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Abstract
We present an alternate undecidability proof for entailment in (intuitionistic) multiplicative sub-
exponential linear logic (MSELL). We contribute the result and its mechanised proof to the Coq
library of synthetic undecidability. The result crucially relies on the undecidability of the halting
problem for two counters Minsky machines, which we also hand out to the library. As a seed of
undecidability, we start from FRACTRAN halting which we (many-one) reduce to Minsky machines
termination by implementing Euclidean division using two counters only. We then give an alternate
presentation of those two counters machines as sequent rules, where computation is performed by
proof-search, and halting reduced to provability. We use this system called non-deterministic two
counters Minsky machines to describe and compare both the legacy reduction to linear logic, and
the more recent reduction to MSELL. In contrast with that former MSELL undecidability proof, our
correctness argument for the reduction uses trivial phase semantics in place of a focused calculus.
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1 Introduction

In the late 80s, Lincoln et al. [17] gave a first proof of the undecidability of propositional linear
logic (LL) via a many-one reduction from “and-branching two-counter machines without
zero-test,” a variant of Minsky machines extended with a fork instruction. The ability of LL
to simulate the increment and decrement operations characteristic of Petri net operations
was spotted very early and lead to paradigmatically characterise LL as a logic for counting
resources. Critically, the exponential modality ! can be exploited to allow unbounded reuse
of some specific resources like (Petri net) transitions or (Minsky machines) instructions.

To establish undecidability, one needed of course to go beyond Petri nets because those
have a decidable reachability problem, a major result from the early 80s with a very involved
proof still actively revisited nowadays [18, 15, 4, 16, 5]. As opposed to Minsky machines,
Petri nets are not able to perform zero tests combined with a jump. Hence, the main idea of
the reduction was to use forking to separate comparison with zero from jumping. In there,
the additive conjunction of LL plays a central role:

Σ ⊢ α = 0 Σ ⊢ jump

Σ ⊢ α = 0 & jump
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Indeed this right introduction rule duplicates the context Σ in the left and right sub-proofs
which allows to delegate checking for emptiness in the left branch, and jumping in the right
branch, the requirement of the two premises ensuring the correctness of the combination.

The same idea was then exploited to establish the undecidability of smaller fragments of
LL [10, 11, 13]. In our own work [8], we gave the first mechanisation of the undecidability of
the elementary fragment of LL in Coq, and hence ILL, based on this forking idea as well.

The multiplicative and exponential fragment (MELL) of linear logic lacks additive connect-
ives, and is thus unable to duplicate the context. Arguably, the question of its decidability
is the most important open conjecture (see e.g. [14]) in the context of LL, even with some
claimed proof of decidability [1], later refuted [20]. The recent encoding of two counters
Minsky machines in a fragment of LL lacking additives opened a new logical perspective on
the MELL question [2]. Indeed, at the cost of a more complex modal structure, forking with
& can be replaced with a constraint on modalities in the promotion rule. This extension of
MELL is called multiplicative sub-exponential linear logic (MSELL).

In this paper, we mechanise this reduction from two counters Minsky machines to MSELL,
following the encoding of [2]. However, we proceed in the intuitionistic version of the logic
(two sided sequents with exactly one conclusion formula) that we call IMSELL. That fragment
only involves the linear implication ⊸ and the modalities !m with m ∈ Λ = {a, b, ∞}, so
it is short to describe. It is also convenient for comparing with our previous encoding in
(elementary) intuitionistic LL [13, 8]. Schematically, we describe and mechanise the following
many-one reduction chain, explained below:

FRACTRANreg ⪯ MMA02 ⪯ MMnd ⪯ IMSELLΛ

Our work is based on and contributes to the Coq library of undecidability proofs; see [9]
for a quick overview. As opposed to the legacy LL argument of forking, which can cope
with Minsky machines using arbitrary many counters, the MSELL and IMSELL reductions
rely on two counters machines in an essential way. Hence, we first had to implement the
undecidability of the “halting on the zero state” problem for two counters Minsky machines,
that we denote MMA02; see Section 3. To establish this, we could follow the legacy reduction
from many counters to just two by Minsky [19], that uses a Gödel coding of lists of natural
numbers as essential trick. Following [12], we profit from the FRACTRAN language [3] that
adequately abstracts away the Gödel coding phase, hence we establish the undecidability
of MMA02 by reducing from (regular) FRACTRAN halting instead, mainly by mechanising
Euclidean division with two counters only.

In Section 4, we provide a sequent calculus style presentation of MMA02, i.e. the instance
(M, x, y) of MMA02 is viewed as a sequent ΣM //n x ⊕ y ⊢ 1, and the Minsky machine M
starting at PC value 1 with register values (x, y) halts on the zero state if and only if the
sequent ΣM //n x ⊕ y ⊢ 1 has a derivation. We call this system and the associated problem
non-deterministic two counters Minsky machines, denoted MMnd. As MMnd is essentially a
specialised proof theory for Minsky machines, reducing from it to logical entailment problems
mainly consists in transformations of derivations. Hence Section 5, targeting IMSELL, can
be understood from a proof theoretic perspective only. In there, we gives details of the
reduction of two counters halting, explaining how the legacy fork trick for ILL is replaced
by the modal constraints in the promotion rule of IMSELL, following [2]. Additionally, our
proof of correctness of the reduction differs significantly: the former proof relies on the
completeness of focused proof-search; we instead generalise our semantic argument [8], i.e.
we prove and use the soundness of trivial phase semantics for IMSELL.

https://github.com/uds-psl/coq-library-undecidability
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Our contributions in this work are the following. First, via a proof theoretic presentation
of Minsky machines, a comparison of their encoding in ILL and in IMSELL, explaining
precisely how and where forking is replaced with modalities. Then, a novel completeness
proof of the IMSELL reduction based on the soundness of trivial phase semantics. On the
implementation side, we provide the mechanized proof of the undecidability of two counters
Minsky machines (with two different presentations), and of IMSELL. The Coq 8.13 code is
available at

https://github.com/uds-psl/coq-library-undecidability/tree/FSCD-2021

and (sub-)section titles generally provide hyperlinks to the relevant source code. Our code
extends the existing library with about 1800 loc, 1200 of which concern the reductions from
FRACTRAN to MMnd, and 600 more for the MMnd to IMSELL reduction.

The paper describes the major steps of the implementation, in the language of type
theory, but should be readable with only basic knowledge of it. We denote P (resp. B and
N) the type of propositions (resp. Booleans and natural numbers). We write LX for the
type of lists over X, where [ ] represents the empty list, x :: l for the cons operation, l ++ l′

for the concatenation of two lists, and |l| : N for the length of l. We write Xn for vectors v⃗

over type X with length n : N, and Fn for the finite type with exactly n elements. Notations
for lists are overloaded for vectors. Moreover, for p : Fn and x : X, we write v⃗p for the
p-th component of v⃗ : Xn and v⃗ {x/p} when v⃗ is updated with x at component p. The
(non-dependent) sum A + B represents a computable/Boolean choice between an inhabitant
of A or an inhabitant of B. In the case where A and B are propositions (i.e. of type P), the
sum A + B : Type is stronger than the disjunction A ∨ B : P, because one cannot computably
determine which of A or B holds in the later case. We also use the type-theoretic dependent
sum Σx:AB(x), denoted {x : A | B x} in Coq,1 inhabited by (Coq computable) values x : A

paired with a proof of B x.
The framework of synthetic computability [7] is based on the notion of many-one reduction.

If P : X → P is a predicate (on X) and Q : Y → P is a predicate, we say that P many-one
reduces to Q and write P ⪯ Q if there is a Coq function f : X → Y s.t. ∀x : X, P x ↔ Q(f x),
i.e. a many-one reduction from P to Q. Because we work in constructive (axiom-free) Coq,
all definable functions are computable and thus the requirement of the computability of the
reduction function f above can be discarded. If P ⪯ Q and P is undecidable then so is Q.

