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Abstract Evolution Strategies (ES) are stochastic derivative-free optimization
algorithms whose most prominent representative, the CMA-ES algorithm, is widely
used to solve difficult numerical optimization problems. We provide the first
rigorous investigation of the linear convergence of step-size adaptive ES involving
a population and recombination, two ingredients crucially important in practice to
be robust to local irregularities or multimodality.

We investigate convergence of step-size adaptive ES with weighted recombination
on composites of strictly increasing functions with continuously differentiable
scaling-invariant functions with a global optimum. This function class includes
functions with non-convex sublevel sets and discontinuous functions. We prove the
existence of a constant r such that the logarithm of the distance to the optimum
divided by the number of iterations converges to r. The constant is given as an
expectation with respect to the stationary distribution of a Markov chain—its sign
allows to infer linear convergence or divergence of the ES and is found numerically.

Our main condition for convergence is the increase of the expected log step-size
on linear functions. In contrast to previous results, our condition is equivalent to
the almost sure geometric divergence of the step-size on linear functions.

Keywords Evolution Strategies; Linear Convergence; CMA-ES; Scaling-invariant
functions; Foster-Lyapunov drift conditions.

1 Introduction

Evolution Strategies (ES) are stochastic numerical optimization algorithms intro-
duced in the 70’s [54, 55, 60, 61]. They aim at optimizing an objective function
f : Rn → R in a so-called zero-order black-box scenario where gradients are not
available and only comparisons between f-values of candidate solutions are used
to update the state of the algorithm. Evolution Strategies sample candidate so-
lutions from a multivariate normal distribution parametrized by a mean vector
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and a covariance matrix. The mean vector represents the incumbent or current
favorite solution while the covariance matrix determines the geometric shape of the
sampling probability distribution. In adaptive ES, not only the mean vector but
also a step-size or the covariance matrix is adapted in each iteration. Covariance
matrices can be seen as encoding a metric such that Evolution Strategies that
adapt a full covariance matrix are variable metric algorithms [64].

In the domain of Evolutionary Computation, the covariance-matrix-adaptation
ES (CMA-ES) [29,36] is nowadays recognized as state-of-the-art to solve difficult
numerical optimization problems that can typically be non-convex, non-linear,
ill-conditioned, non-separable, rugged or multi-modal1 [18,23,24,32] [56, Fig. 20].
Other relevant algorithms to solve ill-structured, non-convex, multi-modal, non-
differentiable problems are also population based like Estimation of Distribution
algorithms notably AMaLGaM [17], Differential Evolution [22, 62], and Particle
Swarm Optimization (PSO) [47]. PSO methods however exploit separability and
are inefficient to solve non-separable ill-conditioned problems [37]. The CMA-
ES algorithm is based upon several maximum likelihood updates [31], can be
interpreted as a natural gradient descent [5, 25,53] and has been tightly linked to
the EM-algorithm [7]. Adaptation of the full covariance matrix is crucial to solve
general ill-conditioned, non-separable problems. Up to a multiplicative factor that
converges to zero, the covariance matrix in CMA-ES becomes on strictly convex
quadratic objective functions close to the inverse Hessian of the function [27].

The CMA-ES algorithm follows a (µ/µw, λ)-ES algorithmic scheme where from
the offspring population of λ candidate solutions sampled at each iteration the
µ ≈ λ/2 best solutions—the new parent population—are recombined as a weighted
sum to define the new mean vector of the multivariate normal distribution. On
a unimodal spherical function, the optimal step-size, i.e. the standard deviation
that should be used to sample each coordinate of the candidate solutions, depends
monotonously on µ [55]. Hence, increasing the population size makes the search less
local while preserving a close-to-optimal convergence rate per function evaluation
as long as λ remains moderately large [8,9,30]. This remarkable theoretical property
implies robustness and partly explains why on many multi-modal test functions
increasing λ empirically increases the probability to converge to the global opti-
mum [34]. The robustness when increasing λ and the inherent parallel nature of
Evolution Strategies are two key features behind their success for tackling difficult
black-box optimization problems.

Convergence is a central question in optimization. For comparison-based algo-
rithms like ES, linear convergence (where the distance to the optimum decreases
geometrically) is the fastest possible convergence [43,65]. Gradient methods also
converge linearly on strongly convex functions [52, Theorem 2.1.15]. We have
ample empirical evidence that adaptive ESs converge linearly on wide classes of
functions [30, 37, 38, 57]. Yet, establishing proofs is known to be difficult. So far,
linear convergence could be proven only for step-size adaptive algorithms where
the covariance matrix equals a scalar times the identity [11,13,39–42] or a scalar

1 The cmaes and the pycma Python modules that implement the algorithm are downloaded
more than 300,000 and 30,000 times per week, respectively, from PyPI as of March 2022.
Both modules implement the main ideas of CMA-ES [36] and further enhancements published
over the years, notably the rank-µ update [35], a better setting for step-size damping and the
weights [34], an active covariance matrix update [44], and restart mechanisms with increasing
population size [12,28].

https://pypi.org/project/cmaes
https://pypi.org/project/cma
https://pepy.tech/project/cmaes
https://pepy.tech/project/cma
https://pypi.org
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times a covariance matrix with eigenvalues upper bounded and bounded away from
zero [2]. In addition, these proofs require the parent population size to be one.

In this context, we analyze here for the first time the linear convergence of a step-
size adaptive ES with a parent population size greater than one and recombination,
following a (µ/µw, λ)-ES framework. As a second novelty, we model the step-size
update by a generic function and thereby also encompass the step-size updates in
the CMA-ES algorithm [29] (however with a specific parameter setting which leads
to a reduced state-space) and in the xNES algorithm [25].

Our proofs hold on composites of strictly increasing functions with either
continuously differentiable scaling-invariant functions with a unique argmin or
nontrivial linear functions. This class of function includes discontinuous functions,
functions with infinite many critical points, and functions with non-convex sublevel
sets. It does not include functions with more than one (local or global) optimum.

In this paper, we use a methodology based on analyzing the stochastic process
defined as the difference between the mean vector and a reference point (often
the optimum of the problem), normalized by the step-size [14]. This construct
is a viable model of the underlying (translation and scale invariant) algorithm
when optimizing scaling-invariant functions, in which case the stochastic process
is also a Markov chain and here referred to as σ-normalized Markov chain. This
chain is homogeneous as a consequence of three crucial invariance properties of the
ES algorithms: translation invariance, scale invariance, and invariance to strictly
increasing transformations of the objective function. Proving stability of the σ-
normalized Markov chain (ϕ-irreducibility, Harris recurrence, positivity) is key to
obtain almost sure linear behavior of the algorithm [14]. The sign and value of
the convergence or divergence rate can however only be obtained from elementary
Monte Carlo simulations. The technically challenging part in the proof methodology
is the stability analysis. It was not carried out by Auger and Hansen [14] who
presented the methodology and some algorithm classes that can be addressed by
the methodology but assumed stability of the algorithms without proof. We prove
in the following the stability for some algorithms belonging to the (µ/µw, λ)-ES
framework and thus formally prove linear behavior of these algorithms.

Relation to previous works: In contrast to our study, most theoretical analyses of
linear convergence concern the so-called (1+1)-ES where a single candidate solution
is sampled (λ = 1) and the new mean is the best among the current mean and the
sampled solution and in addition the one-fifth success rule is used to adapt the
step-size [48,54]. Jägersküpper established lower-bounds and upper-bounds on the
hitting time to reduce the distance to the optimum related to linear convergence
on spherical functions [39, 42] and on some convex-quadratic functions [40, 41].
Remarkably, these studies derive the dependency of the hitting time bounds on
dimension and condition number, an aspect which is not covered with our approach.
The underlying methodology used for the proofs was later unveiled as connected
to drift analysis where an overall Lyapunov function of the state of the algorithm
(mean and step-size) is used to prove upper and lower bounds on the hitting time
of an epsilon neighborhood of the optimum [1]. With this drift analysis, Akimoto
et al. provide lower and upper bounds on the hitting time of an ε-ball pertaining
to linear convergence (coming as well with dependency in the dimension) for the
the (1+1)-ES with one-fifth success rule on spherical functions [1]. The analysis
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was later generalized for classes of functions including strongly convex functions
with Lipschitz gradient as well as positively homogeneous functions [2, 51].

Using the same methodology as in this paper, the linear convergence of the
(1 + 1)-ES with step-size adapted via the one-fifth success rule is proven on increas-
ing transformations of C1 positively homogeneous functions p with a unique global
argmin and upper bounds on the degree of p and on the norm of the gradient
‖∇p‖ [13].

While most theoretical studies of linear convergence concern a (1+1)-ES, the
(1, λ)-ES with self-adaptation has been analyzed on the sphere function [11] and
more recently an ODE method has been developed and applied to a (µ/µ, λ)-ES
with a specific step-size adaptation concluding linear convergence on the sphere
function when the learning rate is small enough [4]. Our analysis holds for wider
classes of functions and does not impose a small learning rate. However it does not
allow to obtain the sign of the convergence rate.

A few studies attempt to analyze ES with covariance matrix adaptation: A
variant of CMA-ES modified to ensure a sufficient decrease globally converges
(but not provably linearly) [21]. Provided the eigenvalues of the covariance matrix
stay upper bounded and bounded away from zero (which is not the case in the
affine-invariant CMA-ES), a (1+1)-CMA-ES with any covariance matrix update
and proper step-size adaptation converges linearly [2]. When convergence occurs
on a twice continuously differentiable function for CMA-ES without step-size adap-
tation, the limit point is a local (or global) optimum [6].

This paper is organized as follows. We present in Section 2 the algorithm
framework, the assumptions on the algorithm and the class of objective functions
where the convergence analysis is carried out. In Section 3 we present the main
proof idea to prove a linear behavior and present the ensuing proof structure. In
Section 4, we present different Markov chain notions and tools needed for our
analysis. In Section 5, we establish different stability properties on the σ-normalized
Markov chain. We state and prove the main results in Section 6. Notations are
summarized in Table 1.

2 Algorithm framework and class of functions studied

We present in this section the step-size adaptive algorithm framework analyzed,
the assumptions on the algorithm and the function class considered as well as
preliminary results. In the following, we consider an abstract measurable space
(Ω,F) and a probability measure P so that (Ω,F , P ) is a measure space.

2.1 The (µ/µw, λ)-ES algorithm framework

We introduce step-size adaptive evolution strategies with recombination, referred
to as step-size adaptive (µ/µw, λ)-ES. Given a positive integer n and a function
f : Rn → R to be minimized, the sequence of states of the algorithm is represented
by {(Xk, σk) ; k ∈ N} where at iteration k, Xk ∈ Rn is the incumbent (the favorite
solution considered as current estimate of the optimum) and the positive scalar σk
is the step-size. We fix positive integers λ and µ such that µ ≤ λ.
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Table 1: Notations

‖ · ‖ is the Euclidean norm
‖ · ‖∞ is the infinity norm on a space of bounded functions
‖ν‖h = sup|g|≤h |Eν(g)| is for a positive function h the norm of the signed measure ν

π1 × π2 is the product measure from two measure spaces (Zi,B(Zi), πi), i = 1, 2, on the
product measurable space (Z1 ×Z2, B(Z1)⊗ B(Z2)) where ⊗ is the tensor product

Ac is the complement of a set A
A> is the transpose of a matrix A

B (x, ρ) = {y ∈ Rn; ‖x− y‖ < ρ} is the open ball around x ∈ Rn with radius ρ > 0 and

B (x, ρ) is its closure
B(Z) is the Borel sigma-field of the topological space Z
Eν(g) =

∫
g(z) ν(dz) for any real-valued function g and a signed measure ν

Lf,z = {y ∈ Rn ; f(y) = f(z)} is the level set for an objective function f : Rn → R and
an element z ∈ Rn

N is the set of non-negative integers
N is the standard normal distribution
Nm is the standard multivariate normal distribution in dimension m

N (x,C) is the multivariate normal distribution with mean x ∈ Rm and covariance matrix C
pNm is the probability density function of Nm
R+ is the set of non-negative real numbers
u = (u1, . . . , um) ∈ Rpm where ui ∈ Rp for i = 1, . . . ,m and p ∈ N \ {0} and we

write u = (u1) = u1 if m = 1
w>u =

∑m
i=1 wiu

i for w ∈ Rm and u ∈ Rpm

Let (X0, σ0) ∈ Rn × (0,∞) and U = {Uk+1 = (U1
k+1, . . . , U

λ
k+1) ; k ∈ N} be a

sequence of independent and identically distributed (i.i.d.) random inputs indepen-
dent from (X0, σ0), where for all k ∈ N, Uk+1 = (U1

k+1, . . . , U
λ
k+1) is composed of λ

independent random vectors following a standard multivariate normal distribution
Nn. Given (Xk, σk) for k ∈ N, we consider the following iterative update. First, we
define λ candidate solutions as

Xi
k+1 = Xk + σk U

i
k+1 for i = 1, . . . , λ. (1)

Second, we evaluate the candidate solutions on f . We then denote an f-sorted

permutation of
(
X1
k+1, . . . , X

λ
k+1

)
as
(
X1:λ
k+1, . . . , X

λ:λ
k+1

)
such that

f(X1:λ
k+1) ≤ · · · ≤ f(Xλ:λ

k+1) (2)

and thereby define the indices i :λ. To break possible ties, we require that i :λ < j :λ
if f(Xi

k+1) = f(Xj
k+1) and i < j. The sorting indices i : λ are also used for the

σ-normalized difference vectors U ik+1 in that U i:λk+1 =
Xi:λk+1−Xk

σk
. Accordingly, we

define the selection function αf of z ∈ Rn and u = (u1, . . . , uλ) ∈ Rnλ to yield the
sorted sequence of the difference vectors as

αf (z, u) = (u1:λ, . . . , uµ:λ) ∈ Rnµ, (3)

with f(z + u1:λ) ≤ · · · ≤ f(z + uλ:λ) and the above tie breaking. For λ = 2
and µ = 1, the selection function has the simple expression αf (z, (u1, u2)) =
(u1 − u2)1{f(z+u1)≤f(z+u2)} + u2. By definition, for k ∈ N, αf (Xk, σkUk+1) =
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σkU

1:λ
k+1, . . . , σkU

µ:λ
k+1

)
so that

αf (Xk, σkUk+1)

σk
=
(
U1:λ
k+1, . . . , U

µ:λ
k+1

)
. (4)

However, αf is not a homogeneous function in general, because the indices i :λ in
(4) depend on f and hence on αf and hence on σk.

The update of the state of the algorithm uses the objective function only through
the above selection function which is invariant to strictly increasing transformations
of the objective function. Indeed, the selection is determined through the ranking
of candidate solutions in (2) which is the same when on g ◦ f or f given that g is
strictly increasing. We talk about comparison-based algorithms. Formally:

Lemma 1 Let f = ϕ◦ g where g : Rn → R and ϕ is strictly increasing. Then αf = αg.

To update the mean vector Xk, we consider a weighted average of the µ ≤ λ best
solutions

∑µ
i=1 wiX

i:λ
k+1 where w = (w1, . . . , wµ) is a non-zero vector. With only

positive weights summing to one, this weighted average is situated in the convex
hull of the µ best points. The next incumbent Xk+1 is constructed by combining
Xk and

∑µ
i=1 wiX

i:λ
k+1

Xk+1 =

(
1−

µ∑
i=1

wi

)
Xk +

µ∑
i=1

wiX
i:λ
k+1 = Xk + σk

µ∑
i=1

wiU
i:λ
k+1 . (5)

Positive weights with small indices move the new mean vector towards the better
solutions, hence these weights should generally be large. In evolution strategies,
the weights are always non-increasing in i. With the notable exception of Natural
Evolution Strategies ([25] and related works), all weights are positive. In practice,∑µ
i=1 wi is often set to 1 such that the new mean vector is the weighted average of

the µ best solutions. Proposition 12 describes (generally weak) explicit conditions
for the weights under which our results hold. We write the step-size update in an
abstract manner as

σk+1 = σk Γ
(
U1:λ
k+1, . . . , U

µ:λ
k+1

)
(6)

where Γ : Rnµ → R+\ {0} is a measurable function. This generic step-size update
is by construction scale-invariant, which is key for our analysis [14]. The update of
the mean vector and of the step-size are both functions of the f-sorted sampled
vectors (U1:λ

k+1, . . . , U
µ:λ
k+1).

