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Abstract

In multi-�delity optimization , we have access
to biased approximations of varying costs of
the target function. In this work, we study
the setting of optimizing a locally smooth
function with a limited budget �, where the
learner has to make a trade-o� between the
cost and the bias of these approximations. We
�rst prove lower bounds for the simple regret
under di�erent assumptions on the �delities,
based on acost-to-bias function. We then
present the Kometoalgorithm which achieves,
with additional logarithmic factors, the same
rates without any knowledge of the function
smoothness and �delity assumptions and im-
proving prior results. Finally, we empirically
show that our algorithm outperforms prior
multi-�delity optimization methods without
the knowledge of problem-dependent parame-
ters.

1 Introduction

In multi-�delity optimization (Cutler et al., 2014;
Huang et al., 2006; Kandasamy et al., 2016c, 2017), the
learner actively optimizes a function but only observes,
at each of the rounds, biased values of that function.
The learner canpay to reduce the bias of the observed
function values. The smaller the bias the higher the
cost, urging the learner to carefully allocate its total
cost budget � on the 
y.

We consider the case ofderivative-free optimization
where no gradient information is available (Matyas,
1965). This is of great interest for the multiple applica-
tions in which it is either di�cult to access, compute,
or even de�ne gradients (Nesterov and Spokoiny, 2017).
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Using only zero-order information, derivative-free op-
timization addresses optimising over functions that
are not di�erentiable, non-continuous, or non-smooth.
Moreover, there are known methods that work with-
out knowing the smoothness parameters (�; � ) of the
function (Auer et al., 2007; Kleinberg et al., 2008; Grill
et al., 2015; Valko et al., 2013; Bartlett et al., 2019).

Derivative-free multi-�delity optimization is useful in
particular the hyper-parameters tuning of complex ma-
chine learning models, where each evaluation of the
model is costly such as tokamak simulators. How-
ever, the mapping between the hyper-parameter and
performance of the learned model can be highly non-
convex and non-smooth. Moreover, training a model,
given the hyper-parameters can be expensive and time-
consuming (Sen et al., 2018). In a situation, where
computation or time are constrained by a budget, these
constraints prevent us from carefully evaluating the
qualities of all the models generated from a continuous
set of hyper-parameters. Then, given one �xed set of
hyper-parameters, the bias of the estimation of the
quality of fully-trained model is a (decreasing) func-
tion � of the amount of computation resource spent
training the model. Ultimately, we would expect this
bias to be zero if the model is trained until conver-
gence. However, the bias function� is a function that
depends on the type of trained models and that is in
applications a priori unknown.

The most related approach for the considered setting is
the MFPDOOalgorithm of Sen et al. (2018). In order to
provide theoretical guaranties for MFPDOO, � is either
assumed to be known or some parametric assumptions
on � are made and the parameters are estimated on-
line. However, knowing � or its parametric family is
unrealistic.

In this paper, we propose a new method calledKometo
that adapts to the unknown � and the unknown smooth-
ness parameters (�; � ). Our analysis is more general
than the analysis of Sen et al. (2018) and provides a
broader and �ner set of behaviors of the cost-to-bias
function. This allows us to provide a characterisation
of the complexity of the problem by providing the �rst
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regret lower bounds in multi-�delity optimization. We
also show that Kometoobtains rates that match the
ones of our lower bounds and improves upon the rates
of MFPDOOwhile dropping the assumptions of knowing
the bias function � in advance.