2 The FRACTRAN seed (files FRACTRAN.v and fractran_utils.v)

The FRACTRAN model of computation is very simple to describe. It was introduced by
Conway [3] but its main idea, the Gödel coding of a list [x1; x2; . . . ; xn] of natural numbers
as the number px1

1 px2
2 · · · pxn

n , predates the introduction of FRACTRAN by several decades.
In the FRACTRAN formalism, programs are lists of formal fractions, i.e. terms Q of type

L (N × N).2 The state of a program is modelled as a natural number x : N. A fraction p/q is
executable at state x if x·p/q is a natural number (i.e. not a proper fraction) and in that case
this is the new state. To allow FRACTRAN to discriminate, and b.t.w. turn it into a Turing
complete model of computation, the first executable fraction in the list has to be picked up
at each step of computation. The program Q stops when no fraction in the list is executable.

1 or simply {x | B x} when the type of x is guessable.
2 For the moment, we can ignore the case of degenerate fractions like p/0.
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Formally this prose translates in a straightforward inductive definition, not even involving
the algebraic notion of fraction, and characterized by the two inductive rules below:

qy = px

p/q :: Q //F x ≻ y

q ∤ px Q //F x ≻ y

p/q :: Q //F x ≻ y

where u ∤ v means u does not divide v, and Q //F x ≻ y reads as the FRACTRAN program Q

transforms state x into state y in one step of computation. The computation is terminated
at x, denoted Q //F x ⊁ ⋆, when there is no possibility to perform one step from x, and
termination from x, denoted by Q //F x ↓, means there is exists a sequence of steps starting
at state x at leading to the terminated state y. Formally, this gives us:

Q //F x ⊁ ⋆ := ∀y, ¬(Q //F x ≻ y) and Q //F x ↓ := ∃y, (Q //F x ≻∗ y ∧ Q //F y ⊁ ⋆)

There are some obvious quick remarks to make here: the empty program Q = [ ] is
terminated in any state; unless Q = [ ], the state 0 is not terminated. The step relation
is strongly decidable in the sense that one can discriminate between non-terminated and
terminated states, and in the former case, computationally find a next state, expressed below
using (Coq) dependent types:

▶ Proposition 1. For any FRACTRAN program we have ∀x, {y | Q //F x ≻ y}+(Q //F x ⊁ ⋆).

Proof. By structural induction on the list Q combined with Euclidean division. ◀

The dependent sum {y | Q //F x ≻ y} represents a (computable) state y together with a
proof that y is next after x. The proposition Q //F x ⊁ ⋆ is for a proof that x is a terminated
state. Finally, the outer sum + represents a computable choice between the two alternatives.

Non-regular fractions like 0/0 can make the computation non-deterministic; and non-
proper fractions like 1/1 or 6/2 are always executable, implying that programs including such
fractions have no terminating state. Non-deterministic step relations involves at least two
different notions of termination, weak termination as defined above, and strong termination,
when no infinite sequence of steps from x can exist. For our use of FRACTRAN, it does not
matter because we only consider regular FRACTRAN programs where formal fractions p/0
are disallowed. Regular FRACTRAN is a universal model of computation, up to a Gödel
encoding of natural numbers [3].3

▶ Definition 2. A FRACTRANreg instance is a pair composed of a list of regular formal
fractions and a natural number, i.e. of type

{
(Q, x) : L (N × N) × N | ∀p, p/0 ̸∈ Q

}
, and the

question asked is whether Q //F x ↓ holds or not.

Notice the use of a dependent sum in the type of instances where the predicate ∀p, p/0 ̸∈ Q

acts as a guard against non-regular instances.

▶ Theorem 3 (mechanized in [12]). There is a many-one reduction from the Halting problem
for single tape Turing machines to termination of regular FRACTRAN programs, i.e. Halt ⪯
FRACTRANreg, and thus FRACTRANreg is undecidable.

As a consequence, we can safely use FRACTRANreg as our seed of undecidability for the
chain of many-one reductions described in this paper.

3 However, e.g. the function n 7→ 0 cannot be directly represented by a FRACTRAN program where n
would be the starting state leading, after finitely many steps of computation, to the 0 terminated state.

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/FRACTRAN/FRACTRAN_undec.v
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3 From FRACTRAN to two registers alternate Minsky machines

3.1 Alternate Minsky machines (files MM.v and mma_defs.v)

We describe alternate n counters (or registers) Minsky machines, where states are described
as (i, v⃗) : N × Nn. The number i : N is the current program counter (PC) value and the
vector v⃗ : Nn describes the n current values of the registers. When convenient, we also denote
states as st , st1... Instructions consist of either incrementing INCa x a register by one, or
decrementing DECa x j a register by one. Notice that when the register values 0, it is not
possible to decrement it. So a conditional jump at j helps at discriminating between the
zero and non-zero cases. Unless there is a conditional jump, the default behaviour after the
register is updated is to jump to the next instruction at PC + 1. In contrast with [8, 12]
where the DEC x j instruction jumps at j when v⃗x is empty, here in DECa x j, the jump occurs
when decrementing is possible, and this is the reason we call these machines alternate and
suffix instructions with an “a” just as a reminder for this alternate semantics. Hence a single
(atomic) step of computation is described by the following relation

INCa x //a (i, v⃗) ≻
(
1+i, v⃗{(1+u)/x}

)
when v⃗x = u

DECa x j //a (i, v⃗) ≻
(
j, v⃗{u/x}

)
when v⃗x = 1+u

DECa x j //a (i, v⃗) ≻ (1+i, v⃗) when v⃗x = 0

where σ //a (i1, v⃗1) ≻ (i2, v⃗2) reads as the MMAn instruction σ at PC value i1 transforms the
state (i1, v⃗1) into the state (i2, v⃗2). Notice that this alternate semantics allows to implement
a universal jump without needing an empty register, which will be critical when we will need
to limit the number of registers to n = 2.

▶ Proposition 4. The step relation for alternate Minsky machines is deterministic and total:
1. for any states st , st1 and st2, if σ //a st ≻ st1 and σ //a st ≻ st2 then st1 = st2;
2. for any state (i1, v⃗1), one can compute a state (i2, v⃗2) such that σ //a (i1, v⃗1) ≻ (i2, v⃗2).

This means that starting from state (i1, v⃗1), the instruction σ at PC value i1 (provided
there is one) changes the state in exactly one possible way, and the new state (i2, v⃗2) is
Coq-computable from the initial state (i1, v⃗1). So the only way for such programs to terminate
is to jump to a PC value which holds no instruction.

A program is pair (i, P ) : N × LMMAn composed of the PC value of its first instruction
and the sequence P of consecutive instructions of which is it composed. Informally, the
program (i, [σ0; . . . ; σm−1]) would be read as e.g. i : σ0; 1+i : σ1; . . . ; m−1+i : σm−1 using
labelled instructions. We define the k-steps relation for a program (i, P ) inductively with

(i, P ) //a st ≻0 st

i1 = |L| + i P = L ++ σ :: R σ //a (i1, v⃗1) ≻ st2 (i, P ) //a st2 ≻k st3

(i, P ) //a (i1, v⃗1) ≻1+k st3

where the constraints i1 = |L|+ i and P = L++σ ::R impose that the instruction at PC value
i1 of (i, P ) is σ. From its structure as lists of instructions, there is at most one instruction
at a given PC value and thus, the k-steps relation is also deterministic. However, it can be
non-total if a jump outside of the interval [i, |P | − 1 + i] occurs, the lack of an instruction
blocking the computation. We write out j (i, P ) := j < i ∨ |P | + i ≤ j when there is no
instruction at j in (i, P ), and because of Proposition 4 (totality), blocked states are exactly
those outside of the code, i.e. out i1 (i, P ) ↔ ∀st2, ¬ (i, P ) //a (i1, v⃗1) ≻1 st2.

FSCD 2021
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We define the predicates of computation, of progress, of output and of termination as:

(i, P ) //a st1 ≻∗ st2 := ∃k, (i, P ) //a st1 ≻k st2 (computation)
(i, P ) //a st1 ≻+ st2 := ∃k > 0, (i, P ) //a st1 ≻k st2 (progress)

(i, P ) //a st1 ⇝ (i2, v⃗2) := (i, P ) //a st1 ≻∗ (i2, v⃗2) ∧ out i2 (i, P ) (output)
(i, P ) //a st1 ↓ := ∃st2, (i, P ) //a st1 ⇝ st2 (termination)

output meaning that we have computed until we reach a state blocking the computation.