Using (4), we rewrite the algorithm framework (5) and (6) for all k as:

Xk+1 = Xk +

µ∑
i=1

wi
[
αf (Xk, σkUk+1)

]
i

= Xk + w>αf (Xk, σkUk+1) (7)

σk+1 = σk Γ

(
αf (Xk, σkUk+1)

σk

)
(8)

with U = {Uk+1 ; k ∈ N} the sequence of identically distributed random inputs and
w ∈ Rµ \ {0}.
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2.2 Algorithms encompassed

The generic update in (6) or equivalently (8) encompasses the step-size update of the
cumulative step-size adaptation evolution strategy ((µ/µw, λ)-CSA-ES) [14,36] with
cumulation factor set to 1 where for dσ > 0, w ∈ Rµ\{0} and u = (u1, . . . , uµ) ∈ Rnµ,

Γ 0
CSA1(u1, . . . , uµ) = exp

(
1

dσ

(
‖
∑µ
i=1 wiu

i‖
‖w‖E [‖Nn‖]

− 1

))
. (9)

The acronym CSA1 emphasizes that we only consider a particular case here: in
the original CSA algorithm, the sum in (9) is an exponentially fading average of
these sums from the past iterations with a smoothing factor of 1− cσ. Equation (9)
only holds when the cumulation factor cσ is equal to 1, whereas in practice, 1/cσ
is between

√
n/2 and n + 2 (see [29] for more details). The damping parameter

dσ ≈ 1 scales the change magnitude of log(σk).
Equation (9) increases the step-size if and only if the length of

∑µ
i=1 wiU

i:λ
k+1

is larger than the expected length of
∑µ
i=1 wiU

i
k+1 which is equal to ‖w‖E [‖Nn‖].

Since the function Γ 0
CSA1 is not continuously differentiable (an assumption needed in

our analysis) we consider a version of the (µ/µw, λ)-CSA1-ES [10] that compares the
square length of

∑µ
i=1 wiU

i:λ
k+1 to the expected square length of

∑µ
i=1 wiU

i
k+1 which

is n‖w‖2. Hence, we analyze for dσ > 0, w ∈ Rµ \ {0} and u = (u1, . . . , uµ) ∈ Rnµ:

ΓCSA1(u1, . . . , uµ) = exp

(
1

2dσn

(
‖
∑µ
i=1 wiu

i‖2

‖w‖2 − n

))
. (10)

Another step-size update encompassed with (4) is given by the Exponential
Natural Evolution Strategy (xNES) [14, 25, 53, 58] and defined for dσ > 0, w ∈
Rµ \ {0} and u = (u1, . . . , uµ) ∈ Rnµ as

ΓxNES(u1, . . . , uµ) = exp

(
1

2dσn

(
µ∑
i=1

wi∑µ
j=1 |wj |

(
‖ui‖2 − n

)))
. (11)

Both equations (10) and (11) correlate the step-size increment with the vector
lengths of the µ best solutions. While (10) takes the squared norm of the weighted
sum of the vectors, (11) takes the weighted sum of squared norms. Hence, cor-
relations between the directions ui affect only (10). Both equations are offset to
become unbiased such that log ◦Γ is zero in expectation when ui ∼ Nn for all
1 ≤ i ≤ λ, are i.i.d. random vectors.

2.3 Assumptions on the algorithm framework

We pose some assumptions on the algorithm (7) and (8) starting with assumptions
on the step-size update function Γ .

A1. The function Γ : Rnµ → R+\ {0} is continuously differentiable (C1).
A2. Γ is invariant under rotation in the following sense: for all n × n orthogonal

matrices T , for all u = (u1, . . . , uµ) ∈ Rnµ, Γ (Tu1, . . . , Tuµ) = Γ (u).
A3. The function Γ is lower-bounded by a constant mΓ > 0, that is for all x ∈ Rnµ,

Γ (x) ≥ mΓ .
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A4. log ◦Γ is Nnµ-integrable, that is,

∫
|log(Γ (u))| pNnµ(u)du <∞.

We can easily verify that Assumptions A1–A4 are satisfied for the (µ/µw, λ)-
CSA1 and (µ/µw, λ)-xNES updates given in (10) and (11). More precisely, the
following lemma holds.

Lemma 2 The step-size update function ΓCSA1 defined in (10) satisfies Assumptions

A1−A4. Endowed with non-negative weights wi ≥ 0 for all i = 1, . . . , µ, the step-size

update function ΓxNES defined in (11) satisfies Assumptions A1−A4.

Proof. A1 and A4 are immediate to verify. For A2, the invariance under rota-
tion comes from the norm-preserving property of orthogonal matrices. For all

u = (u1, . . . , uµ) ∈ Rnµ, ΓCSA1(u) ≥ exp
(
− 1

2dσ

)
such that ΓCSA1 satisfies A3.

Similarly ΓxNES(u) = exp
(
− 1

2dσ

∑µ
i=1 wi∑µ
j=1 |wj |

+ 1
2dσn

∑µ
i=1

wi∑µ
j=1 |wj |

‖ui‖2
)

. Since all

the weights are non-negative, 1
2dσn

∑µ
i=1 wi‖u

i‖2 ≥ 0. And then − 1
2dσ

∑µ
i=1 wi +

1
2dσn

∑µ
i=1 wi‖u

i‖2 ≥ − 1
2dσ

∑µ
i=1 wi. Therefore ΓxNES(u) ≥ exp

(
− 1

2dσ

)
which

does not depend on u, such that ΓxNES satisfies A3.

Assumptions A1–A4 are also satisfied for a constant function Γ equal to a
positive number. When the positive number is greater than 1, our main condition
for a linear behavior is satisfied, as we will see later on. Yet, the step-size of this
algorithm clearly diverges geometrically.

We formalize now the assumption on the source distribution used to sam-
ple candidate solutions, as it was already specified when defining the algorithm
framework.

A5. U = {Uk+1 =
(
U1
k+1, . . . , U

λ
k+1

)
∈ Rnλ ; k ∈ N}, see e.g. (1), is an i.i.d. sequence

that is also independent from (X0, σ0), and for all natural integer k, Uk+1 is an
independent sample of λ standard multivariate normal distributions on Rn at
time k + 1.

The last assumption is natural as evolution strategies use predominantly Gaus-
sian distributions2. Yet, we can replace the multivariate normal distribution by a
distribution with finite first and second moments and a probability density function

of the form x 7→ 1
σn g

(
‖x‖2
σ2

)
where σ > 0 and g : R+ → R+ is C1, non-increasing

and submultiplicative in that there exists K > 0 such that for t ∈ R+ and s ∈ R+,
g(t+ s) ≤ Kg(t)g(s) (such that Proposition 11 holds).

2.4 Assumptions on the objective function

Our main assumption on f to analyze the linear behavior of a step-size adaptive
(µ/µw, λ)-ES is that it is scaling-invariant. We remind that f is scaling-invariant [14]

2 In Evolution Strategies, Gaussian distributions are mainly used for convenience: they are
the natural choice to generate rotationally invariant random vectors. Several attempts have
been made to replace Gaussian distributions by Cauchy distributions [46, 59, 68]. Yet, their
implementations are typically not rotational invariant and steep performance gains are observed
either in low dimensions or crucially based on the implicit exploitation of separability [33].



Global linear convergence of Evolution Strategies with recombination 9

Fig. 1: Level sets of scaling-invariant functions with respect to the red star x?.
A randomly generated scaling-invariant function from a “smoothly” randomly
perturbed sphere function.

with respect to a reference point x? if for all ρ > 0, x, y ∈ Rn

f(x? + x) ≤ f(x? + y) ⇐⇒ f
(
x? + ρ x

)
≤ f

(
x? + ρ y

)
. (12)

More precisely, we pose one of the following assumptions on f :

F1. The function f satisfies f = ϕ ◦ g where ϕ is a strictly increasing function and
g is a C1 scaling-invariant function with respect to x? and has a unique global
argmin (that is x?).

F2. The function f satisfies f = ϕ ◦ g where ϕ is a strictly increasing function and
g is a nontrivial linear function.

Assumption F1 is our core assumption for studying convergence: we assume
scaling invariance and continuous differentiability not on f but on g where f = ϕ◦g
such that the function f can be discontinuous (we can include jumps in the function
via the function ϕ). Because ES are comparison-based algorithms and thus the
selection function is identical on f or g ◦ f (see Lemma 1), our analysis is invariant
if we carry it out on f or g ◦ f . Strictly increasing transformations of strictly
convex quadratic functions satisfy F1. Functions with non-convex sublevel sets can
satisfy F1 (see Figure 1). More generally, strictly increasing transformations of C1

positively homogeneous functions with a unique global argmin satisfy F1. Recall
that a function p is positively homogeneous with degree α > 0 and with respect to
x? if for all x, y ∈ Rn, for all ρ > 0,

p(ρ(x− x?)) = ραp(x− x?) . (13)

2.5 Preliminary results

If f is scaling-invariant with respect to x?, the composite of the selection function
αf with the translation (z, u) 7→ (x? + z, u) is positively homogeneous with degree
1. If in addition f is a measurable function with Lebesgue negligible level sets,
then the explicit expression of the probability density function of αf (x? + z, U1) is
known [19, Proposition 5.2] where U1 follows the distribution of Nnλ. These results
are formalized in the next lemma.
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Lemma 3 If f is a scaling-invariant function with respect to x?, then the function

(z, u) 7→ αf (x? + z, u) is positively homogeneous with degree 1. In other words, for all

z ∈ Rn, σ > 0 and u =
(
u1, . . . , uλ

)
∈ Rnλ, αf (x? + σz, σu) = σαf (x? + z, u) .

If in addition f is a measurable function with Lebesgue negligible level sets and

U1 =
(
U1
1 , . . . , U

λ
1

)
is distributed according to Nnλ, then for all z ∈ Rn, the probability

density function pfz of αf (x? + z, U1) exists and for all u = (u1, . . . , uµ) ∈ Rnµ,

pfz (u) =
λ!

(λ− µ)!
(1−Qfz (uµ))λ−µ

µ−1∏
i=1

1f(x?+z+ui)<f(x?+z+ui+1)

µ∏
i=1

pNn(ui) (14)

where Qfz (w) = P (f (x? + z +Nn) ≤ f (x? + z + w)) .

Proof. We have that f(x? + z + u1:λ) ≤ · · · ≤ f(x? + z + uλ:λ) if and only if
f(x? + σ(z + u1:λ)) ≤ · · · ≤ f(x? + σ(z + uλ:λ)). Therefore αf (x? + σz, σu) =

σ
(
u1:λ, . . . , uµ:λ

)
= σαf (x? + z, u). Equation (14) holds whenever f has Lebesgue

negligible level sets [19, Proposition 5.2].

On a linear function f , the selection function αf defined in (3) is independent
of the current state of the algorithm and is positively homogeneous with degree 1.
We provide a simple formalism and proof of this result while it is already known
and underlying previous works [11,20].

Lemma 4 If f is an increasing transformation of a linear function, then for all x ∈ Rn
the function αf (x, ·) does not depend on x and is positively homogeneous with degree 1. In

other words, for x ∈ Rn, σ > 0 and u =
(
u1, . . . , uλ

)
∈ Rnλ, αf (x, σu) = σαf (0, u) .

Proof. By linearity f(x+ σu1:λ) ≤ · · · ≤ f(x+ σuλ:λ) if and only if f(u1:λ) ≤ · · · ≤
f(uλ:λ). Therefore αf (x, σu) = σ

(
u1:λ, . . . , uµ:λ

)
= σαf (0, u).

Let l? be the linear function defined for all x ∈ Rn as l?(x) = x1 and U1 =(
U1
1 , . . . , U

λ
1

)
where U1

1 , . . . , U
λ
1 are i.i.d. with law Nn. Define the step-size change

Γ ?linear as

Γ ?linear = Γ (αl?(0, U1)) . (15)

We prove in the next proposition that for all nontrivial linear functions, the
step-size multiplicative factor of the algorithm (7) and (8) has at all iterations
the distribution of Γ ?linear. This result derives from the rotation invariance of
the function Γ (see Assumption A2) and of the probability density function
pNnµ : u 7→ 1

(2π)nµ/2
exp

(
−‖u‖2/2

)
. The details of the proof are in Appendix A.

Proposition 1 (Invariance of the step-size multiplicative factor on linear functions)

Let f be an increasing transformation of a nontrivial linear function, i.e. satisfy F2.

Assume that {Uk+1 ; k ∈ N} satisfies Assumption A5 and that Γ satisfies Assumption

A2, i.e. Γ is invariant under rotation. Then for all z ∈ Rn and all natural integer k,

the step-size multiplicative factor Γ
(
αf (z, Uk+1)

)
has the law of the step-size change

Γ ?linear defined in (15).
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The proposition shows that on any (nontrivial) linear function the step-size
change factor is independent of Xk, Zk and even σk. We can now state the result
which is at the origin of the methodology used in this paper, namely that on
scaling-invariant functions, {Zk = (Xk − x?)/σk ; k ∈ N} is a homogeneous Markov
chain. For this, we introduce the following function

Fw(z, v) =
z +

∑µ
i=1 wivi

Γ (v)
for all (z, v) ∈ Rn ×Rnµ, (16)

which allows to write Zk+1 as a deterministic function of Zk and Uk+1. The following
proposition establishes conditions under which {Zk; k ∈ N} is a homogeneous
Markov chain that is defined with (16), independently of {(Xk, σk) ; k ∈ N}. We
refer to {Zk; k ∈ N} as the σ-normalized chain. This is a particular case from a
more abstract algorithm framework [14, Proposition 4.1].

Proposition 2 Let f be a scaling invariant function with respect to x?. Define the

sequence {(Xk, σk); k ∈ N} as in (5) and (6). Then {Zk = (Xk − x?)/σk ; k ∈ N} is a

homogeneous Markov chain and for all natural integer k, the following equation holds

Zk+1 = Fw
(
Zk, αf

(
x? + Zk, Uk+1

))
, (17)

where αf is defined in (3), Fw is defined in (16) and {Uk+1 ; k ∈ N} is the sequence

of random inputs used to sample the candidate solutions in (1) corresponding to the

random input in (7) and (8).

Proof. The definition of the selection function αf allows to write (5) and (6)

as (7) and (8). We have Zk+1 = Xk+1−x?
σk+1

=
Xk−x?+

∑µ
i=1 wi[αf (Xk,σkUk+1)]i

σk Γ

(
αf (Xk,σkUk+1)

σk

) =

Zk+
∑µ
i=1 wi

[αf (Xk,σkUk+1)]
i

σk

Γ

(
αf (Xk, σkUk+1)

σk

) . By Lemma 3,
αf (Xk, σkUk+1)

σk
=

αf (x
?+Xk−x?, σkUk+1)

σk
=

αf (x? + Xk−x?
σk

, Uk+1). Then Zk+1 = Fw
(
Zk, αf (x? + Zk, Uk+1)

)
and {Zk; k ∈ N}

is a homogeneous Markov chain.

Three invariances are key to obtain that {Zk = (Xk − x?)/σk ; k ∈ N} is
a homogeneous Markov chain: invariance to strictly increasing transformations
(stemming from the comparison-based property of ES), translation invariance, and
scale invariance [14, Proposition 4.1]. The last two invariances are satisfied with
the update we assume for mean and step-size.

3 Methodology and overview of the rest of the analysis

We present in this section the main idea behind the proof methodology used in
this paper, namely how the stability study of an underlying Markov chain leads to
convergence (or divergence) of the original algorithm. From there, we sketch the
different steps of the analysis and present an overview of the structure of the rest
of the mathematical analysis

We aim at proving linear convergence that can be visualized by looking at
the distance to the optimum: after an adaptation phase, we observe that the log
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distance to the optimum diverges to minus infinity with a graph that resembles
a straight line with random perturbations. The step-size converges to zero at the
same linear rate (see Figure 2). We call this constant the convergence rate of the
algorithm. Formally, in case of convergence, there exists r > 0 such that

lim
k→∞

1

k
log
‖Xk − x?‖
‖X0 − x?‖

= lim
k→∞

1

k
log

σk
σ0

= −r (18)

where x? is the optimum of the function.
We consider a scaling invariant function with respect to x∗. From Proposition 2,

we know that {Zk = (Xk − x?)/σk ; k ∈ N} is a homogeneous Markov chain where
{(Xk, σk) ; k ∈ N} is the sequence of states of the step-size adaptive (µ/µw, λ)-ES
defined in (5) and (8) (see Proposition 2). We use this Markov chain to write the
log progress in the following way:

log
‖Xk+1 − x?‖
‖Xk − x?‖

= log
‖Zk+1‖
‖Zk‖

+ log
σk+1

σk
(19)

= log
‖Zk+1‖
‖Zk‖

+ log
(
Γ
(
αf
(
x? + Zk, Uk+1

)))
where Γ and αf are defined in (6) and in (3). This equation can now be used to
express the term whose limit we need to investigate:

1

k
log
‖Xk − x?‖
‖X0 − x?‖

=
1

k

k−1∑
t=0

log
‖Xt+1 − x?‖
‖Xt − x?‖

(20)

=
1

k

k−1∑
t=0

log
‖Zt+1‖
‖Zt‖

+
1

k

k−1∑
t=0

log(Γ (αf (x? + Zt, Ut+1))) . (21)

This latter equation suggests that if we can apply a law of large numbers to
{Zk ; k ∈ N} and {(Zk, Uk+1) ; k ∈ N}, the right-hand side of (21) converges when

k goes to infinity to

∫
EU1∼Nnλ

[
log
(
Γ
(
αf (x? + z, U1)

))]
π(dz) = Eπ(Rf ) where

Rf is defined as the expected change of the logarithm of the step-size for any state
z ∈ Rn of the σ-normalized chain as

Rf (z) = EU1∼Nnλ
[
log
(
Γ
(
αf (x? + z, U1)

))]
, (22)

and π is the invariant measure of {Zk ; k ∈ N}. From there, we obtain the almost sure

convergence of
1

k
log
‖Xk − x?‖
‖X0 − x?‖

towards Eπ(Rf ) expressed in (34) characterizing the

asymptotic linear behavior of the algorithm. A similar equation can be established to
prove the convergence of 1/k log(σk/σ0). Convergence of the expected log-progress
can also be deduced from stability properties of {Zk; k ≥ 0}.

