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Abstract. Programmable Logic Controllers (PLCs) are industrial digi-
tal computers used as automation controllers in manufacturing processes.
The Ladder language is a programming language used to develop PLC
software. Our aim is to prove that a given Ladder program conforms to
an expected temporal behaviour given as a timing chart, describing sce-
narios of execution. We translate the Ladder code and the timing chart
into a program for the Why3 environment, within which the verification
proceeds by generating verification conditions, to be checked valid using
automated theorem provers. The ultimate goal is two-fold: first, by ob-
taining a complete proof, we can verify the conformance of the Ladder
code with respect to the timing chart with a high degree of confidence.
Second, when the proof is not fully completed, we obtain a counterexam-
ple, illustrating a possible execution scenario of the Ladder code which
does not conform to the timing chart.

Keywords: Ladder language for programming PLCs, Timing charts, Formal
specification, Deductive verification, Why3 environment.

1 Introduction

Programmable Logic Controllers (PLCs) are industrial digital computers used
as automation controllers in manufacturing processes, such as assembly lines or
robotic devices. PLCs can simulate the hard-wired relays, timers and sequencers
they have replaced, via software that expresses the computation of outputs from
the values of inputs and internal memory. The Ladder language, also known
as Ladder Logic, is a programming language used to develop PLC software.
This language uses circuit diagrams of relay logic hardware to represent a PLC
program by a graphical diagram. This language was one of the first available for
programming PLCs, and is now standardised in the IEC 61131-3 standard [17].
It is one language among other languages for programming PLCs, and is still
widely used and very popular among technicians and electrical engineers.
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Because of the widespread usage of PLCs in industry, verifying that a given
Ladder program conforms to its expected behaviour is of critical importance. In
this work, we consider the description of the expected temporal behaviour un-
der the form of a timing chart, describing scenarios of execution. Our approach
consists in automatically translating the Ladder code and the timing chart into
a program written in the WhyML language, which is the input language of the
generic Why3 environment for deductive program verification [6]. In WhyML,
expected behaviours of program are expressed using contracts, which are annota-
tions expressed in formal logic. The Why3 environment offers tools for checking
that the WhyML code conforms to these formal contracts. This verification pro-
cess is performed using automated theorem provers, so that at the end, if the
back-end proof process succeeds, the conformance of the Ladder code with re-
spect to the timing chart is verified with a high degree of confidence. Yet, a
complete formal proof is not the only expected feedback from our tool chain:
we also want to obtain useful feedback when the proof does not succeed, our
long-term goal being to build a tool that would be useful to regular Ladder pro-
grammers. More precisely, in such a case of proof failure, we aim at obtaining a
counterexample which must illustrate a possible execution scenario of the Ladder
code which does not conform to the timing chart.

This paper is organised as follows. We start in Section 2 by introducing the
basics of Ladder programming, and the way their expected temporal behaviours
are expressed using timing charts. The translation of Ladder code and timing
charts into WhyML programs is described in Section 3. Section 4 presents our
experiments and their results, both in the case of a complete proof success and
in the case of a proof failure, where a counterexample is generated. We discuss
related work and future work in Section 5. For sake of concision some technical
details are omitted, such details are available in an extended research report [4].

2 Introduction to Ladder Programming

A Ladder program (a diagram) takes inputs values (contacts) that correspond
to the fact that physical relays are either wired, not wired, pulsing (rising edge)
or downing (falling edge), and other values stored in the internal memory of
the PLC (Boolean values, integers, floating-point values, strings, etc.). A Ladder
program can output Boolean values to the physical relays of the factory (coils)
or it can call instructions, that may modify the values of the internal memory of
the PLC (devices). Graphically, contacts are located at the left of the diagram.
They can be combined in a serial way (Boolean conjunction) or in a parallel
way (disjunction). Coils and instructions are activated when the combination of
contacts at their left gives a wired value, and they can also be parallelised (in that
case, they are either all activated or all deactivated). A line with contacts, coils
and instructions is called a rung, and a program is composed of several rungs.
Such a Ladder program is executed cyclically in a synchronous way: first inputs
are read, then the program is executed and eventually outputs are written. One
single execution of the program is called a scan.