Related work Among the large work on derivative-
free optimization, we focus on algorithms that per-
form well under minimal assumptions as well as min-
imal knowledge of the function. Under weak/ local
smoothness around one global maximum (Auer et al.,
2007; Kleinberg et al., 2008; Bubeck et al., 2011),
some algorithms require the knowledge of the lo-
cal smoothness such asHOO(Bubeck et al., 2011),
Zooming(Kleinberg et al., 2008), or DOO(Munos, 2011).
Among the work relying on an unknown local smooth-
ness,SequOOL(Bartlett et al., 2019) improves on SOO
(Munos, 2011; Kawaguchi et al., 2016) and represents
the state-of-the-art for the deterministic feedback. For
the stochastic feedback,StoSOO(Valko et al., 2013)
extends SOOfor a limited class of functions. POO(Grill
et al., 2015) andGPO(Shang et al., 2019) provide more
general results. Finally, StroquOOL(Bartlett et al.,
2019) matches, up to log factors, the guarantees of
SequOOLand GPOfor deterministic and stochastic feed-
back respectively,without requiring the knowledge of
the range of the noiseb.

Multi-�delity optimization is a well studied setting.
Here, we addressonline multi-�delity optimization.
Many of approaches rely on Bayesian models, e.g.,
Gaussian processes. Zhang et al. (2019) relies on en-
tropic search to �nd the maximum, while Kandasamy
et al. (2016a) adaptsGP-UCB(Srinivas et al., 2010) to
multi-�delity setting. Most of these methods need an
access to a bias function, while Ghosh et al. (2019)
use the cost of the approximations to estimate its val-
ues. Li et al. (2017) obtains good empirical results
by trying a lot of con�gurations at low �delities and
progressively eliminating the less interesting ones while
using higher and higher �delities. Two prior works
adapted algorithms working under local smoothness
around one global maximum to multi-�delity settings.
First, Sen et al. (2018) adaptedPOO(Grill et al., 2015)
to deterministic multi-�delity settings and later Sen
et al. (2019) made it work under stochastic ones.

Main contributions

� We give more general assumptions on the �delity
approximations based on their cost while keeping
the smoothness assumption on the target function.

� We prove lower bounds of the simple regret under
these more general and di�erent assumptions.

� We provide Kometo, an algorithm that, in deter-

ministic settings, without any knowledge on the
bias function and the smoothness of the target
function, achieves minimax optimal rates for sim-
ple regret up to logarithmic factors on all consid-
ered assumptions on the �delities. It improves
the previously proven guaranteed rates under local
smoothness assumptions of Sen et al. (2018), ex-
cept in the case� = 1 of Assumption 2(a),1 where
it has additional logarithmic factors. Our Kometo
comes with important properties:

{ It does not assume an access to the target
function, only an access to increasingly better
approximations, unlike previous algorithms
as the ones of Sen et al. (2018).

{ It only uses the comparisons of evaluations
at the same �delity level, and not directly
the values of the evaluations, which leads to
weaker �delity assumptions and better empir-
ical results.

{ It works in stochastic settings by changing
the number of evaluations at higher �delities.

� We provide synthetic experiments and a hyper-
parameter tuning experiment to demonstrate the
e�ciency of Kometo.

2 Problem setting

In this section, we introduce a generalization of the
settings presented by Sen et al. (2018).

We want to optimize a target function f : X ! R
under a budget � 2 R+ . The evaluation of this target
function is done through its �delity approximations.
We thus denote by Z = [0; 1] the �delity space and
by (f z )z2 Z the �delity approximations. In particular,
z = 0 corresponds to the lowest �delity, while z = 1
corresponds to the highest one. We also denote by
� : Z ! R+ the unknown bias function, such that
there exists a family (gz )z2 Z of real-valued strictly
increasing function with kf � gz � f zk1 � � (z) for
z 2 Z ; motivations for this assumption are explained
below. A known cost function � : Z ! R+ indicates
the budget used at each evaluation for a given �delity.
We also assume that the algorithm can request, for any
c � 1, a �delity zc such that � (zc) � c, and we de�ne
� : [1 ; + 1 [! R+ with �( c) = � (zc), the cost-to-bias
function, which gives for each costc the minimal bias
that one can can be guaranteed for an observation off .
Assumptions 2 below are made on this function.

At round t, the algorithm makes an evaluation of the
function of a point x t 2 X and at a �delity zt 2 Z (or
at a cost ct , see above), as long as

P t
s=1 � (zs) � �.