The idea to apply an LLN to the chain {Zk; k ≥ 0} to prove the asymptotic
linear behavior of the underlying algorithm is the key behind the asymptotic
almost sure linear behavior proof we provide. This seminal idea was introduced
for self-adaptive ES on the sphere function [15] and exploited to prove their linear
behavior [11] and generalized to a wider class of algorithms and functions [14].

Hence, in order to obtain a proof of the linear behavior of the studied algorithm
following the idea sketched above, we need to investigate now the stability of the
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Fig. 2: Four independent runs of (µ/µw, λ)-xNES and (µ/µw, λ)-CSA1-ES (without
cumulation) as presented in Section 2.1 on the functions x 7→ ‖x‖2 (first two figures)

and x 7→
∑n
i=1 103 i−1

n−1 x2i (last two figures). Illustration of ‖Xk‖ in blue and σk in
red where k is the number of iterations, µ = 3, λ = 11 and wi = 1/µ. Initializations:
σ0 equals to 10−11 in two runs and 1 in the two other runs, X0 is the all-ones
vector in dimension 10.

chain {Zk ; k ∈ N} (and in turn {(Zk, Uk+1) ; k ∈ N}). In particular, we need to
prove that it satisfies the mathematical properties referred to informally as stability
properties (following a terminology by Meyn and Tweedie [50]) such that an LLN
can be applied. It is not a trivial task and it will occupy a large part of the rest of
the paper. While establishing stability properties to obtain an LLN we will prove
stronger properties that will allow to state convergence of the expected log progress
and a Central Limit Theorem. The outline of the remaining mathematical analysis
and the proof structure is as follows:

– In Section 4, we introduce different notions related to Markov chains, notably
the stability properties that we will prove like ϕ-irreducibility, aperiodicity,
positivity, Harris-recurrence and geometric ergodicity. We also introduce the
different practical tools to prove that a Markov chain satisfies those properties.

– In Section 5, we establish those stability properties for the Markov chain
{Zk; k ≥ 0} associated to a step-size adaptive (µ/µw, λ)-ES under the ap-
propriate conditions on the objective functions and the step-size adaptation
mechanism.

– In Section 6, we use those properties to prove the linear behavior of the studied
algorithms. In addition to the asymptotic almost sure linear behavior stemming
from the LLN, we establish convergence in terms of expected log progress and
a Central Limit Theorem. Our conditions for linear convergence are expressed
for an abstract step-size update. We investigate how those conditions translate
to the case of the CSA and xNES step-size updates.

4 Reminders on Markov chains and various tools

We consider a Markov chain {Zk ; k ∈ N} on a measure space (Z,B(Z), P ) where
Z in an open subset of Rn, for all k ∈ N its k-step transition kernel as P k(z,A) =
P (Zk ∈ A|Z0 = z) for z ∈ Z, A ∈ B(Z). We also denote P (z,A) and Pz(A) as
P 1(z,A). We remind different stability notions investigated later on to prove in
particular that {Zk ; k ∈ N} satisfies an LLN, a central limit theorem and that for
some z ∈ Z, P k(z, ·) converges to a stationary distribution. We additionally present
different tools to be able to verify that a Markov chain satisfies those various
properties.
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4.1 Stability properties and practical drift conditions

If there exists a nontrivial measure ϕ on (Z,B(Z)) such that for all A ∈ B(Z),
ϕ(A) > 0 implies

∑∞
k=1 P

k(z,A) > 0 for all z ∈ Z, then the chain is called ϕ-
irreducible. A ϕ-irreducible Markov chain is Harris recurrent if for all A ∈ B(Z)
with ϕ(A) > 0 and for all z ∈ Z, Pz (ηA =∞) = 1, where ηA =

∑∞
k=1 1Zk∈A is the

occupation time of A.
A σ-finite measure π on (Z,B(Z)) is an invariant measure for {Zk; k ∈ N}

if for all A ∈ B(Z), π(A) =

∫
Z
π(dz)P (z,A). A Harris recurrent chain admits a

unique (up to constant multiples) invariant measure π (see [50, Theorem 10.0.1]).
A ϕ-irreducible Markov chain admitting an invariant probability measure π is said
positive. A positive Harris-recurrent chain satisfies an LLN as reminded below.

Theorem 1 [50, Theorem 17.0.1] If {Zk; k ∈ N} is a positive and Harris recurrent

chain with invariant probability measure π, then the LLN holds for any π-integrable

function g, i.e. for any g with Eπ(|g|) <∞, limk→∞
1
k

∑k−1
t=0 g(Zt) = Eπ(g).

We will need the notion of aperiodicity. Assume that d is a positive integer and
{Zk ; k ∈ N} is a ϕ-irreducible Markov chain defined on (Z,B(Z)). Let (Di)i=1,...,d ∈
B(Z)d be a sequence of disjoint sets. Then (Di)i=1,...,d is called a d-cycle if

(i) P (z,Di+1) = 1 for all z ∈ Di and i = 0, . . . , d− 1 (mod d),

(ii) Λ
((⋃d

i=1Di

)c)
= 0 for all irreducibility measure Λ of {Zk ; k ∈ N}.

If {Zk; k ∈ N} is ϕ-irreducible, there exists a d-cycle where d is a positive integer [50,
Theorem 5.4.4]. The largest d for which there exists a d-cycle is called the period
of {Zk ; k ∈ N}. We then say that a ϕ-irreducible Markov chain {Zk ; k ∈ N} on
(Z,B(Z)) is aperiodic if it has a period of 1.

A set C ∈ B(Z) is called small if there exists a positive integer k and a nontrivial
measure νk on B(Z) such that P k(z,A) ≥ νk(A) for all z ∈ C, A ∈ B(Z). We then
say that C is a νk-small set [50].

Given an extended-valued, non-negative and measurable function V : Z →
R+ ∪ {∞} (called potential function), the drift operator is defined for all z ∈ Z

as ∆V (z) = E [V (Z1)|Z0 = z] − V (z) =

∫
Z
V (y)P (z,dy) − V (z). A ϕ-irreducible,

aperiodic Markov chain {Zk ; k ∈ N} defined on (Z,B(Z)) satisfies a geometric
drift condition if there exist 0 < γ < 1, b ∈ R, a small set C and a potential
function V greater than 1, finite at some z0 ∈ Z such that for all z ∈ Z : ∆V (z) ≤
(γ − 1)V (z) + b1C(z), or equivalently if E [V (Z1)|Z0 = z] ≤ γV (z) + b1C(z). The
function V is called a geometric drift function and if {y ∈ Z ;V (y) <∞} = Z, we
say that {Zk ; k ∈ N} is V -geometrically ergodic.

If a ϕ-irreducible and aperiodic Markov chain is V -geometrically ergodic, then
it is positive and Harris recurrent [50, Theorem 13.0.1 and Theorem 9.1.8]. We
prove a geometric drift condition in Section 5.3, this in turn implies positivity and
Harris-recurrence property.

From a geometric drift condition follows a stronger result than an LLN, namely
a central limit theorem.

Theorem 2 [50, Theorem 17.0.1 and Theorem 16.0.1] Let {Zk ; k ∈ N} be a ϕ-

irreducible aperiodic Markov chain on (Z,B(Z)) that is V -geometrically ergodic, with
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invariant probability measure π. For any function g on Z that satisfies g2 ≤ V , the

central limit theorem holds for {Zk ; k ∈ N} in the following sense. Define ḡ = g −
Eπ(g) and for all positive integer t, define St(ḡ) =

∑t−1
k=0 ḡ(Zk). Then the constant

γ2 = Eπ[(ḡ(Z0))2] + 2
∑∞
k=1 Eπ[ḡ(Z0)ḡ(Zk)] is well defined, non-negative, finite and

lim
t→∞

1

t
Eπ[(St(ḡ))

2] = γ2. Moreover if γ2 > 0 then 1√
tγ2

St(ḡ) converges in distribution

to N (0, 1) when t goes to ∞, else if γ2 = 0 then 1√
t
St(ḡ) = 0 a.s.

For a measurable function h ≥ 1 on Z, a ϕ-irreducible aperiodic Markov
chain {Zk ; k ∈ N} defined on (Z,B(Z)) is positive Harris recurrent with invariant
probability measure π such that h is π-integrable if and only if there exist b ∈ R, a
small set C and an extended-valued non-negative function V 6=∞ such that

∆V (z) ≤ −h(z) + b1C(z) (23)

for all z ∈ Z [50, Theorem 14.0.1]. Recall that for a measurable function h ≥ 1,
we say that a general Markov chain {Zk ; k ∈ N} is h-ergodic if there exists a
probability measure π such that lim

k→∞
‖P k(z, ·)− π‖h = 0 for any initial condition

z. The probability measure π is then called the invariant probability measure of
{Zk ; k ∈ N}. If h = 1, we say that {Zk ; k ∈ N} is ergodic.

A ϕ-irreducible aperiodic Markov chain on Z that satisfies (23) is h-ergodic if
in addition {y ∈ Z ;V (y) <∞} = Z [50, Theorem 14.0.1].

Prior to establishing a drift condition, we need to identify small sets. Using
the notion of T-chain defined below, compact sets are small sets because for a
ϕ-irreducible aperiodic T-chain, every compact set is a small set [50, Theorem 5.5.7
and Theorem 6.2.5].

The T-chain property calls for the notion of kernel: a kernel K is a function
on (Z,B(Z)) such that for all A ∈ B(Z), K(., A) is a measurable function and
for all z ∈ Z, K(z, .) is a signed measure. A non-negative kernel K satisfying
K(z,Z) ≤ 1 for all z ∈ Z is called substochastic. A substochastic kernel K satisfying
K(z,Z) = 1 for all z ∈ Z is a transition probability kernel. Let b be a probability
distribution on N and denote by Kb the probability transition kernel defined
as Kb(z,A) =

∑∞
k=0 b(k)P k(z,A) for all z ∈ Z, A ∈ B(Z). If T is a substochastic

transition kernel such that T (., A) is lower semi-continuous for all A ∈ B(Z)
and Kb(z,A) ≥ T (z,A) for all z ∈ Z, A ∈ B(Z), then T is called a continuous
component of Kb. If a Markov chain {Zk ; k ∈ N} admits a probability distribution
b on N such that Kb has a continuous component T that satisfies T (z,Z) > 0 for
all z ∈ Z, then {Zk ; k ∈ N} is called a T -chain.

4.2 Generalized law of large numbers

To apply an LLN for the convergence of the term 1
k

∑k−1
t=0 log(Γ (αf (x?+Zt, Ut+1)))

in (21), we proceed in two steps. First we prove that if {Zk ; k ∈ N} is defined
as Zk+1 = G(Zk, Uk+1) where G : Z × Rm → Z is a measurable function and
{Uk+1 ; k ∈ N} is a sequence of i.i.d. random vectors, then the ergodic properties of
{Zk ; k ∈ N} are transferred to {Wk = (Zk, Uk+2) ; k ∈ N}. Afterwards we apply a
generalized LLN recalled in the following theorem.
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Theorem 3 ( [45, Theorem 1]) Assume that {Zk ; k ∈ N} is a homogeneous Markov

chain on an abstract measurable space (E, E) that is ergodic with invariant probabil-

ity measure π. For all measurable function g : E∞ → R such that for all s ∈ N,

Eπ(|g(Zs, Zs+1, . . . )|) < ∞ and for any initial distribution Λ, the generalized LLN

holds as follows limk→∞
1
k

∑k−1
t=0 g (Zt, Zt+1, . . . ) = Eπ(g(Zs, Zs+1, . . . )) PΛ a.s.

where PΛ is the distribution of the process {Zk ; k ∈ N} on (E∞, E∞).

Theorem 3 generalizes the case where the initial state is distributed under the
invariant measure [63, Theorems 3.5.7 and 3.5.8] to an arbitrary initial distribution.

If we have the generalized LLN for a chain {(Zk, Uk+2) ; k ∈ N} on Rn × Rm,
then an LLN for the chain {(Zk, Uk+1) ; k ∈ N} is directly implied. We formalize
this statement in the next corollary.

Corollary 1 Assume that {Wk = (Zk, Uk+2) ; k ∈ N} is a homogeneous Markov

chain on Rn × Rm that is ergodic with invariant probability measure π. Then the

LLN holds for {(Zk, Uk+1) ; k ∈ N} in the following sense. Define the function T :
(Rn ×Rm)2 → Rn×Rm as T ((z1, u3), (z2, u4)) = (z2, u3). If g : Rn×Rm → R is such

that for all s ∈ N, Eπ(|g ◦ T | (Ws,Ws+1)) <∞, then limk→∞
1
k

∑k−1
t=0 g(Zt, Ut+1) =

Eπ [(g ◦ T ) (Ws,Ws+1)].

Proof. We have limk→∞
1
k

∑k−1
t=0 (g ◦ T ) (Wt,Wt+1) = Eπ [(g ◦ T ) (Ws,Ws+1)] thanks

to Theorem 3. For t ∈ N, (g ◦ T ) (Wt,Wt+1) = g (Zt+1, Ut+2). Therefore

Eπ [(g ◦ T ) (Ws,Ws+1)] = lim
k→∞

1

k

k−1∑
t=0

g (Zt+1, Ut+2) = lim
k→∞

1

k

k−1∑
t=0

g(Zt, Ut+1).

We formulate now that for a Markov chain following a non-linear state space
model of the form Zk+1 = G(Zk, Uk+1) with G measurable and {Uk+1 ; k ∈ N} i.i.d.,
then ϕ-irreducibility, aperiodicity and V -geometric ergodicity of Zk are transferred
to {Wk = (Zk, Uk+2) ; k ∈ N}. We provide a proof of this result in Appendix B for
the sake of completeness.

Proposition 3 Let {Zk ; k ∈ N} be a Markov chain on (Z,B(Z)) defined as Zk+1 =
G(Zk, Uk+1) where G : Z × Rm → Z is a measurable function and {Uk+1 ; k ∈ N}
is a sequence of i.i.d. random vectors with probability measure Ψ . Consider {Wk =
(Zk, Uk+2) ; k ≥ 0}, then it is a Markov chain on B(Z)⊗B(Rm) which inherits properties

of {Zk ; k ∈ N} in the following sense:

– If ϕ (resp. π) is an irreducibility (resp. invariant) measure of {Zk ; k ∈ N}, then

ϕ× Ψ (resp. π × Ψ) is an irreducibility (resp. invariant) measure of {Wk ; k ∈ N}.
– The set of integers d such that there exists a d-cycle for {Zk ; k ∈ N} is equal to

the set of integers d such that there exists a d–cycle for {Wk ; k ∈ N}. In particular

{Zk ; k ∈ N} and {Wk ; k ∈ N} have the same period. Therefore {Zk ; k ∈ N} is

aperiodic if and only if {Wk ; k ∈ N} is aperiodic.

– If C is a small set for {Zk ; k ∈ N}, then C ×Rm is a small set for {Wk ; k ∈ N}.
– If {Zk ; k ∈ N} satisfies a drift condition

∆V (z) ≤ −βh(z) + b1C(z) for all z ∈ Z, (24)

where V is a potential function, 0 < β < 1, h ≥ 0 is a measurable function

and C ⊂ Z is a measurable set, then {Wk ; k ∈ N} satisfies the following drift

condition for all (z, u) ∈ Z × Rm : ∆Ṽ (z, u) ≤ −βh̃(z, u) + b1C×Rm(z, u), where

Ṽ : (z, u) 7→ V (z) and h̃ : (z, u) 7→ h(z).



Global linear convergence of Evolution Strategies with recombination 17

Remark that the drift condition in (24) includes the geometric drift condition
by taking h = V , the drift condition for h-ergodicity by dividing the equation by β

and assuming that h ≥ 1, for positivity and Harris recurrence by taking h = 1/β,
and for Harris recurrence by taking h = 0. This is obtained assuming that V and
C satisfy the proper assumptions for the drift to hold.

4.3 ϕ-irreducibility, aperiodicity and T -chain property via deterministic control
models

For the Markov chain considered, it is difficult to establish ϕ-irreducible, aperiodicity
and the T-chain property “by hand”. We thus resort to tools connecting those
properties to stability properties of the underlying control model [50, Chapter 13]
[19]. Assume that Z is an open subset of Rn. We consider a Markov chain that
takes the following form

Zk+1 = F (Zk, α (Zk, Uk+1)) , (25)

where Z0 ∈ Z and for all natural integer k, F : Z×Rnµ → Z and α : Z×Rnλ → Rnµ

are measurable functions, U =
{
Uk+1 ∈ Rnλ ; k ∈ N

}
is a sequence of i.i.d. random

vectors. We consider the following assumptions on the model:

B1. (Z0, U) are random variables on a probability space (Ω,F , PZ0
) .