▶ Definition 5. The problems MMA2 and MMA02 have the same instances: a pair (P, v⃗)
where P is a list of MMA2 instructions (starting at PC value 1) and the vector v⃗ : N2 repres-
ents the initial values of the two registers. MMA2 asks for termination, i.e. (1, P ) //a (1, v⃗) ↓.
MMA02 asks for termination on the zero state, i.e. (1, P ) //a (1, v⃗)⇝ (0, [0; 0]).

We mention that there is substantial machinery for (alternate) Minsky machines, and
more generally PC based state machines, in the Coq library of undecidable problem initially
described in [8]. These tools enable modular reasoning in those models of computation.

3.2 A basic MMAn library up to Euclidean division (file mma_utils.v)
We specify, implement and verify a small library to compute some basic operations with
MMAn. For this section, n : N is a fixed number of registers but all the below sub-programs
involve at most two registers. In the coming statements, the vector v⃗ : Nn is implicitly
universally quantified over. The names i, j, p, q : N range over PC values, k : N over natural
number constants, and the names x, t, s, d : Fn over registers indices.

Let us start with the easy simulations of an unconditional jump, the nullification of
register x and the operation that adds k units to register x.

▶ Proposition 6. For i, j : N and x : Fn we have (i, JUMPa j x) //a (i, v⃗) ≻+ (j, v⃗) where
JUMPa j x := [INCa x; DECa x j].

▶ Proposition 7. For x : Fn and i : N, we have (i, NULLa x i) //a (i, v⃗) ≻+ (1 + i, v⃗{0/x})
where NULLa x i := [DECa x i].

▶ Proposition 8. For i, k : N, x : Fn, we have (i, INCSa x k) //a (i, v⃗) ≻∗ (k + i, v⃗{(k + v⃗x)/x})
where INCSa x k := [INCa x; . . . ; INCa x] is of length |INCSa x k| = k.

Then we simulate test for emptiness of register x, jumping to PC value p when x is empty,
or else to the end of the sub-program otherwise. Registers are restored to their initial values
when the sub-program is finished (assuming p points outside of its code).

▶ Proposition 9. For x : Fn and p, i : N we have (i, EMPTYa x p i) //a (i, v⃗) ≻+ (j, v⃗) where
EMPTYa x p i := [DECa x (3 + i); JUMPa p x; INCa x], and j := p in case v⃗x = 0, or else j := 4 + i

in case v⃗x ̸= 0.

Notice that this sub-program is of length |EMPTYa x p i| = 4 (despite looking 3), because
we abuse the list notation [. . . ; . . . ; . . .] by allowing dots to be not only single instructions
but also lists of instructions such as JUMPa p x. Hence, EMPTYa x p i is formally defined as
DECa x (3 + i) :: JUMPa p x ++ INCa x :: [ ] but we choose the friendly display for readability.

We now simulate the transfer of the contents of register s (for source) to d (for destination).

▶ Proposition 10. For s ̸= d : Fn and i : N we have (i, TRANSFERa s d i) //a (i, v⃗) ≻+ (3 + i, w⃗)
where TRANSFERa s d i := [INCa d; DECa s i; DECa d (3 + i)] and w⃗ := v⃗{0/s}{(v⃗s + v⃗d)/d}.

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/MMA/mma_utils.v
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We simulate multiplication of a register by a constant. The idea is similar to transfer but
instead of transferring one for one, when one unit is removed from s, k units are added to d.

▶ Proposition 11. For s ̸= d : Fn, k, i : N we have (i, MULT_CSTa s d k i) //a (i, v⃗) ≻+ (j, w⃗)
where MULT_CSTa s d k i := [DECa s (3 + i); JUMPa (5 + k + i) s; INCSa d k; JUMPa i s], j := 5 +
k + i, w⃗ := v⃗{0/s}{(kv⃗s + v⃗d)/d}, and |MULT_CSTa s d k i| = 5 + k.

We simulate the minus k operation (with overflow management), jumping to PC value p

when k units can be removed from register x, or else to PC value q when register x contains
less than k units (overflow).

▶ Proposition 12. For p, q, k, i : N and x : Fn, we define

DECSa x p q k i := [DECa x (3 + i); JUMPa q x; . . . ; DECa x (3k + i); JUMPa q x; JUMPa p x]

where the pattern DECa x (3u + i); JUMPa q x is repeated for u = 1, . . . , k.
Depending on the comparison between v⃗x and k, we have the following:
if v⃗x < k then (i, DECSa x p q k i) //a (i, v⃗) ≻+ (q, v⃗{0/x});
if v⃗x ≥ k then (i, DECSa x p q k i) //a (i, v⃗) ≻+ (p, v⃗{v⃗x − k/x}).

Using an extra temporary register t, we implement a non-destructive minus k operation
(with overflow management).

▶ Proposition 13. For x ̸= t : Fn and p, q, k, i : N, we define

DECS_COPYa x t p q k i :=

 DECa x (4 − 1 + i); JUMPa q x; INCa t;
. . .

DECa x (4k − 1 + i); JUMPa q x; INCa t;
JUMPa p x


where the pattern DECa x (4u − 1 + i); JUMPa q x; INCa t is repeated for u = 1, . . . , k.

Depending on the comparison between v⃗x and k, we have the following:
if v⃗x < k then (i, DECS_COPYa x t p q k i) //a (i, v⃗) ≻+ (q, v⃗{0/x}{(v⃗x + v⃗t)/t});
if v⃗x ≥ k then (i, DECS_COPYa x t p q k i) //a (i, v⃗) ≻+ (p, v⃗{(v⃗x − k)/x}{(k + v⃗t)/t}).

The length is |DECS_COPYa x t p q k i| = 2 + 4k.

Notice that the initial value of t has to be known if one wants to recover the initial
value of x, e.g. if the initial value of t is 0 and x contains less than k units, then once the
computation is finished, t contains a copy of the initial value of x.

We implement a non-destructive computation of a divisibility test of register x by a
constant k > 0, using a spare register t to preserve the initial value of x.

▶ Proposition 14. For x, t : Fn and p, q, k, i : N, we define

MOD_CSTa x t p q k i := [EMPTYa x p i; DECS_COPYa x t i q k (4 + i)]

and we check the identity |MOD_CSTa x t p q k i| = 6 + 4k. Assuming x ̸= t and k > 0, we have
(i, MOD_CSTa x t p q k i) //a (i, v⃗) ≻+ (j, v⃗{0/s}{(v⃗x + v⃗t)/t}) where j := p when k divides v⃗x,
and j := q otherwise.

We now implement division by a constant k > 0. It will only work when the contents of
the input register s is a multiple of k and the quotient is then stored in d.

▶ Proposition 15. For s, d : Fn and k, i : N, we define

DIV_CSTa s d k i := [DECSa s (2 + 3k + i) (5 + 3k + i) k i; INCa d; JUMPa i s]

and we check the identity |DIV_CSTa s d k i| = 5 + 3k. Assuming s ≠ d, k > 0 and v⃗s = ak,
we have (i, DIV_CSTa s d k i) //a (i, v⃗) ≻+ (5 + 3k + i, v⃗{0/s}{(a + v⃗d)/d}).
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3.3 Compiling regular FRACTRAN programs (file fractran_mma.v)
We are now in position to compile regular FRACTRAN programs (with no p/0 fractions).
We start with a sub-program for simulating the FRACTRAN step relation for one regular
fraction p/q then we will chain those sub-programs.

We fix n := 2, and s := 0 : F2 and d := 1 : F2 are the two available registers for two
counters alternate Minsky machines. Let use assume a regular fraction, i.e. p, q : N with
q ̸= 0, and i, j : N where i the starting PC value of the sub-program.