1hyperbolic decreasing of the cost-to-bias function
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The algorithm observes at roundt the value f zt (x t ) in
return. The algorithm must �nally output a value x � .
We then de�ne the simple regret of a policy � for r � as

r � (� ) , E
�
max
x 2X

f (x) � f (x � )
�
;

where the expectation is taken over the randomness of
the algorithm. In the rest of this paper, we only aim to
minimize this regret, without any constraint on time
or space complexity.

Problem setting remarks One of the main aspects
our approach is that we do not assume to have an
access to the bias function� . This highlights the fact
that our algorithm is fully adaptive, and only needs
the cost of each �delity as an input. Since the bias
function is usually unknown in practice, prior works
rely on various techniques (e.g., MLE) to guess the
values of this function for implementations, but often
assume it has a speci�c form. Given the known results
is therefore surprising we get faster rates, and we do it
without relying on any information on the bias function.

Moreover we relax the original assumption of Sen et al.
(2018) that kf � f zk1 � � (z) for z 2 Z and use instead
kf � gz � f zk1 � � (z) for z 2 Z . This lets the f z approx-
imations be potentially arbitrarily biased with respect
to f as long as the ordering inf is approximately kept.
Indeed, asgz are increasing functions, we have that
gz � f z (x1) � gz � f z (x2) iif f z (x1) � f z (x2) for any
x1; x2 2 X . This more general model for example �ts
in cases where evaluating at lower �delities (with higher
bias) has a great impact on individual feedback, but
a low impact on how each di�erent points compare to
each other at the same �delity level. This is for example
the case on neural network training, where evaluating
with less iterations (lower �delity) may increase the
overall error for every set of hyper-parameters at similar
rates. Note that theoretical results will simultaneously
hold under both assumption as long as two conditions
are met. First, the behavior of our algorithms is not
based directly on the (estimated) value of the function
f z but only on comparisons of these estimates off z .
Second the estimates that are compared are computed
from evaluations coming from the same �delity. This is
the case of our algorithmKometo. Indeed Kometosimi-
larly as SOO (as noted by Munos, 2014) or SequOOL,
a rank-based algorithm. This means that its behavior is
based on the rank of the function evaluations, and not
directly on their values. On the contrary the behavior
of MFPDOOrelies directly on the values in practice when
estimating the constant of the parametric model, and
would therefore not extend to our general assumption.

Another particularity is that we do not assume that
the cost function � is bounded. We assume quite

generally that � : Z ! R+ instead of restricting ourself
to having � : Z ! [0; 1] as in Sen et al. (2018). In
our scenario, it can happen that some approximations
of the function f with low bias are simply too costly
for our limited budget. Working under this larger
assumption �ts better problems in which we can only
access feedback from imperfect simulators while the real
phenomenon can not be directly evaluated in practice.
In such scenario, the MFPDOO Sen et al. (2018) is
not usable as it assumes that it directly evaluate the
target function f with �nite cost during its �nal cross-
validation phase. Our results can also be extended
to cases where �delity space is discrete, by using a
piecewise constant cost function.

Finally instead of minimizing the simple regret, the
cumulative regret has been also studied in multi-�delity
setting (Kandasamy et al., 2016b), rewarding all ac-
curate evaluations of the target function. However in
the present paper we optimize the simple regret as our
initial objective is to �nd the optimum of the target
function. The simple regret is adapted to the objectives
of Kometo, e.g., hyper-parameter optimization, where
we wish to spend the entire budget onpure exploration.

3 Assumptions

Our algorithm needs two assumptions, one on the target
function (which describes its smoothness) and one on
the �delity approximations (which characterizes how
well they approximate the function).

Hierarchical partitioning We use the notion of
hierarchical partitioning (Munos, 2011). At every
depth h � 0, X (potentially multi-dimensional) is
partitioned into K h di�erent cells ( Ph;i )0� i � K h � 1.
All the cells (Ph;i )h;i form a tree, where the root is
P0;0 = X , and where each cellPh;i has K children,
(Ph+1 ;Ki + l )0� l � K � 1, which form a partition of their
parent cell.