B2. Z0 is independent of U.
B3. U is an independent and identically distributed process.
B4. For all z ∈ Z, the random variable α(z, U1) admits a probability density function

denoted by pz, such that the function (z, u) 7→ pz(u) is lower semi-continuous.
B5. The function F : Z ×Rnµ → Z is C1.

We recall the deterministic control model related to (25) denoted by CM(F ) [19].
It is based on the notion of extended transition map function [49], defined recursively
for all z ∈ Z as S0

z = z, and for all k ∈ N\{0}, Skz : Rnµk → Z such that for all

w = (w1, . . . , wk) ∈ Rnµk, Skz (w) = F
(
Sk−1
z (w1, . . . , wk−1) , wk

)
. Assume in the

following that Assumptions B1−B4 are satisfied and that F is continuous.
Let us define the process W for all k ∈ N\ {0} and z ∈ Z as W1 = α (z, U1)

and Wk = α
(
Sk−1
z (W1, . . . ,Wk−1), Uk

)
. Then the probability density function

of (W1,W2, . . . ,Wk) denoted by pkz is what is called the extended probability
function. It is defined inductively for all k ∈ N\{0}, w = (w1, . . . , wk) ∈ Rnµk
by p1z(w1) = pz(w1) and pkz(w) = pk−1

z (w1, . . . , wk−1) pSk−1
z (w1,...,wk−1)

(wk). For

all k ∈ N\ {0} and for all z ∈ Z, the control sets are finally defined as Okz ={
w ∈ Rnµk ; pkz(w) > 0

}
. The control sets are open sets since F is continuous

and the functions (z,w) 7→ pkz(w) are lower semi-continuous (see [19] for more
details).

The deterministic control model CM(F ) is defined recursively for all k ∈ N, z ∈ Z
and (w1, . . . , wk+1) ∈ Ok+1

z as Sk+1
z (w1, . . . , wk+1) = F

(
Skz (w1, . . . , wk) , wk+1

)
.

For z ∈ Z, A ∈ B(Z) and k ∈ N\{0}, we say that w ∈ Rnµk is a k-steps path
from z to A if w ∈ Okz and Skz (w) ∈ A. We introduce for z ∈ Z and k ∈ N the set
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of all states reachable from z in k steps by CM(F ), denoted by Ak+(z) and defined

as A0
+(z) = {z} and Ak+(z) =

{
Skz (w) ; w ∈ Okz

}
.

A point z ∈ Z is a steadily attracting state if for all y ∈ Z, there exists a

sequence
{
yk ∈ Ak+(y)| k ∈ N \ {0}

}
that converges to z.

The controllability matrix is defined for k ∈ N\ {0}, z ∈ Z and w ∈ Rnµk as the
Jacobian matrix of (w1, . . . , wk) 7→ Skz (w1, . . . , wk) and denoted by Ckz (w). Namely,

Ckz (w) =
[
∂Skz
∂w1

(w)| . . . | ∂S
k
z

∂wk
(w)

]
.

If F is C1, the existence of a steadily attracting state z and a full-rank condition
on a controllability matrix of z imply that a Markov chain following (25) is a
ϕ-irreducible aperiodic T -chain, as reminded in the next theorem.

Theorem 4 [19, Theorem 4.4: Practical condition to be a ϕ-irreducible aperiodic

T-chain.] Consider a Markov chain {Zk ; k ∈ N} following the model (25) for which

the conditions B1−B5 are satisfied. If there exist a steadily attracting state z ∈ Z,

k ∈ N\ {0} and w ∈ Okz such that rank
(
Ckz (w)

)
= n, then {Zk ; k ∈ N} is a ϕ-

irreducible aperiodic T-chain, and every compact set is a small set.

The next lemma allows to loosen the full-rank condition stated above if the
control set Okz is dense in Rnµk.

Lemma 5 Consider a Markov chain {Zk ; k ∈ N} following the model (25) for which

the conditions B1−B5 are satisfied. Assume that there exist a positive integer k and

z ∈ Z such that the control set Okz is dense in Rnµk. If there exists w̃ ∈ Rnµk such

that rank(Ckz (w̃)) = n, then the rank condition in Theorem 4 is satisfied, i.e. there

exists w ∈ Okz such that rank(Ckz (w)) = n.

Proof. The function w 7→ Skz (w) is C1 [19, Lemma 6.1]. Since the set of full rank
matrices is open, there exists an open neighborhood Vw̃ of w̃ such that for all
w ∈ Vw̃, rank(Ckz (w)) = n. By density of Okz , the non-empty set Vw̃ ∩ Okz contains
an element w.

If z is steadily attracting, there exists under mild assumptions an open set
outside of a ball centered at z, with positive measure with respect to the invariant
probability measure of a chain following the model (25) as stated next.

Lemma 6 Consider a Markov chain {Zk ; k ∈ N} on Rn following the model (25) for

which the conditions B1−B5 are satisfied. Assume that there exist a steadily attracting

state z ∈ Rn such that O1
z is dense in Rn and w ∈ O1

z with rank
(
C1
z (w)

)
= n. Assume

also that {Zk ; k ∈ N} is a positive Harris recurrent chain with invariant probability

measure π. Then there exists 0 < ε < 1 such that π(Rn \B (z, ε)) > 0.

Proof. A ϕ-irreducible Markov chain admits a maximal irreducibility measure ψ
dominating any other irreducibility measure [50, Theorem 4.0.1]. In other words,
for a measurable set A, ψ(A) = 0 induces that ϕ(A) = 0 for any irreducibility
measure ϕ. The measure π is equivalent to the maximal irreducibility measure
ψ [50, Theorem 10.4.9]. Since z is steadily attracting, the supp ψ = A+(z) =⋃
k∈N

{
Skz (w) ; w ∈ Okz

}
[19, Propositions 3.3 and 4.2]. We have rank

(
C1
z (w)

)
= n,

therefore the function F (z, ·) is not constant. Along with the density of O1
z , we
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obtain that there exists ε > 0 and a vector v ∈ supp ψ such that ‖z − v‖ = 2 ε.
By definition of the support, it follows that every open neighborhood of v has a
positive measure with respect to π. Since Rn \B (z, ε) is an open neighborhood of
v, the result of the lemma follows.

5 Stability of the σ-normalized Markov chain {Zk ; k ∈ N}

Assuming that f is a strictly increasing transformation of either a C1 scaling-
invariant function with a unique global argmin or a nontrivial linear function,
we prove that if Assumptions A1−A5 are satisfied and the expected logarithm
of the step-size increases on nontrivial linear functions, then the σ-normalized
Markov chain is a ϕ-irreducible aperiodic T -chain that is geometrically ergodic. In
particular, it is positive and Harris recurrent.

5.1 Irreducibility, aperiodicity and T-chain property of the σ-normalized Markov
chain

Prior to establishing Harris recurrence and positivity of the chain {Zk ; k ∈ N},
we need to establish the ϕ-irreducibility and aperiodicity as well as identify some
small sets such that drift conditions can be used. Since the step-size change is a
deterministic function of the random input used to update the mean, we use the
tools reminded in Section 4.3 to establish these properties. The chain investigated
satisfies Zk+1 = Fw

(
Zk, αf (x? + Zk, Uk+1)

)
and therefore fits the model (25). We

prove next that the necessary assumptions needed to use the tools are satisfied if
f satisfies F1 or F2 because if f is a continuous scaling-invariant function with
Lebesgue negligible level sets, then for all z ∈ Rn, the random variable αf (x?+z, U1)

admits a probability density function pfz such that (z, u) 7→ pfz (u) is lower semi-
continuous [19, Proposition 5.2], i.e. B4 is satisfied.

Proposition 4 Let f be scaling-invariant with respect to x? defined as ϕ ◦ g where ϕ

is strictly increasing and g is a continuous scaling-invariant function with Lebesgue

negligible level sets. Let {Zk ; k ∈ N} be a σ-normalized Markov chain associated to

the step-size adaptive (µ/µw, λ)-ES defined as in Proposition 2 satisfying Zk+1 =
Fw
(
Zk, αf (x? + Zk, Uk+1)

)
. Then model (25) follows. In addition, if Assumption A1

is satisfied, then Fw is C1 and thus B5 is satisfied. If Assumption A5 is satisfied, then

Assumptions B1−B4 are satisfied and the probability density function of the random

variable αf (x? + z, Uk+1) denoted by pfz and defined in (14) satisfies (z, u) 7→ pfz (u) is

lower semi-continuous

In particular, if f satisfies F1 or F2, the assumption above on f holds such that the

conclusions above are valid.

Proof. It follows from (17) that {Zk ; k ∈ N} is a homogeneous Markov chain
following model (25). By (16), Fw is of class C1 (B5 is satisfied) if A1 is satisfied
(Γ : Rnµ → R+\ {0} is C1). If A5 is satisfied, then B1−B3 are also satisfied.

For all z ∈ Rn, αg(x? + z, Uk+1) has a probability density function pgz such that
(z, u) 7→ pgz(u) is lower semi-continuous [19, Proposition 5.2], and defined for all
z ∈ Rn and u ∈ Rnµ as in (14). With Lemma 1, αf = αg and then B4 holds.
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A nontrivial linear function is a continuous scaling-invariant function with
Lebesgue negligible level sets. Also f still has Lebesgue negligible level sets in the
case where it is a C1 scaling-invariant function with a unique global argmin [66,
Proposition 4.2].

We show in the following lemma the density of a control set for strictly increasing
transformations of continuous scaling-invariant functions with Lebesgue negligible
level sets, especially for functions f that satisfy F1 or F2. This is useful for
Proposition 5 and for the application of Lemma 5.

Lemma 7 Let f be a scaling-invariant function defined as ϕ ◦ g where ϕ is strictly

increasing and g is a continuous scaling-invariant function with Lebesgue negligible

level sets. Assume that {Zk ; k ∈ N} is the σ-normalized Markov chain associated to a

step-size adaptive (µ/µw, λ)-ES as defined in Proposition 2 such that A5 is satisfied.

Then for all z ∈ Rn, the control set O1
z =

{
v ∈ Rnµ ; pfz (v) > 0

}
is dense in Rnµ.

In particular, if f satisfies F1 or F2, the assumption above on f holds and thus the

conclusions above are valid.

Proof. By Proposition 4, we obtain that for all z ∈ Rn, pfz is defined as in (14). In

addition, αf = αg (see Lemma 1). Therefore pfz= pgz > 0 almost everywhere. Hence
we have that O1

z is dense in Rnµ.

Thanks to Theorem 4, to ensure that {Zk ; k ∈ N} is a ϕ-irreducible aperiodic
T -chain, we prove that 0 is a steadily attracting state and that there exists w ∈ O1

0

such that rank
(
C1
0 (w)

)
= n. We start with the steady attractivity in the next

proposition.

Proposition 5 Let f be a scaling-invariant function defined as ϕ◦g where ϕ is strictly

increasing and g is a continuous scaling-invariant function with Lebesgue negligible

level sets. Assume that {Zk ; k ∈ N} is the σ-normalized Markov chain associated to a

step-size adaptive (µ/µw, λ)-ES as defined in Proposition 2 such that Assumptions A1

and A5 are satisfied. Then 0 is a steadily attracting state of CM(Fw). Especially, if f

satisfies F1 or F2, the assumption above on f holds and thus the conclusions above are

valid.

Proof. We fix z ∈ Rn and prove that there exists a sequence
{
zk ∈ Ak+(z) ; k ∈ N

}
that converges to 0. We construct the sequence recursively as follows.

We define z0 = z and fix a natural integer k. We define zk+1 iteratively as follows.
We set ṽk = − 1

‖w‖2 (w1zk, . . . , wµzk) , then zk+w>ṽk = zk− 1
‖w‖2

∑µ
i=1 w

2
i zk = 0. By

continuity of Fw and density of O1
zk thanks to Lemma 7, there exists vk ∈ O1

zk such
that ‖Fw(zk, vk)‖ = ‖Fw(zk, vk) − Fw(zk, ṽk)‖ ≤ 1

2k+1 . Define zk+1 = Fw(zk, vk).

Then the sequence (zk)k∈N converges to 0. Now let us show that zk ∈ Ak+(z) for

all k ∈ N. Since A0
+(z) = {z} , then z0 = z ∈ A0

+(z). We fix again a natural integer

k and assume that zk ∈ Ak+(z). It is then enough to prove that zk+1 ∈ Ak+1
+ (z).

Recall that for all u ∈ Rnµ(k+1), Ak+1
+ (z) =

{
Sk+1
z (u) ; u ∈ Ok+1

z

}
, Sk+1

z (u) =

Fw

(
Skz (u1, . . . , uk) , uk+1

)
, pf,k+1
z (u) = pf,kz (u1, . . . , uk) pf

Skz (u1,...,uk)
(uk+1),Ok+1

z ={
u ∈ Rnµ(k+1) ; pf,k+1

z (u) > 0
}

. Therefore by construction, pf,k+1
z (v0, . . . , vk) =



Global linear convergence of Evolution Strategies with recombination 21

pf,kz (v0, . . . , vk−1)pfzk(vk) > 0, hence (v0, . . . , vk) ∈ Ok+1
z . Finally, zk+1 = Fw(zk, vk) =

Sk+1
z (v0, . . . , vk) ∈ Ak+1

+ (z).

The next proposition ensures that the steadily attracting state 0 satisfies also
the adequate full-rank condition on a controllability matrix of 0.

Proposition 6 Let f be a scaling-invariant function defined as ϕ◦g where ϕ is strictly

increasing and g is a continuous scaling-invariant function with Lebesgue negligible

level sets. Assume that {Zk ; k ∈ N} is the σ-normalized Markov chain associated to a

step-size adaptive (µ/µw, λ)-ES as defined in Proposition 2 such that Assumptions A1

and A5 are satisfied. Then there exists w ∈ O1
0 such that rank

(
C1
0 (w)

)
= n.

In particular, if f satisfies F1 or F2, the assumption above on f holds and thus the

conclusions above are valid.

Proof. Lemma 5 along with the density of the control set O1
0 in Lemma 7 ensure

that it is enough to prove the existence of v ∈ Rnµ such that rank
(
C1
0 (v)

)
= n.

Let us show that the matrix C1
0(0) =

∂S1
0

∂v1
(0) has a full rank, with S1

0 : v ∈ Rnµ 7→
Fw(0, v) ∈ Rn. This is equivalent to showing that the differential DS1

0(0) : Rnµ → Rn
of S1

0 at 0 is surjective. Denote by l the linear function h ∈ Rnµ 7→
∑µ
i=1 wihi ∈ Rn.

Then S1
0 = l/Γ and then DS1

0(h) = Dl(h) 1
Γ (h) + l(h)D( 1

Γ )(h). Since l(0) = 0, it

follows that DS1
0(0) = l

Γ (0) and finally we obtain that DS1
0(0) is surjective.

By applying Propositions 4, 5 and 6 along with Theorem 4, we directly deduce
that the σ-normalized Markov chain associated to a step-size adaptive (µ/µw, λ)-ES
is a ϕ-irreducible aperiodic T-chain. More formally, the next proposition holds.

Proposition 7 Let f be a scaling-invariant function defined as ϕ◦g where ϕ is strictly

increasing and g is a continuous scaling-invariant function with Lebesgue negligible

level sets. Assume that {Zk ; k ∈ N} is the σ-normalized Markov chain associated to a

step-size adaptive (µ/µw, λ)-ES as defined in Proposition 2 such that Assumptions A1

and A5 are satisfied. Then {Zk ; k ∈ N} is a ϕ-irreducible aperiodic T -chain, and every

compact set is a small set.

In particular, if f satisfies F1 or F2, the assumption above on f holds and thus the

conclusions above are valid.

5.2 Convergence in distribution of the step-size multiplicative factor

In order to prove that {Zk ; k ∈ N} satisfies a geometric drift condition, we in-
vestigate the distribution of {Zk ; k ∈ N} outside of a compact set (small set).
Intuitively, when Zk is very large, i.e. Xk − x? large compared to the step-size σk,
the algorithm sees the function f in a small neighborhood from Xk − x? where
f resembles a linear function (this holds under regularity conditions on the level
sets of f). Formally we prove that for all z ∈ Rn, the step-size multiplicative
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factor Γ
(
αf (x? + z, U1)

)
converges in distribution3 towards the step-size change

on nontrivial linear functions Γ ?linear defined in (15).
To do so we derive in Proposition 8 an intermediate result that requires to

introduce a specific nontrivial linear function lfz defined as follows.
We consider a scaling-invariant function f with respect to its unique global

argmin x?. Then the function f̃ : x 7→ f(x? + x) − f(x?) is C1 scaling-invariant
with respect to 0 which is the unique global argmin. There exists a vector in the
closed unit ball zf0 ∈ B (0, 1) whose f̃-level set is included in the closed unit ball,

that is L
f̃ ,zf0

⊂ B (0, 1) and such that for all z ∈ L
f̃ ,zf0

, the scalar product between

z and the gradient of f at x? + z satisfies z>∇f(x? + z) > 0 [66, Corollary 4.1 and
Proposition 4.10]. In addition, any half-line of origin 0 intersects the level set L

f̃ ,zf0

at a unique point. We denote for all z 6= 0 by tfz the unique scalar of (0, 1] such

that tfz
z
‖z‖ belongs to the level set L

f̃ ,zf0
⊂ B (0, 1). We finally define for all z 6= 0,

the nontrivial linear function lfz for all w ∈ Rn as

lfz (w) = w>∇f
(
x? + tfz

z

‖z‖

)
. (26)

We state below the intermediate result that when ‖z‖ goes to ∞, the selection
random vector αf (x? + z, U1) has asymptotically the distribution of the selection

random vector on the linear function lfz . According to Lemma 4, the latter does
not depend on the current location and is equal to the distribution of α

lfz
(0, U1).