Fig. 1: Carriage line control: System description

Running example. A rather simple example of a PLC controlling a carriage line
is depicted in Figure 1, with the corresponding Ladder program in Figure 2.
This example comes from a Mitsubishi Electric training manual for program-
ming PLCs [14]. To our knowledge, timing charts are generally used to specify
programs of comparable size, e.g. Function Blocks, which are kind of library
functions that are shipped together with a PLC and a programming environ-
ment. We illustrate some principles of Ladder Logic on the first rung of this
example: this rung expresses the fact that output Y70 receives the value of the
Boolean formula (X0 ∨ Y70) ∧ (¬ M2), i.e. if the corresponding physical devices
are activated such that the Boolean formula is true, then Y70 is activated, and
is deactivated otherwise.

The program also makes use of the Ladder instructions SET, RST and PLS.
The SET instruction activates its device argument (either an internal memory
device or an output device) when its input is activated, and does nothing oth-
erwise. For instance, in Figure 2, Y71 is activated when both the common front
(X0 ∨ Y70) ∧ (¬ M2) and the internal memory device M1 are activated. The
RST instruction is the opposite: the device argument is deactivated when the
input is activated. The PLS (pulse) instruction activates its device argument on
a rising edge of its input, i.e. when the input has just been activated, then it
deactivates its device argument on the next scan.

The diagram also uses a timer instruction on a special device T0 which is
activated once the timer finishes. When its input is activated, the instruction
sets the threshold (here 30) of the timer and increments a counter. After 30
consecutive scans in which both the common front and output Y73 are activated,



Fig. 2: Carriage line control: Ladder program

the device T0 is activated (and it remains activated until the input of the timer
instruction is deactivated).

Specification of expected temporal behaviour. Because of its synchronous nature,
the language hardly lends itself to exhaustive functional specifications. Since the
work made on AutomationML [11] by an industrial and academic consortium,
the practice, among PLC designers, is to use the timing chart paradigm, which
describes the expected temporal behaviour of the PLC for a nominal execution
scenario. A timing chart specifies the evolution of outputs over the execution of
scans, according to the evolution of inputs. It is made of a succession of events,
i.e. scans with either changes of inputs that may lead to changes of outputs,
or endings of timers that lead to changes of outputs. Events are separated by
stable states, i.e. arbitrary-length successions of scans in which the values of both
inputs and outputs are unchanged.

Figure 3 depicts the timing chart specification of the carriage line control
example. Events of the timing chart are depicted as ]1, ]2, . . . , ]11. In the rest of
the paper, we use the notation ](1 ↪→ 2), . . . , ](10 ↪→ 11) to depict stable states.
The initial and final states of the timing chart are respectively depicted by ]idle
and ]end. The timing chart of Figure 3 also contains a fixed-duration sequence
of events and stable states (represented by an arrow, between events ]5 and
]8), whose duration is 3 seconds. We call fixed-duration sequence the concerned
sequence of events and stable states. Typically, the Ladder program is executed
periodically every 100 milliseconds, therefore, the fixed-time period of 3 seconds
is made of 30 scans. Here, the given implementation uses the timer device T0 in
order to satisfy this aspect of the specification.

Our main goal is the verification that a Ladder diagram conforms to such a
timing chart specification. A first idea would be to envision the use of deductive
verification techniques, in the wake of our previous work on Ladder instruction-



Fig. 3: Timing chart specification for the Carriage line control

level verification [7]. However, not all variables used in the Ladder program of
Figure 2 are addressed by the timing chart. Indeed, internal memory devices (e.g.
M1 and M2) and timers (e.g. T0) are introduced by the developer in order to
make the program satisfy its specification, but do not belong to this specification.
As an example, in the carriage line control program, the M2 device acts as a
termination flag which stops the execution of the PLC as soon as it is activated.
There is no doubt that M2 remains false during execution of the timing chart
scenario. However, deductive verification would lack this information to check
that outputs satisfy their specification. This kind of issue is at the heart of our
strategy that is to integrate a method for inferring loop invariants.