We make an assumption on the target functionf and
the hierarchical partitioning P, identical to the settings
of Sen et al. (2018). This following assumption is way
weaker than global Lipschitzness and as explained by
Grill et al. (2015) is simpler and weaker than assump-
tions made in previous works (Auer et al., 2007; Munos,
2011).

Assumption 1. [Assumption on the target function]
For one of the global optimumx? of f , there exists� > 0
and � 2 ]0; 1[ such that 8h 2 N; 8x 2 P h;i ?

h
; f (x) �

f (x?)� �� h , wherePh;i ?
h

is the cell of depthh containing
x?

We now de�ne a notion of near-optimality dimension
that only depends on the hierarchical partitioning P,
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and not on a metric.

De�nition 1. Near-optimality dimension : For
any � > 0 and � 2 ]0; 1[, we say that d 2 R+ is a
near optimality dimension of f with respect to the par-
titioning P and the smoothness parameters(�; � ) if

9C > 1; 8h 2 N; Nh (3�� h ) � C� � dh ;

where Nh (" ) is the number of cellsPh;i such that

sup
x 2P h;i

f (x) � f (x?) � ":

We then de�ne

S(P; �; �; d; C ) , f f : X ! R jf has smoothness

parameters (�; � ) for P and d is a

near-optimality dimension with

associated constant Cg

Note on the near-optimality dimension de�ni-
tion: Grill et al. (2015) de�ne the near-optimality
dimension as the in�mum of the set of d that satis�es
this de�nition (with � and � �xed). However, they then
assume that this in�mum also satis�es this de�nition,
which is not necessarily true (the set can be of the
form R> 0 for example). Bartlett et al. (2019) solve this
issue by adding an extra dependence on the constant
C to get a closed set (�xed parameters are then� , �
and C, instead of just � and � ). To avoid this extra
dependence, we chose to de�ned as a near-optimality
dimension, rather than the near optimality dimension.

We can notice that a function with smoothness param-
eters (�; � ) has necessarily an associated constant

C � Cmin ,
�

K
� � d

�
�

log 3
log 1

�

�

since all the cells at depth h0 , b(log 3)=(log 1=� )c
are near-optimal because of Assumption 1. Indeed,
it guarantees that 8x 2 X; f (x) � f (x?) � � , which
implies that 8x 2 X; f (x) � f (x?) � 3�� h0

We also have that dmax , (log K )=(log 1=� ) is always
a near-optimality dimension of the function, because of
the bound K h on the number of cell of depthh. This
emphasizes the fact that the near-optimality dimension
of a function is a way to characterize the complexity of
optimizing the function, and not an assumption. The
cased = 0 allows for faster rates the best empirical
results. As explained by Munos (2014), the cased = 0
is the most relevant in practice and covers most of the
real-world setups.

We now state three new di�erent assumptions on the
rate at which the cost-to-bias function � is decreasing,
namely polynomially, exponentially, or by a constant.

Assumption 2 (Assumption on the �delities) .

(a) There exist A; � > 0 such that �( c) � A=c� :

(b) There exist B; �; � > 0 such that �( c) � Be
� c �

� :

(c) There existsa � 1 such that �( c) = 0 for all c � a:

De�nition 2. For Asm being one of the three Assump-
tions 2 (either Assumption 2(a), Assumption 2(b), As-
sumption 2(c), with its speci�c parameters depending
on the case), we de�neF (Asm; f; � )= f (f z )z2 Z j there
exists a function � such that assumptionAsm holds
on f and (f z )z2 Z , with � as a cost function and� as
a bias functiong.