To help the readability of the following code, we decorate it with relevant labels (PC
values), although those are not formally present in the mechanisation:

(i, FRAC_ONEa p q i j) :=



i0: MULT_CSTa s d p i0;
i1: MOD_CSTa d s i2 i5 q i1;
i2: DIV_CSTa s d q i2;
i3: TRANSFERa d s i3;
i4: JUMPa j d;
i5: DIV_CSTa s d p i5;
i6: TRANSFERa d s i6

i7:


where



i0 := i,

i1 := 5 + p + i0,

i2 := 6 + 4q + i1,

i3 := 5 + 3q + i2,

i4 := 3 + i3,

i5 := 2 + i4,

i6 := 5 + 3p + i5,

i7 := 3 + i6

▶ Proposition 16. |FRAC_ONEa p q i j| = 29 + 4p + 7q and i7 = |FRAC_ONEa p q i j| + i.

▶ Proposition 17. If qy = px then (i, FRAC_ONEa p q i j) //a (i, [x; 0]) ≻+ (j, [y; 0]).

▶ Proposition 18. If q ∤ px then (i, FRAC_ONEa p q i j) //a (i, [x; 0]) ≻+ (i7, [x; 0]).

Proof. The proof of Proposition 17 (resp. 18) is sketched in Appendix A (resp. B). ◀

Hence (i, FRAC_ONEa p q i j) performs the multiplication of x by p/q if the result is a
natural number, transferring the control to PC value j, or else, would the result be a proper
fraction, the registers are globally unmodified and the PC is transferred at i7, the end of this
sub-program. Notice that the register d is assumed to be initially empty.

We now chain those sub-programs to simulate one step of a regular FRACTRAN program,
encoding a list Q of fractions by structural recursion on Q:

FRAC_STEPa j [ ] i := [ ] FRAC_STEPa j (p/q :: Q) i := P ++ FRAC_STEPa j Q (|P | + i)
where P := FRAC_ONEa p q i j

▶ Lemma 19. For any regular FRACTRAN program Q : L (N × N) and any i, j, x, y : N, if
Q //F x ≻ y then (i, FRAC_STEPa j Q i) //a (i, [x; 0]) ≻+ (j, [y; 0]).

Proof. By induction on the predicate Q //F x ≻ y using Propositions 17 and 18. ◀

▶ Lemma 20. For any regular FRACTRAN program Q : L (N × N) and any i, j, x : N, if
Q //F x ⊁ ⋆ then (i, FRAC_STEPa j Q i) //a (i, [x; 0]) ≻∗ (|FRAC_STEPa j Q i| + i, [x; 0]).

Proof. By induction on Q using Proposition 18. ◀

The instance FRAC_STEPa 1 Q 1 starts at i = 1 and loops on itself (j = 1) until no
fraction can be executed. In addition, we finish by nullifying s and then jump to PC value 0:

FRAC_MMAa Q := FRAC_STEPa 1 Q 1 ++ NULLa s
(
|FRAC_STEPa 1 Q 1| + 1

)
++ JUMPa 0 s

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/MMA/fractran_mma.v
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Σ //n 0 ⊕ 0 ⊢ p
STOPn p ∈ Σ

Σ //n 1+a ⊕ b ⊢ q

Σ //n a ⊕ b ⊢ p
INCn α p q ∈ Σ

Σ //n a ⊕ b ⊢ q

Σ //n 1+a ⊕ b ⊢ p
DECn α p q ∈ Σ

Σ //n 0 ⊕ b ⊢ q

Σ //n 0 ⊕ b ⊢ p
ZEROn α p q ∈ Σ

Σ //n a ⊕ 1+b ⊢ q

Σ //n a ⊕ b ⊢ p
INCn β p q ∈ Σ

Σ //n a ⊕ b ⊢ q

Σ //n a ⊕ 1+b ⊢ p
DECn β p q ∈ Σ

Σ //n a ⊕ 0 ⊢ q

Σ //n a ⊕ 0 ⊢ p
ZEROn β p q ∈ Σ

Figure 1 The S-MMnd sequent style calculus for non-deterministic two counters Minsky machines.

▶ Theorem 21. For any regular FRACTRAN program Q : L (N×N) and any x : N, the three
following properties are equivalent:
1. Q //F x ↓;
2. (1, FRAC_MMAa Q) //a (1, [x; 0])⇝ (0, [0; 0]);
3. (1, FRAC_MMAa Q) //a (1, [x; 0]) ↓.

Proof. A sketch of the proof can be found in Appendix C. ◀

▶ Corollary 22. FRACTRANreg ⪯ MMA2 and FRACTRANreg ⪯ MMA02.

4 Minsky machine termination as provability

While the (heavy) alternate Minsky machines framework was useful to simulate FRACTRAN
programs with two counter machines, using it as a seed for other reductions is not recommen-
ded. First, explaining the semantics and termination predicates requires many definitions,
not necessarily obvious at first. Also, manipulating them without the tools for modular
reasoning is quite difficult.

4.1 Non-deterministic two counters Minsky machines (file ndMM2.v)
For our reductions to linear logic, we replace MMA2 with an equivalent model, much easier to
describe and work with, where computations are performed by proof-search and termination
matches the provability/derivability predicate. Reductions to entailment in logical systems
will thus mainly consist in encoding derivations from one system to another. We call this
model non-deterministic two counters Minsky machines and denote MMnd.

We comment this logical presentation, sequent style, of Minsky machines. MMnd in-
structions are of the form STOPn p | INCn x p q | DECn x p q | ZEROn x p q where x ∈ {α, β} is a
register index, either the first α or the second β,4 and p, q : N are labels, here in type N, but
the definitions in this section are completely parametric in the type of labels. A sequent of
MMnd is of the form Σ //n a ⊕ b ⊢ p where Σ is a list of MMnd instructions viewed as a finite
set, a and b of type N represent the values of the counters α and β respectively and p is the
current label.

We define provability/derivability inductively by the rules the calculus S-MMnd in Fig. 1.
Notice that since computation is simulated by proof-search, the initial state is the conclusion
of a rule and it is transformed into the premise, when there is one. For example, the INCn _ p q

rule contains both the initial label and the jump-to label, hence it can only execute at label

4 hence formally a Boolean value of type B.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/ndMM2.v


18:10 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

p. However, nothing prevents the simultaneous occurrence of another instruction INCn _ p q′

in Σ, and this could render proof-search non-deterministic, hence our choice of terminology.
However, non-determinism is not relevant to the undecidability of the MMnd.

Notice that it is common practice to represent the sequent and the derivability predicate
of the sequent by the same denotation Σ //n a ⊕ b ⊢ p which could lead to confusion. Usually,
we qualify the notation with the “sequent” word to make it explicit. Unqualified or followed
with “is derivable” means that the notation represents the S-MMnd derivability predicate.

▶ Definition 23. A MMnd problem instance is the data of a sequent Σ //n a ⊕ b ⊢ p, and the
question is whether this sequent is derivable or not using the rules of S-MMnd (Fig. 1).

Notice that ZEROn x p q performs both a zero-test on x and if zero, a jump from p to q

without changing registers. If we remove the ZEROn _ p q rules, we get Petri nets reachability,
more specifically VASS with states, which have a decidable reachability problem with
non-elementary complexity [4], even non-primitive recursive according to [16, 5].

4.2 From MMA02 to MMnd (file MMA2_to_ndMM2_ACCEPT.v)
We give an alternate presentation of termination on zero for two registers Minsky machines,
using the S-MMnd calculus of Section 4.1. Let us consider alternate Minsky machines MMA2
with two counters, s := 0 : F2 and d := 1 : F2. We denote by α, β : B the two registers of
MMnd instructions. We define the following encodings of single instructions and programs:

(·) : F2 → B ⟨·, ·⟩ : N → MMA2 → LMMnd ⟨⟨·, ·⟩⟩ : N → LMMA2 → LMMnd

0 := α ⟨i, INCa x⟩ := [INCn x i (1+i)] ⟨⟨i, [ ]⟩⟩ := [ ]
1 := β ⟨i, DECa x j⟩ := [DECn x i j; ZEROn x i (1+i)] ⟨⟨i, σ :: P ⟩⟩ := ⟨i, σ⟩ ++ ⟨⟨1+i, P ⟩⟩

▶ Proposition 24. The encodings ⟨·, ·⟩ and ⟨⟨·, ·⟩⟩ are sound:
1. assuming the inclusion ⟨i, σ⟩ ⊆ Σ, if σ //a (i, [a; b]) ≻ (j, [a′; b′]) and Σ //n a′ ⊕ b′ ⊢ j is

derivable then so is Σ //n a ⊕ b ⊢ i;
2. assuming ⟨⟨1, P ⟩⟩ ⊆ Σ, if (1, P ) //a (i, [a; b]) ≻1 (j, [a′; b′]) and Σ //n a′ ⊕ b′ ⊢ j is derivable

then so is Σ //n a ⊕ b ⊢ i.