Proposition 8 Let f be a C1 scaling-invariant function with a unique global argmin.

For all ϕ : Rnµ → R continuous and bounded, lim‖z‖→∞
∫
ϕ(u)

(
pfz (u)− pl

f
z
z (u)

)
du =

0 where lfz is defined as in (26). In other words, the selection random vectors αf (x? +
z, U1) and α

lfz
(0, U1) have asymptotically the same distribution when ‖z‖ goes to ∞.

Proof idea. We sketch the proof idea and refer to Appendix C for the full proof.
Note beforehand that αf (x? + z, U1) = αf̃ (z, U1) so that we assume without loss of

generality that x? = 0 and f(0) = 0. If f is a C1 scaling-invariant function with
a unique global argmin, we can construct a positive number δf such that for all

element z of the compact set L
f,zf0

+ B(0, 2δf ), z>∇f(z) > 0 [66, Proposition 4.11].

In particular, this result produces a compact neighborhood of the level set L
f,zf0

where ∇f does not vanish. This helps to establish the limit of E
[
ϕ(αf (z, U1))

]
when

‖z‖ goes to ∞. We prove it by exploiting the uniform continuity of a function that

we obtain thanks to its continuity on the compact set
(
L
f,zf0

+ B(0, δf )
)
× [0, δf ]

[13].

Thanks to Proposition 8 and Proposition 1, we can finally state in the next
theorem the convergence in distribution of the step-size multiplicative factor for f
satisfying F1 towards Γ ?linear defined in (15).

3 Recall that a sequence of real-valued random variables {Yk}k∈N converges in distribution
to a random variable Y if limk→∞ FYk (x) = FY (x) for all continuity point x of FY , where FYk
and FY are respectively the cumulative distribution functions of Yk and Y.
The Portmanteau lemma [16] ensures that {Yk}k∈N converges in distribution to Y if and only
if for all bounded and continuous function ϕ, limk→∞ E [ϕ(Yk)] = E [ϕ(Y )].
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Theorem 5 Let f be a scaling-invariant function satisfying F1. Assume that {Uk+1 ; k ∈
N} satisfies Assumption A5, Γ is continuous and satisfies Assumption A2, i.e. Γ is

invariant under rotation. Then for all natural integer k, Γ
(
αf (x? + z, Uk+1)

)
converges

in distribution to Γ ?linear defined in (15), when ‖z‖ → ∞.

Proof. Let ϕ : Γ (Rnµ)→ R be continuous and bounded. It is enough to prove that
lim
‖z‖→∞

EU1∼Nnλ
[
ϕ
(
Γ
(
αf (x? + z, U1)

))]
= E

[
ϕ
(
Γ ?linear

)]
and apply the Portman-

teau lemma. By Proposition 8, lim
‖z‖→∞

∫
ϕ (Γ (u))

(
pfz (u)− pl

f
z
z (u)

)
du = 0. Then

lim
‖z‖→∞

EU1∼Nnλ
[
ϕ
(
Γ
(
αf (x? + z, U1)

))]
−EU1∼Nnλ

[
ϕ
(
Γ
(
α
lfz

(x? + z, U1)
))]

= 0.

With Proposition 1, EU1∼Nnλ

[
ϕ
(
Γ
(
α
lfz

(x? + z, U1)
))]

= E [ϕ (Γ ?linear)].

5.3 Geometric ergodicity of the σ-normalized Markov chain

The convergence in distribution of the step-size multiplicative factor while optimiz-
ing a function f that satisfies F1, proven in Theorem 5, allows us to control the
behavior of the σ-normalized chain when its norm goes to ∞. More specifically, we
use it to show the geometric ergodicity of {Zk ; k ∈ N} defined as in Proposition 2
for f satisfying F1 or F2. Beforehand, let us show the following proposition, which
is a first step towards the construction of a geometric drift function.

Proposition 9 Let f be a scaling-invariant function that satisfies F1 or F2 and

{Zk ; k ∈ N} be the σ-normalized Markov chain associated to a step-size adaptive

(µ/µw, λ)-ES defined as in Proposition 2. We assume that Γ is continuous and As-

sumptions A2, A3 and A5 are satisfied. Then for all α > 0, lim‖z‖→∞
E[‖Z1‖α|Z0=z]

‖z‖α =

E
[

1
[Γ?linear]

α

]
where Γ ?linear is the random variable defined in (15) that represents the

step-size change on any nontrivial linear function.

Proof. Let z 6= 0. Since Z1 = Fw
(
Z0, αf (x? + Z0, U1)

)
=

Z0+w
>αf (x

?+Z0,U1)

Γ(αf (x?+Z0,U1))
, then

E [‖Z1‖α|Z0 = z] /‖z‖α−E
[
1/Γ

(
αf (x? + z, U1)

)α]
= E


∥∥∥ z
‖z‖+

w>αf (x?+z,U1)

‖z‖

∥∥∥α−1

Γ(αf (x?+z,U1))
α

 .
The function Γ is lower bounded by mΓ > 0 thanks to Assumption A3. In addition,
‖w>αf (x? + z, U1) ‖ ≤ ‖w‖ ‖U1‖. Then the term∣∣∣∣∥∥∥∥ z

‖z‖ +
1

‖z‖w
>αf (x? + z, U1)

∥∥∥∥α − 1

∣∣∣∣ /Γ (αf (x? + z, U1)
)α

(27)

converges almost surely towards 0 when ‖z‖ goes to ∞, and is bounded (when

‖z‖ ≥ 1) by the integrable random variable 1+(1+‖w‖ ‖U1‖)α
mαΓ

. Then it follows by the

dominated convergence theorem that

lim
‖z‖→∞

E [‖Z1‖α|Z0 = z] /‖z‖α − E
[
1/Γ

(
αf (x? + z, U1)

)α]
= 0. (28)

Since x 7→ 1/xα is continuous and bounded on Γ (Rnµ) ⊂ [mΓ ,∞), then for f
satisfying F1, Theorem 5 implies that lim

‖z‖→∞
E
[
1/Γ

(
αf (x? + z, U1)

)α]
exists and
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is equal to E [1/[Γ ?linear]
α]. Starting from (28) and using Proposition 1 to replace

E
[

1

Γ(αf (x?+z,U1))
α

]
by E

[
1

[Γ?linear]
α

]
, the same conclusion holds for f satisfying F2.

Thereby lim‖z‖→∞ E [‖Z1‖α|Z0 = z] /‖z‖α = E
[

1
[Γ?linear]

α

]
.

We introduce the next two lemmas, that allow to go from Proposition 9 to a
formulation with the multiplicative log-step-size factor.

Lemma 8 Let f be a continuous scaling-invariant function with respect to x? with

Lebesgue negligible level sets, let z ∈ Rn. Assume that Γ satisfies Assumption A4. Then

u 7→ log
(
Γ
(
αf (x? + z, u)

))
is Nnλ-integrable with

EU1∼Nnλ
[∣∣log

(
Γ
(
αf (x? + z, U1)

))∣∣] ≤ λ! EW1∼Nnµ [|log ◦Γ | (W1)]

(λ− µ)!
. (29)

Proof. With (14), we have (λ−µ)!
λ! E

[∣∣log
(
Γ
(
αf (x? + z, U1)

))∣∣] ≤ ∫
Rn
|log ◦Γ | (v)∏µ

i=1 pNn(vi)dv = E [|log ◦Γ | (Nnµ)] , and A4 says that log ◦Γ is Nnµ-integrable.

The next lemma states that if the expected logarithm of the step-size change
is positive, then we can find α > 0 such that the limit in Proposition 9 is strictly
smaller than 1. This is the key lemma to have the condition in the main results
expressed as E [log (Γ ?linear)] > 0, instead of E [1/[Γ ?linear]

α] < 1 for a positive α [13].

Lemma 9 Assume that Γ satisfies Assumptions A3 and A4. If E [log (Γ ?linear)] > 0,

then there exists 0 < α < 1 such that E
[

1
[Γ?linear]

α

]
< 1, where Γ ?linear is defined in (15).

Proof. Lemma 8 ensures that log (Γ ?linear) is integrable. For α > 0, 1
[Γ?linear]

α =

exp [−α log (Γ ?linear)] = 1− α log (Γ ?linear) + o(α). Then the random variable A(α) =(
1

[Γ?linear]
α − 1 + α log (Γ ?linear)

)
/α depending on the parameter α converges almost

surely towards 0 when α goes to 0.

Let u ∈ Rnµ and α ∈ (0, 1). Define ϕu : c 7→ 1

Γ (u)c
= exp(−c log(Γ (u))) on [0, α].

By the mean value theorem, there exists cu,α ∈ (0, α) such that
(

1
Γ (u)α − 1

)
/α =

ϕ′u(cu,α) = − log(Γ (u)) 1
Γ (u)cu,α . In addition, 1

Γ (u)cu,α ≤
1

m
cu,α
Γ

thanks to As-

sumption A3, and 1

m
cu,α
Γ

= exp (−cu,α log(mΓ )) ≤ exp (|log(mΓ )|). Therefore

|A(α)| ≤ (1 + exp (|log(mΓ )|)) |log (Γ ?linear)|. The latter is integrable thanks to As-
sumption A4, and does not depend on α. Then by the dominated convergence

theorem, E [A(α)] converges to 0 when α goes to 0 or equivalently E
[

1
[Γ?linear]

α

]
=

1− αE [log (Γ ?linear)] + o(α). Hence there exists 0 < α < 1 small enough such that

E
[

1
[Γ?linear]

α

]
< 1.

We now have enough material to state and prove the desired geometric ergodicity
of the σ-normalized Markov chain in the following theorem.



Global linear convergence of Evolution Strategies with recombination 25

Theorem 6 (Geometric ergodicity) Let f be a scaling-invariant function that satisfies

F1 or F2. Let {Zk ; k ∈ N} be the σ-normalized Markov chain associated to a step-size

adaptive (µ/µw, λ)-ES defined as in Proposition 2 such that Assumptions A1−A5 are

satisfied. Assume that E [log (Γ ?linear)] > 0 where Γ ?linear is defined in (15).

Then there exists 0 < α < 1 such that the function V : z 7→ 1 + ‖z‖α is a

geometric drift function for the Markov chain {Zk ; k ∈ N}. Therefore {Zk ; k ∈ N}
is V -geometrically ergodic, admits an invariant probability measure π and is Harris

recurrent.

Proof. Propositions 7 shows that {Zk ; k ∈ N} is a ϕ-irreducible aperiodic T-chain.
With [50, Theorem 5.5.7 and Theorem 6.2.5], every compact set is a small set. Since

E [log (Γ ?linear)] > 0, by Lemma 9 there exists 0 < α < 1 such that E
[

1
[Γ?linear]

α

]
< 1.

Define V : z 7→ 1 + ‖z‖α. By Proposition 9, lim
‖z‖→∞

E [‖Z1‖α|Z0 = z] /‖z‖α =

E
[
1/[Γ ?linear]

α]. Since E [V (Z1)|Z0 = z]/V (z) = (1 + E [‖Z1‖α|Z0 = z]) / (1 + ‖z‖α),

lim‖z‖→∞ E [V (Z1)|Z0 = z] /V (z) = E [1/[Γ ?linear]
α] . Let γ = 1

2

(
1 + E

[
1

[Γ?linear]
α

])
<

1. There exists r > 0 such that for all ‖z‖ > r

E [V (Z1)|Z0 = z] /V (z) < γ. (30)

In addition, since ‖z + w>αf (x? + z, U1) ‖ ≤ ‖z‖+ ‖w‖‖U1‖ then E [V (Z1)|Z0 = z]
≤ E

[
(‖z‖+ ‖w‖‖U1‖)α

]
/mα

Γ . Since z 7→ E
[
(‖z‖+ ‖w‖‖U1‖)α

]
/mα

Γ − γV (z) is

continuous on the compact B (0, r), it is bounded on that compact. Denote by
b ∈ R+ an upper bound. We have proven that for all z ∈ B (0, r), E [V (Z1)|Z0 = z] ≤
γV (z)+b. This result, along with (30), show that for all z ∈ Rn, E [V (Z1)|Z0 = z] ≤
γV (z)+b1

B(0,r)
(z). Therefore {Zk ; k ∈ N} is V -geometrically ergodic. Then thanks

to [50, Theorem 15.0.1], {Zk; k ∈ N} is positive and Harris recurrent with invariant
probability measure π.

6 Main results: linear behavior as a consequence of the stability and

integrability

We are now almost ready to establish the main results of the paper. Yet we first
prove in the next section the integrability of z 7→ log ‖z‖ and Rf defined in (22),
with respect to the invariant probability measure of the Markov chain {Zk ; k ∈ N}
whose existence is proven in Theorem 6. We state and prove in Section 6.2 the linear
behavior of the studied class of algorithms for an abstract step-size update satisfying
A1-A4 on scaling invariant functions. We provide in Section 6.3 a Central Limit
Theorem for approximating the convergence rate. We investigate in Section 6.4
how the CSA-ES and xNES satisfy the required conditions for a linear behavior
providing sufficient conditions expressed in terms of parameters of the algorithms.

6.1 Integrabilities with respect to the invariant probability measure

For a scaling-invariant function f that satisfies F1 or F2, the limit in Theorem 7
is expressed as Eπ(Rf ) where the function Rf is defined as in (22) and π is a
probability measure. Therefore the π-integrability of the function z 7→ Rf (z) is
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necessary to obtain Theorem 7. In the following, we present a result stronger than
its π-integrability, that is the boundedness of Rf under some assumptions.

Proposition 10 Let f be a continuous scaling-invariant function with Lebesgue negli-

gible level sets. Let {(Xk, σk) ; k ∈ N} be the sequence defined in (5) and (6) such that

Assumptions A4 and A5 are satisfied. Then the function z 7→
∣∣Rf ∣∣ (z) is bounded by

λ!
(λ−µ)!EW∼Nnµ [|log ◦Γ | (W )], where the function z 7→ Rf (z) is defined as in (22).

If in addition the following holds: (i) f satisfies F1 or F2, (ii) Assumptions A1−A3

are satisfied and (iii) the expected log step-size change satisfies E [log (Γ ?linear)] > 0 where

Γ ?linear is defined in (15), then Eπ(
∣∣Rf ∣∣) =

∫ ∣∣Rf (z)
∣∣π(dz) <∞ that is z 7→ Rf (z) is

π-integrable where π is the invariant probability measure of {Zk ; k ∈ N} defined as in

Proposition 2.

Proof. Lemma 8 shows that for all z ∈ Rn, z 7→ log
(
Γ
(
αf (x? + z, u)

))
is Nnλ-

integrable with E
[∣∣log

(
Γ
(
αf (x? + z, U1)

))∣∣] ≤ λ!

(λ− µ)!
EW∼Nnµ [|log ◦Γ | (W )] .

Then
∣∣Rf ∣∣ is bounded since

∣∣Rf (z)
∣∣ ≤ λ!

(λ−µ)!EW∼Nnµ [|log ◦Γ | (W )] for all z ∈ Rn.

If in addition Assumptions A1−A3 are satisfied and E [log (Γ ?linear)] > 0, Theorem
6 ensures that {Zk ; k ∈ N} is a positive Harris recurrent chain with invariant
probability measure π. Hence the integrability with respect to π.

We prove in the following the π-integrability of z 7→ log ‖z‖, where π is the
invariant probability measure of the σ-normalized chain, under some assumptions.

Proposition 11 Let f satisfy F1 or F2 and {Zk ; k ∈ N} be the Markov chain de-

fined as in Proposition 2 such that Assumptions A1−A5 are satisfied. Assume that

E [log (Γ ?linear)] > 0 where Γ ?linear is defined in (15). Then {Zk ; k ∈ N} has an invariant

probability measure π and z 7→ log ‖z‖ is π-integrable.

Proof. Theorem 6 ensures that {Zk ; k ∈ N} is V -geometrically ergodic with invariant
probability measure π, where V : z ∈ Rn 7→ 1+‖z‖α ∈ R+. We define for all z ∈ Rn,
g(z) = (λ−µ)!