The above assumptions describe realistic rates for the
cost-to-bias function. Assumption 2(a) generalizes As-
sumption 3 of Sen et al. (2018) which is equivalent
to the case � � 1. Assumption 2(b) generalizes As-
sumption 2 of Sen et al. (2018) which corresponds to
the case� = 1. Assumption 2(c) is relevant when a
minimal cost to get a perfectly accurate estimation
is needed but unknown. It is also useful to link our
results (especially the theorem below) to works using
single-�delity optimization, since the settings are then
equivalent to deterministic single-�delity settings.

4 Lower bound

We provide the �rst lower bounds for the assumptions
on the �delities considered. Theorem 1 gives, for as-
sumptions 2(a), 2(b) and 2(c), bounds on the achievable
theoretical performance of an algorithm working under
these assumptions.

Theorem 1 (Lower bounds on simple regret). Let P
a partitioning of a space X , (�; � ) some smoothness
parameters, d 2 [0; dmax ] a near-optimality dimension
with associated constantC � Cmin and Asm one of the
three Assumptions 2 with associated parameters. Then,
for any budget � large enough, for any (determinis-
tic or random) policy � , there exist a target function
f 2 S(P; �; �; d; C ), a cost function � , and �delity ap-
proximations (f z )z2 Z 2 F (Asm; f; � ) such that:
Under Assumption 2(a) (�( c) � A=c� ):

r � (� ) � D1 �
� 1

d + 1
�

Under Assumption 2(b) (�( c) � Be
� c �

� ):

r � (� ) � e� D 2 �
�

1+ � , when d = 0
D3 �

� 1
d , when d > 0

Under Assumption 2(c) (�( c) = 0 for all c � a):

r � (� ) � e� D 4 � ; when d=0
D5 �

� 1
d , when d > 0;
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whereD1; D2; D3; D4; D5 > 0 are constants that do not
depend on� and � .

Ideas of the proof The proof is in the appendix. It
is based on the construction of a target function and
its approximations, such that the algorithm � may not
reach a certain depthh and open a near-optimal cell
at depth h. The construction of the target function
is done thanks to a tree, whose leaves are cells of the
partitioning, and which re
ects which cells are near-
optimal for the target function. The approximations
are made such that we can lower bound the cost that
� has to invest to get precise enough information.

We thus have to construct this tree, which is the tricky
part of the proof. This implies choosing near-optimal
cells that � is unlikely to open. We then get that
this depth h, which depends on the parameters of the
problem and on the budget, may not be reached by
� with a certain �xed probability. We can use this to
lower bound the regret.

Link with the upper bounds In Section 5 we give
an algorithm that, without any knowledge on �; �; d; C;
and �, achieves these rates with additional constants
and logarithmic factors. This means that these lower
bounds are close to the optimal rate for policies work-
ing with these assumptions, both with and without
knowledge of these parameters.

The only previous work using hierarchical partitioning
optimization with multi-�delity model and determin-
istic feedback worked with narrower assumptions as
said above. It obtained, under Assumption 2(a) with
� � 1, a regret of O(( �

log � )
� 1

d +1 ), which is only optimal
(ignoring constant and log factors) when� =1. Under
Assumption 2(b), MPFDOO gets, assuming � = 1 a
regret of O(( �

log � )
� 1

d + " ), for any " > 0, provided the
budget is large enough (with the threshold having a
dependence on"), which does not show that this lower
bound was reached.

Assumption 2(c) let us extend our results to single-
�delity algorithm with deterministic feedback. A true
exponential decay ford = 0 (and thus optimal up to a
constant) was �rst achieved by DOO (Munos, 2011, but
required the knowledge of the smoothness. SequOOL
(Bartlett et al., 2019) then managed to achieve an expo-
nential decay without the knowledge of the smoothness,
but with a logarithmic factor in the exponent. We how-
ever realized it is possible to get a true exponential
decay without the knowledge of the smoothness param-
eters by changing the number of opened cells at each
depth h of SequOOL, to either

j
2
p

n=h
k

up to depth

n, or
�
n=

�
h log(n=h)2

��
up to depth

�
n=e2

�
.