Proof. Item 1 is by case analysis on σ and item 2 follows from item 1. ◀

Let us now define ΣP := STOPn 0 :: ⟨⟨1, P ⟩⟩ which constitutes the encoding of MMA2
programs into MMnd sequents. We establish its soundness.

▶ Lemma 25. If (1, P ) //a (i, [a, b]) ≻∗ (0, [0; 0]) then ΣP //n a ⊕ b ⊢ i is derivable.

Proof. We have ⟨⟨1, P ⟩⟩ ⊆ ΣP by definition of ΣP . Iterating Proposition 24 (item 2), we
thus get ΣP //n 0 ⊕ 0 ⊢ 0 → ΣP //n a ⊕ b ⊢ i. The derivability of ΣP //n 0 ⊕ 0 ⊢ 0 follows
from STOPn 0 ∈ ΣP and the STOPn 0 rule of S-MMnd. ◀

▶ Lemma 26. If ΣP //n a ⊕ b ⊢ i is derivable then (1, P ) //a (i, [a, b]) ≻∗ (0, [0; 0]).

Proof. The argument proceeds by structural induction on the derivation of ΣP //n a ⊕ b ⊢ i,
i.e. by analysing the structure of S-MMnd derivations. The following result is an essential
ingredient in this case analysis: c ∈ ⟨⟨i, P ⟩⟩ → ∃L σ R, P = L ++ σ :: R ∧ c ∈ ⟨|L| + i, σ⟩. It
allows to recover the MMA2 instructions from which MMnd instructions originate. ◀

▶ Corollary 27. MMA02 ⪯ MMnd.

Proof. The reduction maps an instance (P, [a; b]) of MMA02 to the sequent ΣP //n a ⊕ b ⊢ 1.
Lemmas 25 and 26 provide the equivalence between (1, P ) //a (1, [a, b])⇝ (0, [0; 0]) and the
derivability of ΣP //n a ⊕ b ⊢ 1, which ensures the correctness of the reduction. ◀

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/Reductions/MMA2_to_ndMM2_ACCEPT.v
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5 Undecidability of Sub-Exponential Linear Logic

Having established the undecidability of MMnd via FRACTRANreg and MMA02, we can now
switch to undecidability in some fragments of linear logic and give a comparison between
two different reductions. We introduce the intuitionistic version of sub-exponential linear
logic [2] (IMSELL) and mechanise a many-one reduction from MMnd to entailment in IMSELL.
Even if the former reduction [2] applies to classical sub-exponential linear logic with one
sided sequents, our own reduction function is inspired from it. However, the completeness
proof that we have mechanised largely differs since we avoid focused proofs (used to recover
computations) and instead, adapt the trivial phase semantics argument [13, 8]. Additionally
we precisely compare the reduction to ILL with the reduction to IMSELL by starting from
the same MMnd seed, detailing what set of logical rules are used to simulate those machines.

5.1 The ILL and IMSELL fragments (files ILL.v and IMSELL.v)
We introduce two fragments/extensions of intuitionistic linear logic (ILL) that allow for a
reduction from non-deterministic two counters Minsky machines.

The first fragment of the ILL logic we consider is composed of propositional formulæ build
from two binary connectives, the linear implication ⊸ and additive conjunction &, and one
modality, exponentiation !. Logical variables come from (a copy of) the N type. Formally, the
formulæ of ILL are of the form A, B ::= X | A⊸B | A & B | !A where X : N. To simplify,
we abusively call this fragment ILL. By cut-elimination, the reduction discussed below also
works for larger fragments containing more connectives like ⊗, ⊕, etc.

The sequents of ILL are intuitionistic, i.e. a pair (Γ, A) written Γ ⊢ A where Γ is a multiset
of formulæ and A is a single formula. Multisets are just lists identified up-to permutations. If
it is more convenient to work with lists, as we do in the Coq mechanization, then an explicit
permutation rule is added to the sequent rules of the S-ILL calculus in Fig. 2.

The three leftmost rules are the identity (or axiom) rule stating that the sequent A ⊢ A

has a trivial proof, and then the left- and right-introduction rules for the linear implication
⊸. The three rules middle-left are two left- and one right-introduction rules for the additive
conjunction &. The two middle-right rules are modal rules, on top, the promotion rule, and
at bottom, the dereliction rule. Finally, on the right-hand-side are the structural rules for
the ! modality, i.e. weakening on top and contraction at the bottom. Notice that specifically,
linear logic does not allow for general weakening or contraction rules.

On the other hand, IMSELL is a purely multiplicative fragment but with several modalities,
among them exponentials. The logic is parameterized with a fixed type Λ of modalities and
a fixed sub-type U : Λ → P of unbounded modalities, also called exponentials. We follow the
set theoretic syntax and write u ∈ U (instead of U u) when u is unbounded. The formulæ of
IMSELLΛ are of the form A, B ::= X | A⊸B | !mA where X : N and m : Λ. So compared
to ILL, the additive & is missing whereas the modality ! becomes indexed as !m with m

spanning over Λ. IMSELLΛ sequents have the same structure Γ ⊢ A as those of ILL except
that they are composed of IMSELLΛ formulæ instead.

Before we describe the associated sequent calculus S-IMSELLΛ, we introduce supplement-
ary structures on modalities: a pre-order ≼ : Λ → Λ → P, i.e. a reflexive and transitive
binary relation, such that U is upward-closed for ≼, i.e. u ≼ m and u ∈ U entail m ∈ U
for any m, u : Λ. In the sequel, we will somehow abuse the notation and denote Λ both
for the base type and the modal structure (Λ, U ,≼) moreover assuming the pre-order and
upward-closure properties.
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A ⊢ A

A, Γ ⊢ B

Γ ⊢ A⊸B

Γ ⊢ A B, ∆ ⊢ C

A⊸B, Γ, ∆ ⊢ C

Γ ⊢ A Γ ⊢ B

Γ ⊢ A & B

A, Γ ⊢ C

A & B, Γ ⊢ C

B, Γ ⊢ C

A & B, Γ ⊢ C

!Γ ⊢ B

!Γ ⊢ !B
A, Γ ⊢ B

!A, Γ ⊢ B

Γ ⊢ B

!A, Γ ⊢ B

!A, !A, Γ ⊢ B

!A, Γ ⊢ B

Figure 2 The S-ILL sequent calculus.

A ⊢ A

A, Γ ⊢ B

Γ ⊢ A⊸B

Γ ⊢ A B, ∆ ⊢ C

A⊸B, Γ, ∆ ⊢ C

!⋆Γ ⊢ B

!⋆Γ ⊢ !mB
m ≼ ⋆

A, Γ ⊢ B

!mA, Γ ⊢ B

Γ ⊢ B

!uA, Γ ⊢ B
u ∈ U

!uA, !uA, Γ ⊢ B

!uA, Γ ⊢ B
u ∈ U

Figure 3 The S-IMSELLΛ sequent calculus with (Λ, U ,≼).

