among the distributions of all clusters from Figure 11.

Figure 11: Cluster epidemic study case

The scenario analyzed above exempli es an application of our power metrics
in a practical scenario of epidemic dissemination. However, we acknowledge that
these practical applications need to be deepened to understand the nuances of
our metrics, in addition to taking into account other aspects such as dimensional
and temporal.

7 Conclusion

In this work, we propose a methodology to quantify the power of POls in three
dimensions: attract power, support power, and independence power Thus, we
modeled this problem using theMulti ow Graph Model where each POl is a node
and the transitions of users among POls are weighted direct edges. Thattract
power and support power measure how many visits a POI gathers from and
disseminate over its neighborhood, respectively. Moreover, thendependence
power is calculated by measuring the number of visits a POI receives that are
not in uenced by any other POI.

Furthermore, we tested and evaluated our methodology in two distinct groups
of publicly available datasets. The rst group, named test datasets describes
mobility in three University Campus datasets. The second group, namedval-
idation datasets, contains users' check-ins/posts on three social networks in
di erent cities around the world.

The results show that, in general, campus buildings have moderate to low
support powerand attract power, which is explained by the tendency of people to
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move over only a few buildings and to spend most of their time in the location.
Nevertheless, we identi ed a slight dependence among buildings, even those
buildings with high independence powereceive user visits from other buildings
on campus. Thereafter, we show through counterfactual theories of causation
of the form \If A varies, B also varies" , that our metrics capture places that
impact the number of visits in their neighborhood.

When we divide the data by periods of the day, we nd that, in some cities,
powerful locations change. In addition, when investigating the independence of
the POI in the validation data set, we found that cities on the same continent
have similar patterns of independence and, in general, the central and local
areas with a high number of visits are the regions with the highest degree of
independence between POls. These results show diversity and similarities in
patterns among cities that deserve to be investigated and deepened.

The novelty of our approach in methodological terms stems from the use of a
graph-based approach, combined with the theory of power relations in exchange
networks to tackle human mobility challenges. Moreover, our approach di ers
from traditional metrics of centrality in some circumstances such as exchange
networks where the relationship in the network involves the transfer of valued
items (i.e., information, time, money, energy). In this scenario, traditional
metrics have limited utility in predicting powerful places.

One limitation of our work is that we only consider the homogeneous impact
of POls in their vicinity, which does not take into consideration the hetero-
geneity of POls categories and spatio-temporal bias e ects. In future work, we
will address these limitations and we will expand our analysis of causality to
investigate the POI impact on the neighborhood over time.
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