2λ! |log ‖z‖| . The π-integrability of g is obtained if there exist a set

A with π(A) > 0 such that

∫
A

g(z)π(dz) < ∞, and a measurable function h

with h1Ac ≥ g1Ac such that (i)

∫
Ac
P (z,dy)h(y) < h(z) − g(z) , ∀z ∈ Ac and (ii)

sup
z∈A

∫
Ac
P (z,dy)h(y) < ∞ [67, Theorem 1]. For z ∈ B (0, 1) and v ∈ Rnµ, denote

ϕ(z, v) as ϕ(z, v) = pNnµ

(
v − 1

‖w‖2 (w1z, . . . , wµz)
)
1‖w>v‖≤1 . We prove in a first

time that lim
‖z‖→0

∫ ∣∣∣log ‖w>v‖
∣∣∣ϕ(z, v)dv < ∞. We have (2π)nµ/2ϕ(z, v) which is

equal to exp
(

1
2

(
−‖v‖2 − ‖w‖

2‖z‖2
‖w‖4 + 2(w>v)>z

‖w‖2

))
1‖w>v‖≤1 which is smaller than

exp
(

1
2

(
−‖v‖2 − ‖w‖

2‖z‖2
‖w‖4 + 2‖w>v‖‖z‖

‖w‖2

))
1‖w>v‖≤1 which is smaller than

exp

(
1

2

(
−‖v‖2 − ‖w‖

2‖z‖2

‖w‖4 +
2‖z‖
‖w‖2

))
1‖w>v‖≤1

≤ (2π)
nµ
2 exp

(
1

‖w‖2

)
ϕ(0, v). (31)
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Since v 7→
∣∣∣log ‖w>v‖

∣∣∣ϕ(0, v) is Lebesgue integrable, it follows by the dominated

convergence theorem that z 7→
∫ ∣∣∣log ‖w>v‖

∣∣∣ϕ(z, v)dv is continuous on B (0, 1)

and lim
‖z‖→0

∫ ∣∣∣log ‖w>v‖
∣∣∣ϕ(z, v)dv < ∞. In addition, lim

‖z‖→0
g(z) = ∞. Then there

exists ε1 ∈ (0, 1) such that for z ∈ B (0, ε1) :∫ ∣∣∣log ‖w>v‖
∣∣∣ϕ(z, v)dv + 2EW∼Nnµ [|log ◦Γ | (W )] ≤ g(z). (32)

We define ε2 from Lemma 6 and denote ε = min(ε1, ε2). Define A = Rn \B (0, ε).
Then from Lemma 6 it follows that π(A) > 0. Note also that Ac = B (0, ε).
In addition, g is dominated by the π-integrable function V around ∞, then∫
A

g(z)π(dz) < ∞. We define now the function h for all z ∈ Rn as h(z) =

2g(z)1Ac(z). Then h1Ac ≥ g1Ac . It remains to verify the items 1 and 2 from
above to obtain the π-integrability of g. We give in the following an upper bound

of K(z) =

∫
Ac
P (z,dy)h(y) = − (λ− µ)!

λ!
Ez
[
1
B(0,ε)

(Z1) log ‖Z1‖
]
. We have K(z) ≤

− (λ− µ)!

λ!

∫
‖z+w>v‖≤Γ (v)

log
‖z + w>v‖

Γ (v)
pfz (v)dv. With (14),

(λ− µ)!

λ!
pfz ≤ pNnµ .

Then K(z) ≤
∫
|log(Γ (v))| pNnµ(v)dv +

∫
‖z+w>v‖≤Γ (v)

∣∣∣log ‖z + w>v‖
∣∣∣ pNnµ(v)dv.

We split the latter integral between the events
{
‖z + w>v‖ ≤ min(1, Γ (v))

}
and the

events
{

1 < ‖z + w>v‖ ≤ Γ (v)
}

. ThenK(z) ≤
∫
‖z+w>v‖≤min(1,Γ (v))

∣∣∣log ‖z + w>v‖
∣∣∣

pNnµ(v)dv +

∫
Γ (v)≥1

log(Γ (v))pNnµ(v)dv +

∫
|log(Γ (v))| pNnµ(v)dv. Hence K(z) ≤

2EW∼Nnµ [|log ◦Γ | (W )]−
∫
‖z+w>v‖≤1

log ‖z+w>v‖pNnµ(v)dv. With a translation

v → v − 1
‖w‖2 (w1z, . . . , wµz) within the last integrand, we obtain:

K(z) ≤ 2EW∼Nnµ [|log ◦Γ | (W )] +

∫ ∣∣∣log ‖w>v‖
∣∣∣ϕ(z, v)dv. (33)

Equations (32) and (33) show that for z ∈ Ac = B (0, ε),

∫
Ac
P (z,dy)h(y) ≤

g(z) = h(z)− g(z). Therefore the item 1 follows. With (31), it follows that there
exist c1 > 0 and c2 > 0 such that for ‖z‖ ≥ c1 and v ∈ Rn, ϕ(z, v) ≤ c2ϕ(0, v).

Thanks to the dominated convergence theorem, lim
‖z‖7→∞

∫ ∣∣∣log ‖w>v‖
∣∣∣ϕ(z, v)dv =

0. Therefore that integral is bounded outside of a compact. In addition, z 7→∫ ∣∣∣log ‖w>v‖
∣∣∣ϕ(z, v)dv is continuous and is bounded on any compact included in

A. Then along with (33) it follows that sup
z∈A

∫
Ac
P (z,dy)h(y) <∞. Hence the item

2 is also satisfied, which ends the integrability proof of z 7→ log ‖z‖.
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6.2 Linear behavior for an abstract step-size update

We are now ready to establish the linear behavior of the (µ/µw, λ)-ES. Our condition
for the linear behavior stemming from the drift condition for geometric ergodicity
established in Theorem 6 is that the expected logarithm of the step-size change
function Γ on a nontrivial linear function is positive. By Proposition 1, when
f satisfies F2, the expected change of the logarithm of the step-size is constant
and for all z, Rf (z) = Rf (−x?) = E [log (Γ ?linear)] where Γ ?linear is defined in (15).
Our main result states that if the expected logarithm of the step-size increases
on nontrivial linear functions, i.e. if E [log (Γ ?linear)] > 0, then almost sure linear
behavior holds on functions satisfying F1 or F2. If f satisfies F2, then almost sure
linear divergence holds with a divergence rate of E [log (Γ ?linear)]. More precisely
the following results hold.

Theorem 7 Let f be a scaling-invariant function with respect to x?. Assume that f

satisfies F1 (in which case x? is the global optimum) or F2. Let {(Xk, σk) ; k ∈ N}
be the sequence defined in (5) and (6) such that Assumptions A1−A5 are satisfied.

Let {Zk = (Xk − x?)/σk ; k ∈ N} be the σ-normalized Markov chain (Proposition 2).

If the expected logarithm of the step-size increases on nontrivial linear functions, i.e.

if E [log (Γ ?linear)] > 0 where Γ ?linear is defined in (15), then {Zk ; k ∈ N} admits an

invariant probability measure π such that Rf defined in (22) is π-integrable. And for all

(X0, σ0) ∈ (Rn \ {x?})× (0,∞) , linear behavior of Xk and σk as in (18) holds almost

surely with

lim
k→∞

1

k
log
‖Xk − x?‖
‖X0 − x?‖

= lim
k→∞

1

k
log

σk
σ0

= Eπ(Rf ) . (34)

In addition, for all initial conditions (X0, σ0) = (x, σ) ∈ Rn × (0,∞) , we have linear

behavior of the expected log-progress, with

lim
k→∞

E x−x?
σ

[
log
‖Xk+1 − x?‖
‖Xk − x?‖

]
= lim
k→∞

E x−x?
σ

[
log

σk+1

σk

]
= Eπ(Rf ) . (35)

If f satisfies F2, then Rf is constant equal to Eπ(Rf ) = E [log (Γ ?linear)] > 0, and

then both Xk and σk diverge to infinity with a divergence rate of E [log (Γ ?linear)].
If Eπ(Rf ) < 0, then Xk converges (linearly) to the global optimum x? with a

convergence rate of −Eπ(Rf ) and the step-size converges to zero.

Proof. Theorem 6 ensures that {Zk ; k ∈ N} is a positive Harris recurrent chain
with invariant probability measure π. We start from (21). Since z 7→ log ‖z‖ is π-

integrable, Theorem 1 ensures that the LLN holds with limk→∞
1
k

∑k−1
t=0 log ‖Zt+1‖

‖Zt‖ =∫
log (‖z‖)π(dz)−

∫
log (‖z‖)π(dz) = 0.

Let us consider the chain {Wk = (Zk, Uk+2) ; k ∈ N}. Then thanks to Proposi-
tion 3, {Wk = (Zk, Uk+2) ; k ∈ N} is geometrically ergodic with invariant probability

measure π × Nnλ. Define the function g for ((z1, u3), (z2, u4)) ∈
(
Rn ×Rnλ

)2
as

g ((z1, u3), (z2, u4)) = log(Γ (αf (x? + z2, u3))). We have by Proposition 10 that for

all natural integer t, Eπ×Nnλ(|g(Wt,Wt+1)|) ≤ λ!
(λ−µ)!EY∼Nnµ [|log ◦Γ | (Y )] < ∞.

By Theorem 3 or Corollary 1, for any initial distribution, 1
k

∑k−1
t=0 log(Γ (αf (x? +

Zt, Ut+1))) converges almost surely towards Eπ×Nnλ(g(W1,W2)) = Eπ(Rf ).
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Let us prove now (35). Equation (19) implies that for all z ∈ Rn

Ez
[
log
‖Xk+1 − x?‖
‖Xk − x?‖

]
= Ez

[
log
‖Zk+1‖
‖Zk‖

]
+ Ez

[
log

σk+1

σk

]
=

∫
P k+1(z,dy) log(‖y‖)−

∫
P k(z,dy) log(‖y‖)

+

∫
P k(z,dy)Rf (y).

Define h on Rn as h(z) = 1+ |log ‖z‖| for all z ∈ Rn which is π-integrable thanks
to Proposition 11. Then z 7→ log ‖z‖ is π-integrable, and for z ∈ {y ∈ Rn ;V (y) <∞} =

Rn, lim
k→∞

‖P k(z, ·)−π‖h = 0 [50, Theorem 14.0.1]. Then lim
k→∞

∫
P k+1(z,dy) log(‖y‖) =

lim
k→∞

∫
P k(z,dy) log(‖y‖) =

∫
log(‖y‖)π(dy). In addition,

∣∣Rf ∣∣ /h is bounded, then

lim
k→∞

∫
P k(z,dy)Rf (y) =

∫
Rf (y)π(dy) = Eπ(Rf ), and finally (35) follows. We

also note that if f satisfies F2, then thanks to Proposition 1, for all z ∈ Rn,
Rf (z) = E [log (Γ ?linear)], hence Rf is constant. Then Eπ

(
Rf
)

=

∫
Rf (z)π(dz) =

E
[
log
(
Γ ?linear

)]
. If in addition E [log (Γ ?linear)] > 0, we obtain that ‖Xk‖ and σk

both diverge to ∞ when k goes to ∞.

The result that both the step-size and log distance converge (resp. diverge)
to the optimum (resp. to ∞) at the same rate is noteworthy and directly follows
from our theory. In addition, we provide the exact expression of the rate. Yet it is
expressed using the stationary distribution of the Markov chain {Zk ; k ∈ N} for
which we know little information. From a practical perspective, while we never
know the optimum of a function on a real problem, (34) suggests that we can
track the evolution of the step-size to define a termination criterion based on the
tolerance of the x-values.

6.3 Central Limit Theorem

The rate of convergence (or divergence) of a step-size adaptive (µ/µw, λ)-ES given
in (34) is expressed as

∣∣Eπ(Rf )
∣∣ where π is the invariant probability measure of

the σ-normalized Markov chain and Rf is defined in (22). Yet we do not have
an explicit expression for π and thus of Eπ(Rf ). However, we can approximate
Eπ(Rf ) with Monte Carlo simulations. We present a central limit theorem for the

approximation of Eπ(Rf ) as 1
t

∑t−1
k=0Rf (Zk) where {Zk; k ∈ N} is the homogeneous

Markov chain defined in Proposition 2.

Theorem 8 (Central limit theorem for the expected logarithm of the step-size) Let f be

a scaling-invariant function with respect to x? that satisfies F1 or F2. Let {(Xk, σk) ; k ∈
N} be the sequence defined in (5) and (6) such that Assumptions A1−A5 are satisfied.

If the expected logarithm of the step-size increases on nontrivial linear functions, i.e. if

E [log (Γ ?linear)] > 0 where Γ ?linear is defined in (15), then {Zk = (Xk − x?)/σk ; k ∈ N}
is a Markov chain admitting an invariant probability measure π. Define Rf as in (22)

and for all positive integer t, define St(Rf ) =
∑t−1
k=0Rf (Zk). Then the constant γ2
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defined as

Eπ
[(
Rf (Z0)− Eπ(Rf )

)2]
+ 2

∞∑
k=1

Eπ
[(
Rf (Z0)− Eπ(Rf )

) (
Rf (Zk)− Eπ(Rf )

)]
is

well defined, non-negative, finite and lim
t→∞

1

t
Eπ
[(
St(Rf )− tEπ(Rf )

)2]
= γ2.

If γ2 > 0, then the central limit theorem holds in the sense that for any initial

condition z0,

√
t

γ2

(
1

t
St(Rf )− Eπ(Rf )

)
converges in distribution to N (0, 1). If γ2 =

0, then lim
t→∞

St(Rf )− tEπ(Rf )
√
t

= 0 a.s.

Proof. Thanks to Proposition 10,
∣∣Rf ∣∣ is bounded. And then there exists a positive

constant K large enough such that R2
f ≤ K V where V is the geometric drift func-

tion of {Zk ; k ∈ N} given by Theorem 6. Then K V remains a geometric drift func-

tion. Thanks to Theorem 2, the constant γ defined as Eπ
[(
Rf (Z0)− Eπ(Rf )

)2]
+

2
∑∞
k=1 Eπ

[(
Rf (Z0)− Eπ(Rf )

) (
Rf (Zk)− Eπ(Rf )

)]
is well defined, non-negative,

finite and lim
t→∞

1

t
Eπ
[(
St(Rf )− tEπ(Rf )

)2]
= γ2. Moreover if γ2 > 0, then the

CLT holds for any z0 as follows limt→∞ Pz0

(
(tγ2)−

1
2

(
St(Rf )− tEπ(Rf )

)
≤ z
)

=∫ z

−∞

1√
2π
e−u

2/2du. Which can be rephrased as 1√
tγ2

(
St(Rf )− tEπ(Rf )

)
con-

verges in distribution to N (0, 1) when t→∞. And if γ = 0, then limt→∞(St(Rf )−
tEπ(Rf ))/

√
t = 0 a.s.

6.4 Sufficient conditions for the linear behavior of the (µ/µw, λ)-CSA1-ES and the
(µ/µw, λ)-xNES

Theorems 7 and 8 hold for an abstract step-size update function Γ that satisfies
Assumptions A1−A4. For the step-size update functions of the (µ/µw, λ)-CSA1-
ES and the (µ/µw, λ)-xNES defined in (10) and (11), sufficient and necessary
conditions to obtain a step-size increase on linear functions are presented in
the next proposition. They are expressed using the weights and the µ best order
statistics N 1:λ, . . . ,Nµ:λ of a sample of λ standard normal distributions N 1, . . . ,Nλ
defined such as N 1:λ ≤ N 2:λ ≤ · · · ≤ Nλ:λ.

Proposition 12 (Necessary and sufficient condition for step-size increase on

nontrivial linear functions) For the (µ/µw, λ)-CSA-ES algorithm without cumu-

lation, E [log ((ΓCSA1)?linear)] = 1
2dσn

(
E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2]
− 1

)
. Therefore, the

expected logarithm of the step-size increases on nontrivial linear functions if and only if

E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2]

> 1.

For the (µ/µw, λ)-xNES without covariance matrix adaptation, if wi ≥ 0 for all i =

1, . . . , µ, E [log ((ΓxNES)?linear)] = 1
2dσn

(∑µ
i=1

wi∑µ
j=1 wj

E
[(
N i:λ

)2]
− 1

)
. Therefore

the expected logarithm of the step-size increases on nontrivial linear functions if and
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only if
∑µ
i=1

wi∑µ
j=1 wj

E
[(
N i:λ

)2]
> 1.In addition, this latter equation is satisfied if

λ, µ and w are set such that λ ≥ 3, µ < λ
2 and w1 ≥ w2 ≥ · · · ≥ wµ ≥ 0.

Proof. We first prove the statement related to the (µ/µw, λ)-CSA1-ES. Then we
show the condition regarding the (µ/µw, λ)-xNES. Finally we prove the general
practical condition that allows to obtain the condition regarding the xNES algo-
rithm.

If m is a positive integer and u =
(
u1, . . . , um

)
∈ Rnm, we denote u1 =(

u11, . . . , u
m
1

)
and u−1 =

(
u1−1, . . . , u

m
−1

)
where ui−1 =

(
ui2, . . . , u

i
n

)
for i = 1, . . . ,m.

Define the nontrivial linear function l? such that l?(x) = x1 for x ∈ Rn, and denote
by e1 the unit vector (1, . . . , 0).