3 Translation of Ladder Programs to WhyML

Our prototype automatically translates Ladder programs given as XML files and
timing charts given as PlantUML [18] files into WhyML programs. After a short
introduction to the Why3 environment in Section 3.1, we describe in Section 3.2
how we translate the Ladder program itself, and in Section 3.3 how we use this
translation for modeling the successive executions of the program and verifying
that it satisfies the given timing chart.

3.1 The Why3 Environment

Why3 is an environment for deductive program verification, providing the lan-
guage WhyML for specification and programming [6]. A detailed introduction to
Why3 is given in our extended report [4]. Among the recent features of Why3 of
particular interest for our work are the ability to generate loop invariants and to
produce counterexamples when a proof fails [8]. Indeed, the first of these features



val b : ref bool

val x : ref int

let toy () : unit

requires { 0 <= !x <= 10 }

writes { b, x }

ensures { not !b }

ensures { !x <= 200 }

= b := false;

while (!x < 100) do

b := (!x < 50);

if !b then x := !x + 2

else x := !x + 3;

done;

assert { !x >= 75 }

(a) Toy example of WhyML code

let set (input : bool)

(device : ref bool) : unit

writes { device }

ensures { !device ↔
(input ∨ old !device) }

= if input then device := true

(b) the SET instruction in WhyML

Fig. 4: Examples of WhyML code

had to be improved in order to support our work on Ladder programs, this is a
contribution that some of us made to Why3 [4].

We illustrate those features on a toy WhyML program presented in Figure 4a.
This code involves two global variables, b of type Boolean and x of type inte-
ger (a mathematical, unbounded integer in WhyML). The function toy takes
no arguments, and is equipped with a formal contract involving a pre-condition
(keyword requires) stating that the value of x on function entry is required
to lie between 0 and 10, and two post-conditions (keyword ensures) stating
respectively that at exit, b is false and that x is smaller than 200. The clause
writes expresses which global variables are potentially modified by that func-
tion. Notice the WhyML syntax for mutable variables, inspired by ML, requiring
to write an exclamation mark to access their values. The body of that function
is a simple imperative code involving a while loop and a conditional. This code
ends by an other kind of formal annotation, namely a code assertion stating that
the value of x must be greater or equal to 75 after the loop.

Given such an annotated code, the Why3 core engine generates three ver-
ification conditions (VCs), corresponding to the assertion and the two post-
conditions. When calling provers for attempting to prove these VCs, only the
assertion is proved valid: it directly follows from the negation of the loop con-
dition. None of the post-conditions are proved valid, which is expected in the
classical setting of deductive verification, because for proving properties about
loops one should state appropriate loop invariants. These could be added by
hand, but to make the process more automatic we rely on the automatic gen-
eration of such invariants. We use a technique based on abstract interpretation,
for which an early prototype existed for Why3 [1], prototype that we extended



in particular to support Boolean variables [4]. The generated loop invariant is
then as follows:

(!b = false ∧ 0 <= !x <= 10) ∨ (!b = true ∧ 2 <= !x <= 51) ∨
(!b = false ∧ 53 <= !x <= 102)

and with this loop invariant, the post-conditions are proved valid.
Assume now that we replace the loop condition with (!x < 300). Still assum-

ing that we ask for generation of a loop invariant, all generated VCs are proved
except the second post-condition. For this VC, Why3 proposes a counterexam-
ple where the values of b and x at loop exit are respectively false and 300.
Indeed, these values satisfy the loop invariant, but with those the post-condition
!x <= 200 is not valid.