5 Algorithm

In this section we propose a new algorithm for multi-
�delity optimization called Kometo. We start with some
helpful notation.

Cell evaluations: Cell evaluations are done through
a single representant of each cellPh;i , denoted xh;i .
Th;i;j denote the number of evaluation potentially done
for the cell Ph;i at �delity level j .

For Kometo, the �delity level j, with j a non-negative
integer, is de�ned aszej . At each �delity level, at most
one evaluation can be done for each cell, which means
that Th;i;j is equal to either 0 or 1. We hence denote
as f h;i;j the result of the potential evaluation, when
Th;i;j = 1. We can notice that, for any j, because of
how the cells are opened,fP h;i , Th;i;j =1g is always a
tree.

We also slightly modify the usual de�nition of a cell
opening to make it work with our multi-�delity settings.

Multi-Fidelity Cell Opening: Opening a cell at
�delity level j means that, for each of its children Ph+1 ;i ,
the Th+1 ;i;u for 0 � u � j are set to 1.

This means that the values f h+1 ;i;u , equal to
f zeu (xh+1 ;i ), with xh;i the representative element of
the cell, can be requested and hence the evaluations
can be performed. With this de�nition, the opening at
�delity level j of a cell can not induce a total cost of
more that Ke j +1

e� 1 .

Kometo explanations: Kometo is detailed in Al-
gorithm 1. The algorithm presented is inspired by
StroquOOL (Bartlett et al. (2019)). Its main feature
is that, using Zipf sampling (which means, opening up
to e� cells at h=1, up to e� =2 cells at h=2 and so on) it
manages to reach the optimal rate up to logarithmic
factor without the knowledge of the smoothness.
This is done, in the exploration part, by opening a
decreasing number of cell at each depth, and at a
given depth, gradually decreasing the �delity at which
cells are opened. The intuition behind this idea is
that, for each depth h, and each 0� j h � j max , the
number of cell opened at �delity level j h or higher will
decrease withj h . If this j h is too low, the precision
might also be too low for the choices to be relevant,
but if j h is too high, not enough cells will be opened.
Cross-validation is then used by the algorithm in order
to choose the best cell regardless of depth and �delity
level. It ensures that the choice of a particular j h is
not needed.
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Algorithm 1 KOMETO

1: Parameters: (f z )z2 Z , P, �, �
2: Init:

e�  (e� 1)�
2Ke (log �+1) 2

, j max  
j
log e�

k
.

Open with budget e� the cell P0;0.

For h = 1 to be� c J Exploration I

For m = 1 to
j

e� =h
k

j  b log e�
hm c

Open at �delity level j the non-opened

cell Ph;i with the highest value f h;i;j ,

given that Th;i;j = 1

For j = 0 to j max J Cross-validation I
Evaluate at cost e� the candidates

xc
j  arg max

(h;i )2T ; T h;i;j =1
f h;i;j .

Output x �  arg max
f j 2 [0: j max ]g

f z e�

�
xc

j

�

Budget optimization: With a given budget �, we
can actually initialize the e� constant with a way higher
value than (e� 1)�

2Ke log (�+1) 2
, for multiple reasons:

� The actual cost used for a cell opening is rounded
down to eblog cc.

� The total budget mentioned for a cell opening
assumes that all the evaluation at di�erent
�delities will be requested for the children, which
is not the case.

� The number of opened cells at each depth is
bounded by K h

� For some partitioning, it is possible to use the
parent evaluations for one of its children.

Since the budget used can be predicted using onlye�
and the partitioning, and increase with e� , it is possible
to quickly calculate the optimal initial value of e� using
dichotomy. However, these previous optimization can
only increasee� by a multiplicative constant. Even if
the budget needs to be set in advance for this algorithm,
since we optimize the simple regret, we can obtain any-
time guarantees which only di�er by a multiplicative
constant using the doubling trick.

6 Theoretical guarantees

We �rst state a simple proposition which asserts, with
the initial value of e� , the budget condition is respected.