Part 1. We prove that EU1∼Nnλ [log (ΓCSA1 (αl?(e1, U1)))] has the same sign

than E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2]
− 1, and apply Theorem 7. We have

2dσ‖w‖2nEU1∼Nnλ [log (ΓCSA1 (αl?(e1, U1)))] =(
EU1∼Nnλ

[
‖
∑µ
i=1 wi (αl?(e1, U1))i ‖

2
]
− ‖w‖2n

)
. Therefore it is enough to show

that E
[∥∥∥∑µ

i=1
wi
‖w‖ (αl?(e1, U1))i

∥∥∥2]− n = E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2]
− 1. Recall that

the probability density function of αl?(e1, U1) is pl
?

e1 defined for all u ∈ Rnµ as

pl
?

e1(u) = λ!
(λ−µ)! (1−Q

l?
e1(uµ))λ−µ

µ−1∏
i=1

1{l?(ui)<l?(ui+1)}

µ∏
i=1

pNn(ui).

Denote A = EU1∼Nnλ

[
‖
∑µ
i=1

wi
‖w‖ (αl?(e1, U1))i‖

2
]
. It follows that

A = λ!
(λ−µ)!

∫ ∥∥∥∥∥
µ∑
i=1

wi
‖w‖u

i

∥∥∥∥∥
2

(1−Ql
?

e1(uµ))λ−µ
µ−1∏
j=1

1{l?(uj)<l?(uj+1)}

µ∏
j=1

pNn(uj)du

=

∫ ∥∥∥∥∥
µ∑
i=1

wi
‖w‖u

i
1

∥∥∥∥∥
2

+ ‖
µ∑
i=1

wi
‖w‖u

i
−1‖2

P (N > uµ1 )
λ−µ

µ−1∏
j=1

1{uj1<uj+1
1 }

µ∏
j=1

pN (uj1)

µ∏
j=1

pNn−1
(uj−1) du.We expand the integrand, the first term is E

[(∑µ
i=1

wi
‖w‖N

i:λ
)2]

.

Denote B = E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2]

and C = B − A. Then (λ−µ)!
λ! C equals∫ ∥∥∥∑µ

i=1
wi
‖w‖u

i
−1

∥∥∥2 P (N > uµ1 )
λ−µ∏µ−1

j=1 1{uj1<uj+1
1 }

µ∏
j=1

pN (uj1)pNn−1
(uj−1)du.

Then C =
∫
Rµ

λ!
(λ−µ)!P (N > uµ1 )

λ−µ∏µ−1
j=1 1{uj1<uj+1

1 }
∏µ
j=1 pN (uj1)du1∫

R(n−1)µ

∥∥∥∑µ
i=1

wi
‖w‖u

i
−1

∥∥∥2∏µ
j=1 pNn−1

(uj−1)du−1. The first integral equals 1 as it

is the integral of a probability density function. The second integral is equal to

E
[
‖
∑µ
i=1

wi
‖w‖Wi‖2

]
where W1, . . . ,Wµ are i.i.d. random variables of law Nn−1.

Then the law of
∑µ
i=1

wi
‖w‖Wi is Nn−1. Then E

[∥∥∥∑µ
i=1

wi
‖w‖Wi

∥∥∥2] = n− 1. Hence

EU1∼Nnλ

[∥∥∥∑µ
i=1

wi
‖w‖ (αl?(e1, U1))i

∥∥∥2] − E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2]

= n − 1, which

ends this part.
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Part 2. For the second item, we show that EU1∼Nnλ [log (ΓxNES (αl?(e1, U1)))]

has the same sign than
∑µ
i=1

wi∑µ
j=1 wj

E
[(
N i:λ

)2]
− 1, and apply Theorem 7. We

have EU1∼Nnλ [log (ΓxNES (αl?(e1, U1)))] =
1

2dσn
∑µ
i=1 wi

∑µ
i=1 wi

(
EU1∼Nnλ

[
‖ (αl?(e1, U1))i ‖

2
]
− n
)
. Then it is enough to show:

µ∑
i=1

wi

(
EU1∼Nnλ

[
‖ (αl?(e1, U1))i ‖

2
]
− n
)

=

µ∑
i=1

wiE
[(
N i:λ

)2]
−

µ∑
i=1

wi. Denote

A =
∑µ
i=1 wiEU1∼Nnλ

[
‖ (αl?(e1, U1))i ‖

2
]
. It follows A = λ!

(λ−µ)!
∫ ∑µ

i=1 wi‖u
i‖2(1−

Ql
?

e1(uµ))λ−µ
∏µ−1
j=1 1{l?(uj)<l?(uj+1)}

∏µ
j=1 pNn(uj)du which is equal to

λ!
(λ−µ)!

∫ (∑µ
i=1 wi‖u

i
1‖2 +

∑µ
i=1 wi‖u

i
−1‖2

)
P
(
N > uµ1

)λ−µ∏µ−1
j=1 1{uj1<uj+1

1 }∏µ
j=1 pN (uj1)

µ∏
j=1

pNn−1
(uj−1) du. Then after expansion, the integral of the first term

of the integrand equals
(λ− µ)!

λ!

µ∑
i=1

wiE
[(
N i:λ

)2]
. Denote B =

µ∑
i=1

wiE
[(
N i:λ

)2]
and C = A−B. Then

(λ− µ)!

λ!
C =

∫ µ∑
i=1

wi‖ui−1‖2 (P (N > uµ1 ))
λ−µ

µ−1∏
j=1

1{uj1<uj+1
1 }

µ∏
j=1

pN (uj1)pNn−1
(uj−1)du. Then C =

∫
Rµ

λ!

(λ− µ)!

µ−1∏
j=1

1{uj1<uj+1
1 }

P (N > uµ1 )
λ−µ

µ∏
j=1

pN (uj1)du1

∫
R(n−1)µ

µ∑
i=1

wi‖ui−1‖2
µ∏
j=1

pNn−1
(uj−1)du−1. The first

integral equals 1 as it is the integral of a probability density function. The second
one equals

∑µ
i=1 wiE

[
‖Nn−1‖2

]
= (n− 1)

∑µ
i=1 wi. We finally have that∑µ

i=1 wiEU1∼Nnλ
[
‖ (αl?(e1, U1))i ‖

2
]
−
∑µ
i=1 wiE

[(
N i:λ

)2]
= (n− 1)

∑µ
i=1 wi.

Part 3. If (X1, . . . , Xλ) is distributed according to
(
N 1:λ, . . . ,Nλ:λ

)
, then X1 ≤

· · · ≤ Xλ and then −Xλ ≤ · · · ≤ −X1. Therefore (−Xλ, . . . ,−X1) is also distributed

according to
(
N 1:λ, . . . ,Nλ:λ

)
. Assume that λ ≥ 3 and µ > λ

2 . We show the results

in two parts.

Part 3.1. First we assume that w1 = · · · = wµ = 1
µ . In this case, we have to prove

that: 1 <
∑µ
i=1

wi∑µ
j=1 wj

E
[(
N i:λ

)2]
= 1

µ

∑µ
i=1 E

[(
N i:λ

)2]
. Since N 1:λ ≤ · · · ≤

Nλ:λ is equivalent to −Nλ:λ ≤ · · · ≤ −N 1:λ, then
(
N 1:λ, . . . ,Nλ:λ

)
has the distri-

bution of
(
−Nλ:λ, . . . ,−N 1:λ

)
. And then for i = 1, . . . , λ,

(
N i:λ

)2
has the distribu-

tion of
(
Nλ−i+1:λ

)2
. It follows that:

∑λ
i=1 E

[(
N i:λ

)2]
= 2

∑µ
i=1 E

[(
N i:λ

)2]
+∑λ−µ

i=µ+1 E
[(
N i:λ

)2]
. Moreover,

∑λ
i=1 E

[(
N i:λ

)2]
=
∑λ
i=1 E

[(
N i
)2]

= λ, mean-

ing that we lose the selection effect of the order statistics when we do the above
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summation. Both equations above ensure that

2

µ∑
i=1

E
[(
N i:λ

)2]
+

λ−µ∑
i=µ+1

E
[(
N i:λ

)2]
= λ. (36)

For any j ∈ {µ+ 1, . . . , λ− µ} and any i ∈ {1 . . . , µ} , N i:λ ≤ N j:λ ≤ Nλ+1−i:λ.

Therefore if N j:λ ≥ 0,
(
N j:λ

)2
≤
(
Nλ+1−i:λ

)2
, and if N j:λ ≤ 0,

(
N j:λ

)2
≤(

N i:λ
)2
. Since

(
Nλ+1−i:λ

)2
has the distribution of

(
N i:λ

)2
, it follows that

for all j ∈ {µ+ 1, . . . , λ− µ} and i ∈ {1 . . . , µ} :
(
N j:λ

)2
≤
(
N i:λ

)2
, and it is

straightforward to see that the we do not have almost sure equality. It then follows

that for all j ∈ {µ+ 1, . . . , λ− µ} 4 and i ∈ {1 . . . , µ} : E
[(
N j:λ

)2]
< E

[(
N i:λ

)2]
.

Therefore for all j ∈ {µ+ 1, . . . , λ− µ} :

E
[(
N j:λ

)2]
<

1

µ

µ∑
i=1

E
[(
N i:λ

)2]
. (37)

With (37) and (36), we have λ = 2
∑µ
i=1 E

[(
N i:λ

)2]
+
∑λ−µ
i=µ+1 E

[(
N i:λ

)2]
<

2
∑µ
i=1 E

[(
N i:λ

)2]
+ λ−2µ

µ

∑µ
i=1 E

[(
N i:λ

)2]
= λ

µ

∑µ
i=1 E

[(
N i:λ

)2]
. Finally it

follows that

1

µ

µ∑
i=1

E
[(
N i:λ

)2]
> 1. (38)

Part 3.2. Now we fall back to the general assumption where w1 ≥ · · · ≥ wµ. Let
us prove beforehand that:

E
[(
N 1:λ

)2]
≥ E

[(
N 2:λ

)2]
≥ · · · ≥ E

[(
Nµ:λ

)2]
. (39)

Let i ∈ {1, . . . , µ− 1} . We have that N i:λ ≤ N i+1:λ ≤ Nλ+1−i. Then if N i+1:λ ≥

0,
(
N i+1:λ

)2
≤
(
Nλ+1−i:λ

)2
and if N i+1:λ ≤ 0,

(
N i+1:λ

)2
≤
(
N i:λ

)2
. Since(

Nλ+1−i:λ
)2

and
(
N i:λ

)2
have the same distribution, it follows that

(
N i+1:λ

)2
≤(

N i:λ
)2
. Therefore (39) holds.

To prove the general case, we use the Chebyshev’s sum inequality which
states that if a1 ≥ a2 ≥ · · · ≥ aµ and b1 ≥ b2 ≥ · · · ≥ bµ, then 1

µ

∑µ
k=1 akbk ≥(

1
µ

∑µ
k=1 ak

)(
1
µ

∑µ
k=1 bk

)
. By applying Chebyshev’s sum inequality on w1 ≥

· · · ≥ wµ and E
[(
N 1:λ

)2]
≥ E

[(
N 2:λ

)2]
≥ · · · ≥ E

[(
Nµ:λ

)2]
, it follows

that 1
µ

∑µ
i=1 wiE

[(
N i:λ

)2]
≥
(

1
µ

∑µ
j=1 wj

)(
1
µ

∑µ
i=1 E

[(
N i:λ

)2])
. Therefore,

4 Note that the set {µ+ 1, . . . , λ− µ} is not empty since 1 ≤ µ < λ
2

.
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∑µ
i=1

wi∑µ
j=1 wj

E
[(
N i:λ

)2]
≥ 1

µ

∑µ
i=1 E

[(
N i:λ

)2]
. And the first case in (38) en-

sures that
∑µ
i=1

wi∑µ
j=1 wj

E
[(
N i:λ

)2]
≥ 1

µ

∑µ
i=1 E

[(
N i:λ

)2]
> 1.

The positivity of E [log (Γ ?linear)] is the main assumption for our main results. In
this context, Proposition 12 gives more practical and concrete ways to obtain the
conclusion of Theorems 7 and 8 for the (µ/µw, λ)-CSA1-ES and (µ/µw, λ)-xNES.
In the case where µ = 1, the two conditions given in the previous proposition for

CSA and xNES are equivalent and yield the equation E
[(
N 1:λ

)2]
> 1. The latter

is satisfied if λ ≥ 3 and µ = 1, which is the linear divergence condition on linear
functions of the (1, λ)-CSA1-ES [20]. Conditions similar to the one given for CSA
in the previous proposition had already been derived for the so-called mutative
self-adaptation of the step-size [26].

7 Conclusion and discussion

We have proven the asymptotic linear behavior of step-size adaptive (µ/µw, λ)-
ESs on composites of strictly increasing functions with continuously differentiable
scaling-invariant functions. The step-size update has been modeled as an abstract
function of the random input multiplied by the current step-size. Two well-known
step-size adaptation mechanisms are included in this model, namely derived from
the Exponential Natural Evolution Strategy (xNES) [25] and the Cumulative
Step-size Adaptation (CSA) [29] without cumulation.

Our main condition for the linear behavior proven in Theorem 7 reads “the
logarithm of the step-size increases on linear functions”, formally, stated as
E [log (Γ ?linear)] > 0 where Γ ?linear is the step-size change on nontrivial linear func-
tions. This condition is equivalent to the geometric divergence of the step-size on
nontrivial linear functions, as shown by the next lemma.

Lemma 10 Let f be an increasing transformation of a nontrivial linear function, i.e.

satisfy F2. Let {(Xk, σk) ; k ∈ N} be the sequence defined in (5) and (6). Assume that

{Uk+1 ; k ∈ N} satisfies Assumption A5 and that Γ satisfies Assumptions A2 and A4,

i.e. Γ is invariant under rotation and log ◦Γ is Nnµ-integrable. Then lim
k→∞

1

k
log

σk
σ0

=

E
[
log
(
Γ ?linear

)]
.

Proof. We have 1
k log σk

σ0
= 1

k

∑k−1
t=0 log σt+1

σt
. With (15) and Proposition 1, σt+1 =

σt Γ (αl?(0, Ut+1)) where l? is the linear function defined as l?(x) = x1 for x ∈ Rn.

Therefore 1
k log σk

σ0
= 1

k

∑k−1
t=0 (log ◦Γ ◦ αl?) (0, Ut+1) . Using Assumption A3 and

Lemma 8, we have that the function u 7→ (log ◦Γ ◦ αl?) (0, u) is Nnλ-integrable.
Then by the LLN applied to the i.i.d. sequence {Uk+1 ; k ∈ N}, 1

k log σk
σ0

converges
almost surely to E [log (Γ ?linear)].

Geometric divergence of the step-size on a linear function is also the main condi-
tion when analyzing the deterministic flow of the IGO algorithm [3]. For the (1+1)-
ES and the (1, λ) self-adaptive ES, a different condition than E [log (Γ ?linear)] > 0 has
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been used to characterize the step-size increase on linear functions: there exists β > 0

such that E
[

1
Γ?linear

β

]
< 1 [11,13]. With the concavity of the logarithm and Jensen’s

inequality, we have that log
(
E
[

1
Γ?linear

β

])
≥ E

[
log
(

1
Γ?linear

β

)]
= −β E [log (Γ ?linear)].

Therefore E
[

1
Γ?linear

β

]
< 1 implies E [log (Γ ?linear)] > 0 and our condition that “the

logarithm of the step-size increases on linear functions” is tighter than the previously
used.

Our main condition for the linear behavior of the (µ/µw, λ)-CSA-ES algorithm
without cumulation is formulated based on λ, µ, the weights w and the order

statistics of the standard normal distribution as E
[(∑µ

i=1
wi
‖w‖N

i:λ
)2 ]

> 1, see

Proposition 12. For µ = 1, this condition is satisfied when λ ≥ 3.

The linear divergence of both the incumbent and the step-size was proven
for a (1, λ)-ES without cumulation on linear functions whenever λ ≥ 3 with a

divergence rate equal to
E[(N 1:λ)2]−1

2dσn
[20]. Proposition 12 extends this result to

values of µ > 1. Note that our results cover both, linear divergence on strictly
increasing transformations of nontrivial linear functions and linear behavior on
strictly increasing transformations of C1 scaling-invariant functions with a unique
global argmin.

Our methodology leans on investigating the stability of the σ-normalized
homogeneous Markov chain to be able to apply an LLN and obtain the limit
of the log-distance to the optimum divided by the iteration index. Then we obtain
an exact expression of the rate of convergence or divergence as an expectation
with respect to the stationary distribution of the σ-normalized chain. This is an
elegant feature of our analysis. Other approaches [1,2,39–42] provide bounds on the
convergence rate but not its exact expression with the advantage that the bounds
are often expressed depending on dimension or population size and thus describe
the scaling of the algorithm with respect to relevant parameters.

The class of scaling-invariant functions is, as far as we can see, the largest
class to which our methodology can conceivably be applied—because on any wider
class of functions, a selection function for the σ-normalized Markov chain can
not anymore reflect the selection operation in the underlying chain. We require
additionally that the objective function is a strictly increasing transformation of
either a continuously differentiable function with a unique global argmin or a
nontrivial linear function. Many non-convex functions with non-convex sublevel
sets are included.

The implied requirement of smooth level sets is instrumental for our analysis.
We believe that there exist unimodal functions with non-smooth level sets on which
scale invariant ESs can not converge to the global optimum with probability one
independently of the initial conditions, for example x 7→

∑n
i=1

√
|xi|. However,

smooth level sets are not a necessary condition for convergence—we consistently
observe convergence on x 7→

∑n
i=1 |xi| for smaller values of n and understand

the reason why ESs succeed on the one-norm but fail on the 1/2-norm function.
Capturing this distinction in a rigorous analysis of the Markov chain remains an
open challenge.