3.2 Translation of Ladder Codes

The translation relies on models of Ladder instructions as WhyML functions,
defined by some of the authors in a previous work [7]. For example, Figure 4b
depicts the function that corresponds to the SET instruction. This function takes
two arguments, first the input of the instruction (whether it should be activated
or not), and second the device on which it may have an effect. Both the code and
the contract of the function state the intended behaviour of the SET function: if
the instruction is activated then the considered device is activated (otherwise its
value does not change). The WhyML functions modeling RST, PLS, and timer
instructions are detailed in the extended research report [4].

Given this formalisation of Ladder instructions, we can now give, in Figure 5b,
the translation of the full Ladder program of Figure 2. The translation makes
use of auxiliary variables f1,. . . ,f8 which corresponds to the common fronts
depicted on Figure 5a.

3.3 The Ladder loop, and the Encoding of Timing Charts

By definition, timing charts are made of successive events and stable states.
Checking that a program conforms to a timing chart means that, under the
hypotheses on input values, the values of outputs are correct according to the
order of appearance of events and stable states in the timing chart scenario. In
addition, fixed-time duration information (timer-related sequence of events) also
need to be verified. We propose and implement an automatic process that takes
a Ladder diagram and a timing chart specification and returns the corresponding
WhyML formalisation.

Events and stable states as loops. The formalisation is made of a succession of
do-while style loops4 (except for the initial stable state of the timing chart). The

4 There are no do-while loops in WhyML, we just mean by do-while style
loop a code piece of the following form with two occurrences of the loop
body: “body; while cond do body done”



(a) Ladder code with common fronts

let f1 = (!x0 || !y70)

&& (not !m2) in

y70 := f1;

let f2 = !x1 && !x3 in

pls (f1 && f2) m1 cc0;

let f3 = !m1 in

set (f1 && f3) y71;

let f4 = !y71 && !x2 in

rst (f1 && f4) y71;

set (f1 && f4) y73;

let f5 = !y73 in

timer_coil (f1 && f5) t0 30;

let f6 = timer_contact t0 in

rst (f1 && f6) y73;

set (f1 && f6) y74;

let f7 = !y74 && !x4 in

rst (f1 && f7) y74;

set (f1 && f7) y72;

let f8 = !y72 && !x3 in

rst (f1 && f8) y72;

m2 := f1 && f8

(b) WhyML encoding

Fig. 5: Encoding of one scan of the Ladder program for the carriage line control

body of each loop corresponds to the WhyML formalisation of one scan of the
Ladder program. Each do-while loop corresponds to a pair made of an event (the
first iteration do) and the following stable state (while). The guard of the loop
corresponds to the assumptions on inputs, i.e. the values taken by the inputs at
the corresponding event and during the following stable states. The verification
conditions on outputs are modelled as loop invariants: the invariant initialisation
corresponds to the event while its preservation corresponds to the stable state.

The initial state of the timing chart (values of devices before the PLC starts)
is handled in its own way. Basically, all outputs and internal memory devices are
initially deactivated. The initial values of inputs are read at the beginning of the
timing chart. The initial state is formalised as a while loop (and not a do-while
loop) whose guard corresponds to the values of inputs at the initialisation of
the timing chart. Indeed, the initial state of the timing chart is a stable state
which does not begin with an event. The invariants to be proved for this loop
correspond to the fact that outputs remain deactivated.

The events last during one scan, while stable states have an arbitrary duration
and end when the next event is reached, i.e. when an input changes or a timer
coils. In order to model this behaviour, the body of each loop iteration is enriched
with an assignment of the concerned input to a random Boolean value, that may
or may not update its value and lead to a new event.