Proposition 2 (Budget use). The budget used by
Kometodoes not exceed� .

Our upper bounds use the Lambert function, evaluated
at positive real values. This function is de�ned as the
inverse of the function f (z) = zez . With the �rst two
terms of its asymptotic expansion, we get, whenz goes
to in�nity, that W (x) = log x � log logx + o(1).

We now state the main results of our analysis, using
the same context as Theorem 1 on lower bounds. The
proof is given in appendix:

Theorem 3 (Upper bounds on the simple regret).
Let P be a partitioning of a space X , (�; � ) some
smoothness parameters,d 2 [0; dmax ] a near-optimality
dimension with associated constantC � Cmin and Asm
being one of the three Assumption 2 with its associated
parameters.
Then, for any budget � � 1, target function
f 2 S(P; �; �; d; C ), cost function � , and �delity
approximations (f z )z2 Z 2 F (Asm; f; � ) provided to
Kometo,

Under Assumption 2(a) (�( c) � A
c� ): We �rst

de�ne two values, then state the regret

Value of h1

1
(d+ 1

� ) log 1
�

W
�

e� �
1
� (d+ 1

� ) log 1
�

4CeA
1
�

�

Value of h2

When d = 0 e�
4C

When d > 0 1
d log 1

�
W

�
e� d log 1

�

4C

�

Regret

High budget (�� h1 � e� A) r � � 3�
� � h1 + 2 A

e� �

Low budget (�� h1 > e � A) r � � 3�
� � h2 + 2 A

e� �

Under Assumption 2(b) (�( c) � Be
� c �

� ): We also
de�ne ab;� = max

�
1

2� ; log
�

B
�

��
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Value of h1

When d = 0
�

e�
4Che

� �
� +1

�
1

2� log 1
�

� 1
� +1

When d > 0 � +1
�d log 1

�
W ( �

� +1 d log 1
�

�
e�

4Che

� �
� +1

�
1

2� log 1
�

� 1
� +1

)

Value of h2

When d = 0 e�

4Ce(2 �a b;� )
1
�

When d > 0 1
d log 1

�
W

�
e� d log 1

�

4Ce(2 �a b;� )
1
�

�

Regret

High budget (h1 � ab;�

log 1
�

) r � � 3�
� � h1 + 2Be

� e� �

�

Low budget (h1 < ab;�

log 1
�

) r � � 3�
� � h2 + 2Be

� e� �

�

Under Assumption 2(c) (�( c) = 0 for all c � a):

Value of h

When d = 0 e�
4Cae

When d > 0 1
d log 1

�
W

�
e� d log 1

�

4Cae

�

Regret

r � � �
� � h

Corollary 4 (Regret decreasing rates). Following The-
orem 3 (the exact upper bounds used for the rates are
given in appendix):

Assumption 2(a) High budget Low budget

When d = 0 eO(� � � )

When d > 0 eO(�
� 1

d +1 =� ) eO(�
� 1
d + � � � )

Assumption 2(b) High budget Low budget

When d = 0 eeO ( � �
�

1+ � ) eeO ( � � � ) + eeO ( � �)

When d > 0 eO(�
� 1
d )

Assumption 2(c)

When d = 0 eeO ( � �)

When d > 0 eO(�
� 1
d )

As explained in the next paragraph, in practice and
for asymptotic comparisons only the results for high
budget settings are relevant.

We can notice that the rates of decreasing are better
until the threshold for high budget. This is because,

until the threshold, the algorithm does not have to fo-
cus on increasing the �delity cost to improve the result,
since the improvements in the regret it can make by
exploring more cells is vastly superior to the improve-
ments it can make with more precise analysis (which
involves more precise evaluations: a higher �delity).
This explains why the rates are close to the one ob-
tained on single-�delity optimisation (or, similarly, on
Assumption 2(c), which materializes this case). How-
ever, the low budget case actually requires a very low
budget (or very accurate �delities) so these rates are
not really relevant in practice. This dichotomy was
similarly noticed, by Bartlett et al. (2019) for the Stro-
quOOL algorithm, in a stochastic case: using only one
evaluation was enough as long as the noise did not
exceed the potential regret that could be obtained.