A broader function class has been analyzed by requiring a drift condition
to hold on the whole state-space [2] while our methodology requires the drift
condition to only hold outside of a small set (when the step-size is much smaller
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than the distance to the optimum). Hence in our approach, it suffices to control
the behavior in the limit when the step-size normalized by the distance to the
optimum approaches zero.

A major limitation of our current analysis is the omission of cumulation that is
used in the (µ/µw, λ)-CSA-ES to adapt the step-size (we have set the cumulation
parameter to 1, see Section 2.2). In case of a parent population of size µ = 1,
Chotard et al. obtain linear divergence of the step-size on linear functions also with
cumulation [20]. However, no proof of linear behavior exists, to our knowledge, on
functions whose level sets are not affine subspaces. While we consider cumulation
a crucial component in practice, proving the drift condition for the stability of the
Markov chain is much harder when the state space is extended with the cumulative
evolution path and this remains an open challenge.

Technically, our results rely on proving ϕ-irreducibility, positivity and Harris-
recurrence of the σ-normalized Markov chain. The ϕ-irreducibility is difficult to
prove directly for the class of algorithms studied in this paper while it is relatively
easy to prove for the (1, λ)-ES with self-adaptation [11] or for the (1+1)-ES with
one-fifth success rule [13]. We circumvented the problem by looking at the stability
of an underlying deterministic control model and exploit its connection to the
stability of Markov chains [19]. Positivity and Harris-recurrence are proven using
Foster-Lyapunov drift conditions [50]. We prove a drift condition for geometric
ergodicity that implies positivity and Harris-recurrence. The main ingredient for
obtaining the drift condition is the convergence in distribution of the step-size
change towards the step-size change on a linear function when Zk = z goes to
infinity. It implies that the drift condition holds for Zk = z outside a compact set.
We also prove in Lemma 6 the existence of non-negligible sets with respect to the
invariant probability measure π, outside of a neighborhood of a steadily attracting
state. This is used in Proposition 11 to obtain the π-integrability of the function
z 7→ log ‖z‖.

We have developed generic results to facilitate further studies of similar Markov
chains. More specifically, applying an LLN to the σ-normalized chain is not enough
to conclude linear convergence. We introduce the technique to apply the generalized
LLN to an abstract chain {(Zk, Uk+2) ; k ∈ N} and prove that stability properties
from {Zk; k ≥ 0} are transferred to {(Zk, Uk+2) ; k ∈ N}.
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A Proof of Proposition 1

With Lemma 1, we assume without loss of generality that f is a nontrivial linear function.
Let us remark beforehand that the random variable αf (z, U1) does not depend on z thanks
to Lemma 4. Let ϕ : Γ (Rnµ) → R be a continuous and bounded function, it is then enough
to prove that EU1∼Nnλ

[
ϕ
(
Γ (αf (z, U1))

)]
= EU1∼Nnλ [ϕ (Γ (αl? (0, U1)))] . Denote by e1 the

unit vector (1, 0, . . . , 0), then for all x ∈ Rn, l?(x) = e>1 x. Denote by ẽ1 the σ-normalized
gradient of f at some point. Then there exists K > 0 such that for all x ∈ Rn, f(x) =
Kẽ>1 x. And by the Gram-Schmidt process, there exist (e2, . . . , en) and (ẽ2, . . . , ẽn) such that
(e1, e2, . . . , en) and (ẽ1, ẽ2, . . . , ẽn) are orthonormal bases. Denote by T the linear function
defined as T (ei) = ẽi for i = 1, . . . , n. Then T is an orthogonal matrix. For all x ∈ Rn, ẽ>1 T (x) =

e>1 x, and ‖T (x)‖ = ‖x‖. Denote A = EU1∼Nnλ
[
ϕ
(
Γ (αf (z, U1))

)]
. We do a change of variable

u 7→
(
T (u1), . . . , T (uµ)

)
. Then

(λ−µ)!
λ!

A =
∫
ϕ (Γ (u))1ẽ>1 (u2−u1)> 0,...,ẽ>1 (uµ−uµ−1)> 0

P
(
ẽ>1 Nn > ẽ>1 u

µ
)λ−µ

pNn (u1) . . . pNn (uµ)du1 . . . duµ =
∫
ϕ
(
Γ
(
T (u1), . . . , T (uµ)

))
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1e>1 (u2−u1)> 0,...,e>1 (uµ−uµ−1)> 0P
(
e>1 Nn > e>1 u

µ
)λ−µ

pNn (T (u1)) . . . pNn (T (uµ))du1 . . .

duµ, thanks to the fact that e>1 Nn ∼ ẽ>1 Nn ∼ N (0, 1). Since Γ and pNn are invariant under

rotation, EU1∼Nnλ
[
ϕ
(
Γ (αf (z, U1))

)]
= EU1∼Nnλ [ϕ (Γ (αl? (0, U1)))].

B Proof of Proposition 3

We have Zk+1 = G(Zk, Uk+1) and Uk+3 is independent from {Wt ; t ≤ k}, then {Wk ; k ∈ N} is
a Markov chain on B(Z)⊗B(Rm). Let (A,B) ∈ B(Z)×B(Rm) and (z, u) ∈ Z×Rm. Then by inde-
pendence P ((Zt+1, Ut+3) ∈ A×B|(Zt, Ut+2) = (z, u)) = P (Zt+1 ∈ A|Zt = z)P (Ut+3 ∈ B) .
For (A,B) ∈ B(Z)×B(Rm), for (z, u) ∈ Z×Rm,

∑∞
k=1 P

k((z, u), A×B) = Ψ(B)
∑∞
k=1 P

k(z,A).

Therefore
∑∞
k=1 P

k((z, u), ·) is a product measure.
Let ϕ be an irreducible measure of {Zk ; k ∈ N} and let E ∈ B(Z) ⊗ B(Rm). By defini-

tion of a product measure, (ϕ× Ψ) (E) =

∫
ϕ(Ev)Ψ(dv) and thus

∑∞
k=1 P

k((z, u), E) =∫ ∞∑
k=1

Pk(z, Ev)Ψ(dv) where Ev = {z ∈ Z ; (z, v) ∈ E}. If
∑∞
k=1 P

k((z, u), E) = 0, then

0 =
∑∞
k=1 P

k(z, Ev) for almost all v and then ϕ(Ev) = 0 for almost all v. Then (ϕ× Ψ) (E) =∫
ϕ(Ev)Ψ(dv) = 0, hence the (ϕ× Ψ)-irreducibility of {Wk ; k ∈ N}.

Let us show that π × Ψ is an invariant probability measure of {Wk ; k ∈ N} when
π is an invariant measure of {Zk ; k ∈ N}. Assume that (A,B) ∈ B(Z) × B(Rm). Then∫
P ((Z1, U3) ∈ A×B|(Z0, U2) = (z, u)) (π×Ψ) (d(z, u)) =

∫
Pz (Z1 ∈ A)Ψ(B)π(dz)Ψ(du) =

Ψ(B)π(A) = (π × Ψ)(A×B). Hence π × Ψ is an invariant probability of {Wk ; k ∈ N}. Assume

that {Wk ; k ∈ N} has a d-cycle (Di)i=1,...,d ∈ (B(Z)⊗ B(Rm))d. Define for i = 1, . . . , d, D̃i =

{z ∈ Z|∃u ∈ Rm ; (z, u) ∈ Di} and let us prove that
(
D̃i

)
i=1,...,d

is a d-cycle of {Zk ; k ∈ N}.

Let z ∈ D̃i and i = 0, . . . , d − 1 (mod d). There exists u ∈ Rm such that (z, u) ∈ Di.

Then 1 = P ((z, u), Di+1) = P ((Z1, U3) ∈ Di+1|Z0 = z) ≤ P
(
Z1 ∈ D̃i+1|Z0 = z

)
. Thereforer

P
(
Z1 ∈ D̃i+1|Z0 = z

)
= 1.

If Λ is an irreducible measure of {Zk ; k ∈ N}, then we have proven above that Λ ×
Ψ is an irreducible measure of {Wk ; k ∈ N}. Then 0 = (Λ× Ψ)

((⋃d
i=1Di

)c)
. For i =

1, . . . , d, (Λ× Ψ) (Di) =

∫
Λ(Dvi )Ψ(dv) ≤

∫
Λ(D̃i)Ψ(dv) = Λ(D̃i). Then Λ

(⋃d
i=1 D̃i

)
=∑d

i=1 Λ(D̃i) ≥ (Λ× Ψ)
(⋃d

i=1Di

)
. Hence Λ

((⋃d
i=1 D̃i

)c)
= 0 and finally we have a d-cycle

for {Zk ; k ∈ N}. Similarly we can show that if {Zk ; k ∈ N} has a d-cycle, then {Wk ; k ∈ N}
also has a d-cycle. Now assume that C is a small set of {Zk ; k ∈ N}. Then there exists a
positive integer k and a nontrivial measure νk on B(Z) such that Pk(z,A) ≥ νk(A) for all
z ∈ C, A ∈ B(Z). If (z, u) ∈ C×Rm and E ∈ B(Z)⊗B(Rm), Pk((z, u), E) ≥ (νk × Ψ) (E) and
therefore C × Rm is a small set of {Wk ; k ∈ N}. The drift condition for {Wk ; k ∈ N} follows
directly from the drift condition for {Zk ; k ∈ N}.

C Proof of Proposition 8

To prove the convergence in distribution of the step-size multiplicative factor for a function f
that satisfies F1 or F2, we use the intermediate result given by Proposition 8, that asymptotically

links Γ
(
αf (x? + z, U1)

)
to the random variable Γ

(
α
l
f
z

(z, U1)
)

where the nontrivial linear

function lfz depends on z, ∇f , and is introduced in (26). Since αf (x? + z, U1) = αf̃ (z, U1), we

assume without loss of generality that x? = 0 and f(0) = 0.
The next lemma is our fist step towards understanding the asymptotic behavior of αf (z, U1)

for a C1 scaling-invariant function f with a unique global argmin. For ϕ : Rnµ → R continuous
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and bounded, we approximate E
[
ϕ(αf (z, U1))

]
by using the explicit definition of pfz in (14),

and observing the integrals in the balls B
(

0,
√
‖z‖
)

, such that the f -values we consider are

relatively close to the f -values of
tfz
‖z‖ z ∈ Lf,z0 .

Lemma 11 Let f be a C1 scaling-invariant function with a unique global argmin assumed
to be in 0 such that f(0) = 0. For (z, w, v) ∈ (Rn)3, define the function h : (z, w, v) 7→
1{

f

(
t
f
z
‖z‖ z+

t
f
z
‖z‖w

)
>f

(
t
f
z
‖z‖ z+

t
f
z
‖z‖ v

)}. Then for all ϕ : Rnµ → R continuous and bounded:

lim‖z‖→∞
∫
‖u‖≤

√
‖z‖

(∫
‖w‖≤

√
‖z‖ h(z, w, uµ)pNn (w)dw

)λ−µ
λ!

(λ−µ)!ϕ(u)
∏µ−1
i=1 h(z, ui+1, ui)

∏µ
i=1 pNn (ui)du−

∫
ϕ(u)pfz (u)du = 0.

Proof. For z ∈ Rn and u ∈ Rnµ, define A(z) =

∣∣∣∣ ∫ ϕ(u)pfz (u)du −
∫
‖u‖≤

√
‖z‖ ϕ(u)pfz (u)du

∣∣∣∣.
ThenA(z) ≤ λ!

(λ−µ)!‖ϕ‖∞
∫
‖u‖>

√
‖z‖
∏µ
i=1 pNn (ui)du = λ!

(λ−µ)!‖ϕ‖∞
∫
‖u‖>

√
‖z‖ pNnµ (u)du =

λ!
(λ−µ)!‖ϕ‖∞

(
1− P

(
‖Nnµ‖ ≤

√
‖z‖
))

.

Then by scaling-invariance with a multiplication by tfz/‖z‖, lim‖z‖→∞
∫
‖u‖≤

√
‖z‖ ϕ(u)

(E [h(z,Nn, uµ)])λ−µ
µ−1∏
i=1

h(z, ui+1, ui)

µ∏
i=1

pNn(ui)du −
(λ− µ)!

λ!

∫
ϕ(u)pfz (u)du = 0. Also,

E [h(z,Nn, uµ)]−
∫
‖w‖≤

√
‖z‖ h(z, w, uµ)pNn (w)dw =

∫
‖w‖>

√
‖z‖ h(z, w, uµ)pNn (w)dw ≤ 1−

P
(
‖Nn‖ ≤

√
‖z‖
)

. Hence along with the dominated convergence theorem, the lemma is

proven.

We are now ready to prove the proposition.
Let ϕ : Rnµ → R be continuous and bounded. Using Lemma 11, it is enough to prove that

lim‖z‖→∞
∫
‖u‖≤

√
‖z‖

(∫
‖w‖≤

√
‖z‖ h(z, w, uµ)pNn (w)dw

)λ−µ
ϕ(u)∏µ−1

i=1 h(z, ui+1, ui)
∏µ
i=1 pNn (ui)du− (λ−µ)!

λ!

∫
ϕ(u)p

lfz
z (u)du = 0. We define the function g on

the compact

(
L
f,z

f
0

+ B(0, δf )

)
× [0, δf ] as, for (x, ρ) ∈

(
L
f,z

f
0

+ B(0, δf )

)
× (0, δf ], g(x, ρ) =

∫
‖u‖≤ 1√

ρ

(∫
‖w‖≤ 1√

ρ
1θ(w,uµ,x)> 0 pNn (w)dw

)λ−µ
ϕ(u)

∏µ−1
i=1 1θ(ui+1,ui,x)> 0pNnµ(u)du, with

θ(w, v, x) = (w−v)>∇f
(
x+ tfxρ(v + τρx (v, w)(w − v))

)
and τρx (v1, v2) ∈ (0, 1) defined thanks

to the mean value theorem by f(x+ tfxρv
2)− f(x+ tfxρv

1) = tfxθ(v
2, v1, x). For x ∈ L

f,z
f
0

+

B(0, δf ), g(x, 0) =
∫
ϕ(u)P

(
(Nn−uµ)>∇f(x) > 0

)λ−µ∏µ−1
i=1 1(ui+1−ui)>∇f(x)> 0pNnµ (u)du.

Note that g
(
tfz

z
‖z‖ , 0

)
=

(λ−µ)!
λ!

∫
ϕ(u)p

lfz
z (u)du. With Lemma 11, lim‖z‖→∞ g

(
tfz

z
‖z‖ ,

1
‖z‖

)
−

(λ−µ)!
λ!

∫
ϕ(u)pfz (u)du = 0. Therefore it is enough to prove that g is uniformly continu-

ous in order to obtain that
(λ−µ)!
λ!

(
lim‖z‖→∞

∫
ϕ(u)pfz (u)du−

∫
ϕ(u)p

lfz
z (u)du

)
is equal to

lim‖z‖→∞ g
(
tfz

z
‖z‖ ,

1
‖z‖

)
− g

(
tfz

z
‖z‖ , 0

)
which is equal to 0.

For (x, ρ) ∈
(
L
f,z

f
0

+ B(0, δf )

)
× (0, δf ], for u ∈ B(0, 1/

√
ρ), w ∈ B(0, 1/

√
ρ), ∇f

(
x +

tfxρ(uµ+τρx (uµ, w)(w−uµ))
)
6= 0 since x+tfxρ(uµ+τρx (uµ, w)(w−uµ)) ∈ L

f,z
f
0

+B(0, 2δf ). Then

the set {w ∈ Rn; θ(w, uµ, x) = 0} is Lebesgue negligible. In addition, the function y 7→ 1y > 0

is continuous on R\ {0}, therefore for almost all w, (x, ρ, uµ) 7→ 1‖w‖≤ 1√
ρ
1θ(w,uµ,x)pNn (w) is

continuous and bounded by the integrable function pNn . Then by domination, for almost all u,
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(x, ρ) 7→ 1‖u‖≤ 1√
ρ

(∫
‖w‖≤ 1√

ρ
1θ(w,uµ,x)> 0 pNn (w)dw

)λ−µ
is continuous. Similarly (x, ρ) 7→

1‖u‖≤ 1√
ρ

∏µ−1
i=1 1θ(ui+1,ui,x)> 0 is continuous for almost all u. Therefore g is continuous on(

L
f,z

f
0

+ B(0, δf )

)
× (0, δf ], and for all x ∈ L

f,z
f
0

+ B(0, δf ), limρ→0 g(x, ρ) exists and equals

∫
lim
ρ→0

1‖u‖≤ 1√
ρ
ϕ(u)

µ−1∏
i=1

1θ(ui+1,ui,x)>0

∫
‖w‖≤ 1√

ρ

1θ(w,uµ,x)>0 pNn (w)dw

λ−µpNnµ(u)du
which is equal to g(x, 0). Finally g is continuous on the compact

(
L
f,z

f
0

+ B(0, δf )

)
× [0, δf ];

it is thereby uniformly continuous on that compact.
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