< One scan of the Ladder program from Figure 5b >
x0 := randomb();

while (!x0 && not !x1 && not !x2 && !x3 && !x4) do

invariant { !y70 && not !y71 && not !y72 && not !y73 && not !y74 }

< One scan of the Ladder program from Figure 5b >
x0 := randomb();

done

Fig. 6: WhyML formalisation of event ]1 and stable state ](1 ↪→ 2)

The WhyML code of Figure 6 gives an example of formalisation of an event.
It is for the event ]1 and the stable state ](1 ↪→ 2), the latter being termi-
nated when event ]2 is reached, i.e. when x0 is deactivated. The encoding of
one scan (from Figure 5b) is intentionally duplicated. Deductive verification is
unfortunately not sufficient to directly prove the invariants on outputs. Indeed,
as mentioned in Section 2, the specification used to generate the formalisation
lacks information on internal memory devices. To bypass this difficulty, we rely
on the invariant generation plug-in for Why3 (already presented in Section 3.1)
to generate additional loop invariants for each while loop of the formalisation.
For instance, in each loop of the formalisation, the inference of the invariant
not !m2 would be needed.

Timer-related sequences of events. One of the most technical points of our work
concerns the formalisation of fixed-duration sequences, e.g. events and stable
states from ]5 to ]8 in the timing chart of the carriage line control (Figure 3).

We have to capture the fact that the total duration of this sequence is ex-
actly 3 seconds. Since timing charts specifications do not make explicit which
timer device is used to implement this aspect, we cannot, in the general case,
guess which timer device appearing in the code is used for any of the fixed-
duration sequences appearing in the timing chart. That is why we introduce a
fresh internal counter for each fixed-duration sequence of the timing chart, add
the duration constraint in the guard of each loop associated to the concerned
stable states and increment the value of that counter at each loop iteration. The
timer is incremented accordingly, therefore, the counter is supposed to reflect
the current value of the timer.

In addition, there are two ways to reach the end of the loops corresponding to
intermediate stable states of the fixed-duration sequences: an input change or the
maximal number of scans being reached by the counter. We have to capture the
fact that the termination of intermediate stable states (](5 ↪→ 6) and ](6 ↪→ 7)
in our example) is due to an input update and not because the maximal number
of scans has been reached. To enforce this property, we insert an assume clause
after the loop end. In our example, we use c1 as a counter associated with the
3 seconds fixed-duration sequence. As an illustration, we give the shape of the
formalisation of event ]5 and stable state ](5 ↪→ 6), ending with the deactivation
of X4 while the number of elapsed scans of the fixed-duration sequence is not



< One scan of the Ladder program from Figure 5b >
x4 := randomb();

c1 := !c1 + 1;

while (not !x0 && !x1 && !x2 && not !x3 && !x4 && !c1 < 29) do

invariant { !y70 && not !y71 && not !y72 && !y73 && not !y74 }

< One scan of the Ladder program from Figure 5b >
x4 := randomb();

c1 := !c1 + 1;

done;

assume { !c1 < 29 }

Fig. 7: WhyML formalisation of event ]5 and stable state ](5 ↪→ 6)

reached yet. The resulting WhyML code is given in Figure 7. For stable state
](7 ↪→ 8), i.e. the last stable state before the end of the fixed-duration sequence,
there is only one way to end the loop (!c1 >= 29) so there is no need for any
assume clause.

Note that the condition we use is !c1 < 29 and not !c1 <= 29 (or equiva-
lently !c1 < 30). The reason is technical: at the end of the stable state ](7 ↪→ 8),
the counter reaches the value 29. The timer’s current value is also equal to 29.
The scan for event ]8 begins and the current value of the timer is incremented
during its execution (more precisely at rung 5), therefore, its value becomes equal
to 30 and the timer coils.

At this stage, another pitfall remains. As explained previously, we cannot, in
the general case, make explicit the equality between the introduced counter c1

and the current value of the timer in the formalisation of Figure 7. Nonetheless,
we can benefit from the invariant inference mechanism presented in Section 3.1.
Indeed, this invariant generator does not only compute numerical domains for
each variable independently: it makes use of relational domains (provided by the
Apron library [13]) to infer logical relations between variables. In particular, we
successfully obtain the invariant !c1 = t0.current that makes explicit the role
of the introduced counter.