In the sequent rules of the S-IMSELLΛ calculus of Fig. 3, the three leftmost rules are
common with S-ILL, there is no rule for the additive conjunction & since it does belong to
the fragment, and the modal rules have changed a bit. We skip over the two middle rules for
the moment and consider the rightmost structural rules of weakening and contraction which
generalise the corresponding rules of S-ILL, except that their use is limited to unbounded
modalities (u ∈ U). Back to the two middle rules, the bottom dereliction rule applies to
every modality, so a direct generalisation of the corresponding rule of S-ILL. However, the
promotion rule (reproduced below on the left)

!⋆Γ ⊢ B

!⋆Γ ⊢ !mB
m ≼ ⋆

!k1A1, . . . , !knAn ⊢ B

!k1A1, . . . , !knAn ⊢ !mB
m ≼ k1, . . . , m ≼ kn

!mΓ ⊢ B

!mΓ ⊢ !mB

is somehow more complicated and deserves further explanations. The ⋆ notation represents
a multiset k1, . . . , kn of modalities and !⋆Γ represents the multiset !k1A1, . . . , !knAn. The
constraint m ≼ ⋆ imposes that m is lower than every modality in {k1, . . . , kn}. Using these
more explicit notations, we reframe it as in the above displayed middle rule. Finally, the
(uniform) instance where m = k1 = · · · = kn (the rightmost above; the constraint m ≼ ⋆

holds by reflexivity), matches the promotion rule of S-ILL.
Considered independently, all modalities behave like ILL modalities, satisfying dereliction

and promotion rules, while only unbounded modalities allow for contraction and weakening.
However, depending on the relation ≼, the promotion rule allows for non-trivial interactions
between modalities. Given an unbounded modality ∞ ∈ U and replacing ! with !∞, one can
trivially embed the multiplicative fragment of ILL and recover intuitionistic multiplicative and
exponential linear logic (IMELL), of which the (un)decidability of entailment is a notoriously
difficult open problem [14, 20].

5.2 Embedding in S-ILL vs. S-IMSELL (file ndMM2_IMSELL.v)
For the reduction from MMnd to IMSELLΛ to work out properly, we need at least three
modality {a, b, ∞} where ∞ is the only unbounded modality (∞ ∈ U and a, b ̸∈ U), a ≼∞,
b ≼ ∞ and a and b are incomparable, i.e. a ̸≼ b and b ̸≼ a. As a consequence, ∞ is also
strictly above a and b. From now on, we assume that Λ satisfies these requirements. The
coming discussion can also be understood in the minimal case where Λ3 = {a, b, ∞} and we
denote IMSELL3 for either of these logics.

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/Reductions/ndMM2_IMSELL.v
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In this section, we review the encoding of MMnd sequents into both ILL and IMSELL3,
and explain how, while mostly similar, they noticeably differ on how they handle zero tests
combined with jumps. Notice that the encoding targeting ILL can be adapted to n registers
Minsky machines (as done in [8]), while in the case of IMSELL3, working with two counters
only is critically important to the construction.

Identifying the exponential ! with the unbounded modality !∞ allows to discuss IMELL,
ILL and IMSELL3 in a common syntactic framework, avoiding cumbersome notations for
trivial embeddings. We show the derivability of the two following rules: generalised weakening
and customised absorption.

▶ Lemma 28. The two following rules are derivable in IMELL, and hence ILL and IMSELL3:

∆ ⊢ B

!∞Σ, ∆ ⊢ B

A, !∞Σ, ∆ ⊢ B

!∞Σ, ∆ ⊢ B
A ∈ Σ

Proof. We obtain the left generalised weakening rule by repeating the weakening rule. For
customised absorption, it is the combination of dereliction and contraction. ◀

These derived rules are essential tools for the reduction from MMnd. Let us review the
other tools. Recall that a MMnd sequent is of the form Σ //n x ⊕ y ⊢ p. We encode this with
an IMSELL3 (or ILL) sequent of the form !∞Σ, ∆ ⊢ p where ∆ := xα, yβ encodes the pair
(x, y) : N × N, i.e. α (resp. β) is repeated x (resp. y) times. Hence increment and decrement
operations on the values x/y naturally correspond to the multiset operations. We do not
need to specify what formulæ are α and β for the moment, but these will differ in the ILL case
compared to the IMSELL3 case. On the other hand, p or q will always be logical variables.

First, we show how to simulate the INCn α p q rule of S-MMnd:

Σ //n 1+x ⊕ y ⊢ q

Σ //n x ⊕ y ⊢ p
INCn α p q ∈ Σ ⇝

!∞Σ, α, ∆ ⊢ q

!∞Σ, ∆ ⊢ α⊸ q p ⊢ p

(α⊸ q)⊸ p, !∞Σ, ∆ ⊢ p
(α⊸ q)⊸ p ∈ Σ

!∞Σ, ∆ ⊢ p

and the DECn α p q rule of S-MMnd:

Σ //n x ⊕ y ⊢ q

Σ //n 1+x ⊕ y ⊢ p
DECn α p q ∈ Σ ⇝

α ⊢ α

!∞Σ, ∆ ⊢ q p ⊢ p

q⊸ p, !∞Σ, ∆ ⊢ p

α⊸ (q⊸ p), !∞Σ, α, ∆ ⊢ p
α⊸ (q⊸ p) ∈ Σ

!∞Σ, α, ∆ ⊢ p

Notice that we only use the customised absorption rule, the left- and right-introduction
rules for ⊸ and the identity (axiom) rule hence simulating INCn α p q and DECn α p q can be
performed within the IMELL fragment.

The axiom rule STOPn p of S-MMnd (acceptance of (0, 0) at p) can also be simulated

Σ //n 0 ⊕ 0 ⊢ p
STOPn p ∈ Σ ⇝

p ⊢ p

⊢ p⊸ p p ⊢ p

(p⊸ p)⊸ p ⊢ p

(p⊸ p)⊸ p, !∞Σ ⊢ p
(p⊸ p)⊸ p ∈ Σ

!∞Σ, ∅ ⊢ p
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using the customised absorption rule, then the generalised weakening rule, the left- and
right-introduction rules for ⊸ and the identity rule. Hence an IMELL proof as well.

The remaining rules of MMnd, that of e.g. ZEROn α p q, a zero test combined with a jump
instruction, are the problematic rules to encode in the IMELL fragment. This can however
be done in ILL and in IMSELL3, but the techniques for the two fragments diverge precisely
on these ZEROn α p q instructions.

Let us first review5 the (idea behind the) legacy encoding of Minsky machines into linear
logic [17], mechanized for ILL in [8]. The idea is to fork the ZEROn α p q simulation into a
proof-search branch where only a zero test on α is performed, and in the other branch, only
a jump to q is performed:

Σ //n 0 ⊕ y ⊢ q

Σ //n 0 ⊕ y ⊢ p
ZEROn α p q ∈ Σ ⇝

. . .

!∞Σ, yβ ⊢ α !∞Σ, yβ ⊢ q

!∞Σ, yβ ⊢ α & q p ⊢ p

(α & q)⊸ p, !∞Σ, yβ ⊢ p
(α & q)⊸ p ∈ Σ

!∞Σ, yβ ⊢ p

Notice that α and β denote fresh logical variables. Critically for this encoding, the additive
conjunction & is used to copy the context into the two premises, implementing a fork. The
zero test on left sub-branch can however by performed in IMELL only:

β ⊢ β

!∞Σ, ∅ ⊢ α

· · ·

!∞Σ, yβ ⊢ α α ⊢ α

α⊸ α, !∞Σ, yβ ⊢ α

β⊸ (α⊸ α), !∞Σ, β, yβ ⊢ α
β⊸ (α⊸ α) ∈ Σ

!∞Σ, (1+y)β ⊢ α

α ⊢ α

⊢ α⊸ α α ⊢ α

(α⊸ α)⊸ α, ∅ ⊢ α

(α⊸ α)⊸ α, !∞Σ, ∅ ⊢ α
(α⊸ α)⊸ α ∈ Σ

!∞Σ, ∅ ⊢ α

· · ·

Notice that the dots above !∞Σ, yβ ⊢ α mean repetition of the lower part of the proof until
exhaustion of all the β from the context: this is implemented by an induction on y, and the
base case where y = 0 corresponds to the upper part of the proof, starting at !∞Σ, ∅ ⊢ α and
completed on the right hand side, simulating of a would be STOPn α instruction (see above).

We see that α together with the formulæ β⊸ (α⊸ α) and (α⊸ α)⊸ α in Σ allow α to
perform the elimination of all the β from the context. However, α will not allow the removal
of any α and hence, the zero test branch cannot be completed if ∆ contains an occurrence of
α, i.e. when x ̸= 0. This encoding of the zero test using α, while it can already be performed
in IMELL, is pertinent only for ILL because it is in combination with the fork in (α & q)⊸ p

(see above) that it provides the ability to conditionally jump on zero.