4 Implementation and Experimental Results

Our first goal is to be able to fully automatically prove that a Ladder program
like our running example of in Figure 2 is conforming to a timing chart. Our
secondary goal is that we want to give back, to the users, meaningful and easy-
to-use information when they try to prove an incorrect implementation.

In Section 4.1, we describe the workflow of the proprietary implementation
of our approach. Then, Section 4.2 presents the results obtained when executing
the analysis on a correct carriage line control implementation, i.e., the imple-
mentation of Figure 2. Finally, in Section 4.3, we present the feedback given by
our toolbox when analysing one slight modification of the nominal program that
makes the verification of conformance to the timing chart fail.



4.1 Overview of the Approach

The implemented approach proceeds as follows.

1. The tool takes two inputs: an XML representation of the Ladder program,
and a timing chart specification written in the PlantUML language.

2. It translates the Ladder program as a WhyML program.
3. It derives, from the timing chart the different guard conditions (hypotheses

on input values) and invariants (output values to prove) for formalising the
successive events of the timing chart.

4. Then, for each event,
– Why3 infers a loop invariant for the WhyML loop that models the state

that is associated to the event, thus adding information on values of
internal memory to the information on output values computed in the
previous step.

– Why3 computes the verification conditions that correspond both to the
inferred invariants and the invariants that correspond to the timing chart
specification, and dispatches them to SMT solvers.

5. The previous step is repeated for all events. Note that besides the hypotheses
on the values of inputs and outputs at the start of the event, which are given
by the timing chart, the proving process also needs hypotheses on the values
of internal memory values at the beginning of the event. Those values are
given by the loop invariant inferred for the previous event. Hence we store,
during the process, the inferred invariants for each event in order to use them
as preconditions for the next event.

6. If a proof obligation fails at event n, we build a WhyML program concatenat-
ing all the previous events and the faulty one, with loops enriched with the
consecutively inferred invariants. Provers are called on this WhyML program
and provide counterexamples (see Section 4.3).

7. On the contrary, if all events and stable states are proved, we conclude that
the Ladder program satisfies the timing chart specification.

This approach of proving each event, one by one, until a specification violation
is detected, is motivated by the fact that abstract interpretation, in our examples,
is far more time-consuming than proving. In the case a violation is detected, our
approach avoids to launch abstract interpretation for all the events that follow
the one for which the violation has been detected.

4.2 Results on correct code

We apply our approach on the nominal Ladder program described in Figure 2,
for which we successfully verify the timing chart specification. Figure 8 depicts
the result we obtain when running the analysis. In accordance with our strategy
presented in Section 4.1, we consecutively infer invariants and then prove ver-
ification conditions for each pair (event, stable state), starting from the initial
(idle) state of the timing chart. We observe that abstract interpretation is for
now quite expensive, therefore, the proof time is negligible (6s) compared to the
time for inference of invariants (137s).



Fig. 8: Output of the tool on the nominal carriage line control program

4.3 Results on incorrect code

Let us assume the verification of a proof obligation fails for a faulty event (the
case of a faulty stable state is similar). Our goal is to provide the most relevant
information possible to the Ladder programmer, who may not be used to deduc-
tive verification. For that purpose, we propose an error scenario following the
timing chart until the faulty event, mixing concrete values provided by coun-
terexamples generated by Why3, and abstract domains provided by abstract
interpretation.

Error scenarios. When a proof obligation fails as assumed above, Why3 is able
to provide a counterexample. Since such a proof obligation comes from the veri-
fication of the concatenation of the consecutive events from the very first one to
the faulty one, the information we get provides the values of the inputs, outputs
and internal devices at the beginning of each event until the faulty one. Due to
the way Why3 handles loops during the computation of verification conditions
for SMT-solvers (that is, the loop invariant is the only known fact for the code
after the loop [4]), we do not have any information on the values the devices
take during the stable states. We think that this lack of information concerning
values of devices during stable states may be an impediment to the understand-
ing of the cause of the specification violation. That is why we propose to enrich
the counterexample values with the domains of devices values given by abstract
interpretation. This leads to the notion of error scenario that provides:

1. For each event that precedes the faulty one (including the faulty one), the
values of devices before the beginning of the scan of this event, obtained
from the counterexample trace provided by Why3.

2. For each stable state that precedes the faulty event, an over-approximation
of domains of devices values, obtained by abstract interpretation.



Fig. 9: An incorrect version of the carriage line control

In order to convince ourselves that this notion of error scenario should be
useful to Ladder programmers, we implemented different slight modifications of
the carriage line control program, introducing bugs. We present one of them
in this article, another one is described in the extended research report [4].
The corresponding Ladder diagram is depicted in Figure 9. The modification
compared to the original code is circled.

The timer setting duration is here set to 40 scans instead of 30. We use our
tool to get the reason of the proof failure, i.e. that Y73 is equal to true while
it should be false. The obtained reason is rather intuitive: event 8 corresponds
to 30 elapsed scans from timer’s start. As the timer has a duration of 40 scans,
it has not ended yet, therefore, Y73 is not reset yet, as highlighted by the error
scenario of Figure 10a.

The trace shows that the setting value of the timer (here 40) is not reached. In
particular, the current value of the timer evolves between 3 and 29 in the stable
state between events 7 and 8, showing that the current event follows three other
events in the fixed-duration sequence. Moreover, at the beginning of the scan of
event 8, the current value of the timer and its associated counter c1 are both
equal to 29, which is exactly the value we expect when leaving the fixed-duration
sequence of events. The timing chart violation is depicted by Figure 10b.

Qualitative analysis of the experiments. As a conclusion, we think that this
notion of error scenario mixing concrete values provided by counterexamples to
VCs, and abstract domains provided by abstract interpretation, should be useful
to Ladder programmers in order to understand why a program does not conform



(a) Output of the tool (b) Violation of the timing chart

Fig. 10: Incorrect Ladder program: analysis results

to a given timing chart specification. A weakness of this approach is that in some
cases, the concrete and abstract values might seem irrelevant. For example, for
a timer counter c, we might have an abstract domain that states that c can
take all the values between, say, 3 and 29 for a state, but the concrete value
given for the next event might be 4. For that example, it means that the loop
corresponding to the state is executed exactly once in the error scenario, before
executing the next event. In that case, it might be very interesting to use the
concrete values of counterexamples to refine the domain [3;29] into [3;4], and
even make explicit to the programmer that there is exactly one execution of the
program for the considered state.



5 Discussions, Related Work and Future Work

We presented a new method for formally verifying that a given Ladder code
complies with an expected temporal behaviour expressed by a timing chart. By
translating both the Ladder code and the timing chart to a WhyML program,
and making use of the loop invariant generation capability of Why3, we are able
to provide a fully automatic process to achieve such a verification, with a high
level of confidence. Moreover, when this proof-based process fails at some point,
we have a way to propose an error scenario which exposes why the Ladder code
does not conform to the timing chart. Our method is implemented in a proto-
type which we experimented on a case study, demonstrating the effectiveness of
our approach, both for formally proving the correct version and for providing
counterexample scenarios on wrong mutants.

The level of confidence of our approach must be understood in terms of the
trusted code base of the whole process. It first relies on the soundness of the
translation from Ladder code and timing chart, which is described in Section 3.
It also relies on the soundness of the VC generation process of Why3, which is not
formally proven correct but validated on numerous applications [6]. Regarding
trust in Why3, it is important to notice that the prototype implementation
of loop invariant generation is not part of the trusted code base, because the
loop invariants generated are later on checked for validity by the VC generation
process. It is indeed fortunate to not have to rely on the soundness of this part of
Why3 implementation, since we had to make significant extensions to it (mostly,
support for Boolean variables, and adaptation of the API for external use) for
the current purpose. The last part of the tool chain that must be trusted is the
back-end SMT solver.