Contrary to the ILL encoding, IMSELL3 does not require (and cannot use) forking but
instead uses sub-modalities to prevent jumping when the zero test fails. In that case, α and
β are not atomic formulæ anymore: they contain the bounded modalities !a and !b, and we
define α := !aα0 and β := !bβ0 where α0, β0 are fresh variables. In the following encoding,

5 here we only discuss the ILL case, i.e. we do not replicate the former ILL mechanisation [8] in the code.
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Σ //n 0 ⊕ y ⊢ q

Σ //n 0 ⊕ y ⊢ p
ZEROn α p q ∈ Σ ⇝

!∞Σ, yβ ⊢ q

!∞Σ, yβ ⊢ !bq p ⊢ p

!bq⊸ p, !∞Σ, yβ ⊢ p
!bq⊸ p ∈ Σ

!∞Σ, yβ ⊢ p

notice that the upper rule is an instance of the promotion rule of S-IMSELL3. It is allowed
because every formula on the left is prefixed either with the unbounded modality !∞ for those
in !∞Σ, or with the modality !b for those in yβ = !bβ0, . . . , !bβ0, and we have both b ≼ ∞
and b ≼ b. On the other hand, an occurrence of α = !aα0 in the context, corresponding to
a non-zero value of x, would prevent the application of the promotion rule (b ̸≼ a). This
interaction of modalities in the promotion rule of IMSELL3 is the key to simulate zero tests.

▶ Definition 29. Let us define α0 := 0, β0 := 1, p := 2 + p, α := !aα0 and β := !bβ0. We
encode MMnd instructions as:

STOPn p := (p⊸ p)⊸ p

INCn α p q := (α⊸ q)⊸ p DECn α p q := α⊸ (q⊸ p) ZEROn α p q := !bq⊸ p

INCn β p q := (β⊸ q)⊸ p DECn β p q := β⊸ (q⊸ p) ZEROn β p q := !aq⊸ p

and then map (·) on the list Σ extensionally, i.e. [σ1; . . . ; σn] := σ1, . . . , σn.

▶ Lemma 30. If Σ //n x ⊕ y ⊢ p can be derived in S-MMnd then the sequent !∞Σ, xα, yβ ⊢ p

is provable in S-IMSELL3.

Proof. The argument proceeds by induction on the derivation of Σ //n x ⊕ y ⊢ p, combining
the proof skeletons of the above discussion in a direct way. ◀

5.3 Trivial Phase semantics for IMSELL (file imsell.v)
We define trivial phase semantics for IMSELLΛ and show soundness w.r.t. the S-IMSELLΛ
calculus. We start with a commutative monoid (M, •, ϵ). Typically, for the completeness
of our reduction, we will only need to use the semantics for M = (N2, +, 0⃗), i.e. vectors of
natural numbers of length 2, but the semantics works for any commutative monoid. For
any X, Y ⊆ M , we define the point-wise extension by X • Y := {x • y | x ∈ X ∧ y ∈ Y } and
its linear adjunct as X −−• Y := {k ∈ M | {k} • X ⊆ Y } providing a residuated monoidal
structure on the subset type M → P.

To interpret the modal structure (Λ, U ,≼), we further require for each modality m ∈ Λ,
a subset Km ⊆ M i.e. a predicate Km : M → P. We assume that the map m 7→ Km is
monotonically decreasing w.r.t. ≼ (on the left below) and satisfies the three extra following
rightmost axioms:

∀m k, m ≼ k → Kk ⊆ Km ∀m, ϵ ∈ Km ∀m, Km •Km ⊆ Km ∀u ∈ U , Ku ⊆ {ϵ}

Given any semantic interpretation [[·]] ⊆ M of logical variables, we extend it inductively
to IMSELLΛ sequents via trivial phase semantics:6

[[A⊸B]] := [[A]] −−• [[B]] [[!mA]] := [[A]] ∩ Km [[A1, . . . , An]] := [[A1]] • · · · • [[An]]

6 The trivial qualifier refers to the use of the identity closure cl(X) = X in the interpretation of modalities,
i.e. [[!mA]] := [[A]] ∩ Km instead of the more general [[!mA]] := cl([[A]] ∩ Km) where cl(·) : (M → P) →
(M → P) is a stable closure operator. This also applies to the (implicit) multiplicative conjunction
where [[A1, . . . , An]] := [[A1]] • · · · • [[An]] instead of [[A1, . . . , An]] := cl([[A1]] • · · · • [[An]]). Notice that
trivial phase semantics is sound but not complete for IMELL, ILL and IMSELLΛ; see [13] for details.
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Notice that because we work with commutative monoids, the above semantic interpretation
of lists is invariant under permutations, hence is suitable for multisets. An IMSELLΛ sequent
Γ ⊢ A is valid in that interpretation if [[Γ]] ⊆ [[A]], or (equivalently) if ϵ ∈ [[Γ]] −−• [[A]].

▶ Theorem 31. Trivial phase semantics is sound: any sequent Γ ⊢ A provable in S-IMSELLΛ
must satisfy ϵ ∈ [[Γ]] −−• [[A]] for any possible trivial phase semantics interpretation.

Proof. We proceed by structural induction on the S-IMSELLΛ derivation of Γ ⊢ A. In the
code, the proof is limited to the case where M = (Nn, +, 0⃗) for some n : N. Compared to the
soundness of trivial phase semantics for S-ILL [8], the only interesting new case is that of the
promotion rule. In that case, we observe that m ≼ k1, . . . , kn implies Kk1 •· · ·•Kkn

⊆ Km. ◀

5.4 The completeness of the reduction (file ndMM2_IMSELL.v)
▶ Lemma 32. If the sequent !∞Σ, xα, yβ ⊢ p is provable in S-IMSELL3, then there is a
derivation of Σ //n x ⊕ y ⊢ p in S-MMnd.

Proof. We use a soundness argument for trivial phase semantics in place of reasoning by
induction on focused derivation in MSELL as done in [2]. We consider the monoid of vectors
M = (N2, +, [0; 0]) of length 2 of natural numbers. We define the following interpretation for
modalities, Km [x; y] := (a ≼ m → y = 0) ∧ (b ≼ m → x = 0) ∧ (m ∈ U → x = 0 ∧ y = 0),
and as a consequence, we can check that Km satisfies the required axioms as well as
Ka =

{
[x; 0] | x ∈ N

}
, Kb =

{
[0; y] | y ∈ N

}
, and K∞ =

{
[0; 0]

}
. We interpret logical

variables as:

[[α0]] :=
{

[1; 0]
}

and [[β0]] :=
{

[0; 1]
}

and [[p]] =
{

[x; y] | Σ //n x ⊕ y ⊢ p
}

and thus we have [[α]] = [[!aα0]] = [[α0]] ∩ Ka =
{

[1; 0]
}

and [[β]] =
{

[0; 1]
}

. Consequently, we
get [[xα, yβ]] =

{
[x; y]

}
.

We verify that the interpretation of the IMSELL3 encoding σ of MMnd instructions in
Σ contains the zero vector, i.e. ∀σ, σ ∈ Σ → [0; 0] ∈ [[σ]]. For instance, let us consider
the case σ = ZEROn α p q. Then σ = !bq⊸ p is interpreted as ([[q]] ∩ Kb) −−• [[p]]. Hence
[0; 0] ∈ [[σ]] ↔ [[q]] ∩ Kb ⊆ [[p]], i.e. for any [x; y] : N2, if Σ //n x ⊕ y ⊢ q and x = 0 then
Σ //n x ⊕ y ⊢ p which is precisely the instance of rule ZEROn α p q ∈ Σ of S-MMnd.