Regarding the generated errors scenarios, we have noticed that they are sat-
isfactory on our case study, but due to the inherent incompleteness of counter-
model generation with SMT solvers, we cannot guarantee that the generated
scenarios are always valid. There are on-going work in the Why3 development
team to increase the trust into the validity of generated counterexamples [3].

Related work. PLC software verification is a vast domain and numerous works
have been published on that subject. The majority of them use model-checking
to verify functional and temporal properties. In 2014, Ovatman et al. [16] pub-
lished a summary of those techniques. In 2016, Darvas et al. [9] proposed a
newer model-checking based tool and compared with former similar tools. The
general drawback of the model-checking approach is that the verification it pro-
vides cannot be exhaustive, it cannot model any possible number of executions
during the states of a timing chart, contrary to deductive verification. On the
other hand, abstract interpretation has also been used for a long time for verify-
ing software, in particular microcontroller software [12,15] and PLC software [5]
(in combination with model-checking). Contrary to model-checking, abstract in-
terpretation gives a full guarantee when it detects no error in a program, but
it is dedicated to compute the possible values of variables during the execution
of a program, and is not suited for verifying temporal properties. Finally, in



a previous work [7], some of us used the Why3 deductive verification platform
for detecting run-time errors of Ladder programs. This work only considered
one single execution of Ladder programs and was therefore also not suited for
verifying temporal properties. To our knowledge, the present paper is the first
one to combine abstract interpretation and deductive verification for verifying
temporal properties of Ladder programs.

Outside the context of Ladder, Stouls and Groslambert proposed an approach
for proving temporal properties of C code [19], based on a translation from LTL
formulas into annotations in the ACSL language [2]. These LTL formulas express
temporal properties of sequences of functions calls, which are very different from
our kind of specifications. Their approach is similar to ours in the sense that they
automatically translate temporal properties into annotated code, to be proved
correct using deductive verification. They also identified a need for automati-
cally generating extra intermediate annotations, for which they use their own
variant of abstract interpretation. A successor of this work is the CaFE plug-in
of Frama-C [10], which makes use of the Frama-C plug-in EVA for abstract in-
terpretation. Unlike us, the approaches above do not provide any facilities for
explaining errors.

Future work. During our work, we had to improve the loop invariant generation
feature of Why3, in particular the support for Boolean values. Even enough for
our case study, there is clearly room for improvement in this implementation,
required to make the tool chain more efficient. We plan to experiment our method
on examples of Ladder programs that require WhyML translations involving
arrays, and we have to ensure that the loop invariant generation could succeed
when we are mixing all involving data-types: integers, Boolean, arrays, and also
bounded integers in the future.

As mentioned at the end of Section 4.3, there is some need for improvement
in the counterexample generation part of the chain. The inherent incompleteness
of the SMT solvers implies that the proposed counterexample might be wrong.
We are planning to incorporate in our tool-chain a recent technique that double-
checks the validity of counterexamples a posteriori [3], which roughly amounts
to symbolically executing the scenario it describes, and detect carefully at which
step its behaviour diverges from what the timing chart allows.

On the error scenario side, as explained in the end of Section 4.3, the parts of
a scenario that come from abstract interpretation domains, that correspond to
the possible values of devices during states, could be refined using the concrete
values given by the counterexamples for next events. This way, we might propose
an even more understandable and useful error scenario to Ladder programmers,
in case an error is detected in their code.

A longer-term goal is to augment the trust in the translation from Ladder to
WhyML. We have some plans for designing a systematic and automatic valida-
tion process to confront our translation against existing test suites for Ladder
programs.
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2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.:
ACSL: ANSI/ISO C Specification Language, version 1.16 (2020), https://frama-c.
com/html/acsl.html
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