From the previous observation, we deduce [0; 0] ∈ [[!∞Σ]]. Now let us consider a sequent
!∞Σ, xα, yβ ⊢p which is provable in S-IMSELL3. By the soundness Theorem 31, we know that
[0; 0] ∈ [[!∞Σ, xα, yβ]] −−• [[p]]. Since [x; y] = [0; 0] + [x; y] ∈ [[!∞Σ]] • [[xα, yβ]] = [[!∞Σ, xα, yβ]],
by the definition of −−• we deduce [x; y] = [0; 0] + [x; y] ∈ [[p]], and hence we conclude that
Σ //n x ⊕ y ⊢ p holds. ◀

▶ Theorem 33. Let (Λ, U ,≼) contain three modalities a, b and ∞ such that ∞ ∈ U , a, b ̸∈ U ,
a, b ≼∞, a ̸≼ b and b ̸≼ a. Then we have a reduction MMnd ⪯ IMSELLΛ, hence derivability
in the S-IMSELLΛ calculus is undecidable.

6 Related works and Implementation remarks

While Theorem 33 gives us a mechanised synthetic proof of the undecidability of IMSELL3,
neither its statement nor the arguments deployed directly provide hints towards a solution
to the question of the decidability IMELL/MELL. As in the original pen and paper proof [2],
the two bounded modalities !a and !b, and their interaction with the unbounded modality
!∞ in the promotion rule, play an essential role in the simulation of conditional jumps of

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/Reductions/ndMM2_IMSELL.v
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two counters Minsky machines. While the zero test can be implemented in MELL only, the
provided implementation consumes its context and thus cannot conditionally branch at the
same time, hence the fork used in the case of ILL [8].

However Theorem 33 does give indications that certain decidability arguments for MELL
are bound to fail, e.g. those that would also apply to MSELL in general, or IMSELL3 in
particular. It is our understanding that the refutation [20] of the faulty proof attempt for the
decidability of MELL [1] partly proceeds in showing how the claimed “proof” technique would
easily generalise to MSELL. In the same vein, the lower bounds on the complexity of a would
be decision procedure for MELL [14], and more recently the reachability problem for Petri
nets themselves [4], indicate that a decision procedure for MELL must be of non-elementary
complexity. The most recent investigations [16, 5] might very well confirm that this problem
is Ackermann complete and hence not primitive recursive.

Considering formalisation issues, the growing Coq library of undecidability proofs [9] was
of course of great help to this work. Indeed, at the time we decided to try to implement the
undecidability of MSELL, the framework for certified programming with Minsky machines
was already part of the library [8]. Hence, to get two counters Minsky machines, i.e. the seed
of undecidability of the pen and paper proof [2], only a modest step from many counters
machines was necessary and this was even alleviated by the results on the FRACTRAN
language [12], factoring out the Gödel coding phase. In fact, we contributed the seed of two
counters machines much ahead of the MSELL result, and in the meantime, this seed was
used to establish to undecidability uniform boundedness for simple stack machines and then
of the problem of semi-unification [6]. This illustrates a critical aspect of this undecidability
framework: its extensive range of seed problems for plugging into it.

Indeed, there is an important issue to consider when proving undecidability by many-one
reduction, by far the most used method in the field: even mechanised, your proof is only as
strong as the implementation of your seed problem. Typical problems can exhibit subtleties
that show up at the mechanisation level: for instance Turing machines are built on tapes,
a potentially infinite structure of which it could be easy to corrupt the implementation.
Choosing a seed already linked to the many-one equivalence class containing easy to describe
problems such as e.g. the Post correspondence problem or FRACTRAN gives much more
confidence that starting from an isolated seed, still to be mechanically checked undecidable.

Another aspect which is mostly overlooked in pen and paper proofs is the computability
of the reduction function. The reason is that programming with low-level Turing complete
models of computation is hard and painful, with encodings at every corner. To get a glimpse
of the difficulty, think of a Turing machine working with logical formulas: because it only
manipulates text written on tapes, it has to implement a syntax analyser, moreover proved
correct. And only then can it start its real work. The general shortcut used in pen and
paper proofs to avoid this kind of description is to speak about “algorithms” that manipulate
high-level data-structures and rely on an informal and consensual understanding of what
these are, hand-waving away the implementation issues completely.

In this regard, the synthetic computability framework allows, at the price of relying on
the computability of Coq functions – e.g. by avoiding axioms, – to formally describe the
reduction functions in a language strict enough to ensures their computability, but at the
same time powerful enough to largely avoid complex encodings and hence get more natural
correctness proofs following or inspired from pen and paper ones. Using a constructive
framework like e.g. Coq or Agda is essential in that approach, because in classical frameworks,
there is no direct way to automatically ensure the general computability of the defined
(reduction) functions.
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A Proof (sketch) of Proposition 17

Let us use the denotation s (resp. d) for the dynamic value of register s (resp. d). Hence, the
contents of the registers is represented by the vector [s; d] of length 2 with initial value [x; 0].
Also, the initial value of the PC is i0 = i.

The sub-program MULT_CSTa s d p i0 multiplies s with p and adds the result to the
contents of d while emptying s, so the PC moves to i1 and s = 0 and d = px. Then
MOD_CSTa d s i2 i4 q i1 tests the divisibility of d by q, which succeeds under the assumption
qy = px. By Proposition 15, this transfers the control to i2 and now d = 0 and s = px. Then
DIV_CSTa s d q i2 divides s with q while swapping the registers hence now s = 0, d = y and
the PC is at i3. Then TRANSFERa d s i3 swaps s with d hence now s = y and d = 0 and PC is
now i4. Finally, JUMPa j d transfers the control to j without altering the registers.

B Proof (sketch) of Proposition 18

As in the proof of Proposition 17, we reach the state where the PC is at i1 and s = 0 and
d = px. However now, MOD_CSTa d s i2 i4 q i1 gives a negative answer to the divisibility of d

by s hence according to Proposition 14, the control is transferred to i5 while s = px and
d = 0. Then DIV_CSTa s d p i5 divides the contents of s by p, reverting it to its initial value
but there is a swap: PC is at i6, s = 0 and d = x. Finally TRANSFERa d s i6 swaps again and
reverts the registers to their initial values s = x and d = 0 while the PC moves to the end of
the sub-program at i7.

C Proof (sketch) of Theorem 21

The implication 2 =⇒ 3 is trivial. We show 1 =⇒ 2 and 3 =⇒ 1.
Let us start with 1 =⇒ 2. As an instance of Lemma 19, if Q //F x ≻ y holds then we

have (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻+ (1, [y; 0]). By transitivity, from Q //F x ≻∗ y we
can deduce (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻∗ (1, [y; 0]).

Now assuming Q //F x ↓, we get some y such that Q //F x ≻∗ y and Q //F y ⊁ ⋆. Hence
we have (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻∗ (1, [y; 0]). By Lemma 20, as Q //F y ⊁ ⋆, we
get (1, FRAC_STEPa 1 Q 1) //a (1, [y; 0]) ≻∗ (|FRAC_STEPa 1 Q 1| + 1, [y; 0]). We deduce

(1, FRAC_MMAa Q) //a (1, [x; 0]) ≻∗ (|FRAC_STEPa 1 Q 1| + 1, [y; 0])

since (1, FRAC_STEPa 1 Q 1) is a sub-program of (1, FRAC_MMAa Q). The nullifying code and
the jump finish the computation and we get our proof that (1, FRAC_MMAa Q) //a (1, [x; 0])⇝
(0, [0; 0]) holds.
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Let us now finish with 3 =⇒ 1 and assume (1, FRAC_MMAa Q) //a (1, [x; 0]) ↓. We show
that Q //F x ↓. Because (1, FRAC_STEPa 1 Q 1) is a sub-program of (1, FRAC_MMAa Q), we
also have (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ↓. Hence there is k, j : N and v⃗ : N2 such that
(1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻k (j, v⃗) and out j (1, FRAC_STEPa 1 Q 1). We prove
Q //F x ↓ by strong induction on k. By Proposition 1, one can decide between two possibilities:

either Q //F x ⊁ ⋆ in which case Q //F x ↓ is obvious;
or there is y such that Q //F x ≻ y. We deduce (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻δ

(1, [y; 0]) for some δ > 0 by Lemma 19. Since the step relation is deterministic for Minsky
machines, we have (1, FRAC_STEPa 1 Q 1) //a (1, [y; 0]) ≻k−δ (j, v⃗) hence we can apply the
induction hypothesis (k − δ < k) and we get Q //F y ↓. Combining with Q //F x ≻ y, we
conclude Q //F x ↓.
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