7 Empirical results

We chose to do the same synthetic and practical de-
terministic experiments that the one done in Sen et al.
(2018), and used their code for fair comparisons. The
algorithm to which Kometois compared are MFPDOO
(Sen et al. (2018)), POO (Grill et al. (2015)) and Se-
quOOL (Bartlett et al. (2019)). We directly used
Kometo without any tweaking. This shows Kometo
adaptability, which only needed the cost function and
the spaceX in order to work.

Experiments explanation Five of them are syn-
thetic deterministic experiments of di�erent, but always
low, dimensions. The budget is expressed in terms of
the number of multiple of the highest �delity cost � (1).
Note that these experiences may easily be unfair toward
non multi-�delity algorithms, because the results of the
multi-�delity algorithms heavily depends on how useful
the low �delities are, which is arbitrary on synthetic
experiments. Therefore, since non multi-�delity algo-
rithms have no access to low �delities and thus have less
information, synthetic experiences should not be used
to directly compare the e�ciency of a multi-�delity
and a non multi-�delity algorithm.

The last experience aims to measure the e�ciency of
the algorithms in practical settings. It involves tuning
two hyperparameters for text classi�cation, with the
number of samples used to obtain 5-fold cross-validation
accuracy determined by the �delity. The budget is, for
this experience, determined by the time used by the
algorithm to return its result, re
ecting simultaneously
the actual time used for the algorithm execution and
the cost of computing the accuracies.

Details about the experiments, along with comparisons
to other multi-�delity algorithms, can be found in Sen
et al. (2018).
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Figure 1: (a) top-left : Curin 2-dimensions, (b) top-right: Branin 2-dimensions (c) top-left: Hartman3d
3-dimensions (d) bottom-right: Hartman6d 6-dimensions (e) bottom-right: Borehole 8-dimensions(f )
bottom-right: SVM 2-dimensions. Experiments are composed of �ve synthetic experiments, from (a) to (e),
and one real-world, (f). The multi-�delity algorithms can use all �delities, while the non multi-�delity algorithms
only request at �delity z = 1 : The x-axis gives the budget e�ectively used by the algorithm, to re
ect algorithm
which exceed the attributed budget. The y-axis denotes the regret for the synthetic experiments (the lower the
better), and the accuracy for the SVM experiment (the higher the better). For readability, the graph only plot
the regret down to 10� 10.

Experiments analysis We can notice that Kometo
largely outperforms MFPDOO on three of the synthetic
experiments (Branin, Curin and Hartman3d) and on
the practical experiment. It however gets beaten by
MFPDOO on Borehole and Hartman6d by a relatively
small margin. For the Hartman3d and Curin experi-
ments, the better results of Kometocould be explained
with its rank-based property, low �delities may give
highly accurate information on the way close points
compare each other on the target function.

Interestingly, SequOOL outperforms Kometo on the
Branin and Hartman6d experiments. This happens
because, for these experiments, a lot of high-�delity
evaluations are needed to minimize the regret. Since
Kometokeeps an important portion of its budget for
low-�delity evaluations, it is late compared to SequOOL
which only does high-�delity evaluations. This is mate-
rialized in the theoretical guarantees by the fact that
Kometohas additionnal logarithmic factors compared
to SequOOL under Assumption 2(c).

8 Discussion

Possible stochastic settings Our algorithm works
in deterministic settings. However, our hypothesis of a

bounded bias can be replaced with an hypothesis of a
noise (potentially biased), with the same bounds. Our
algorithm can therefore work in stochastic settings, the
guarantees being given instead at high probability with
a cost-to-bias function changed accordingly.

However, in cases where the noise does not naturally
decrease to 0 at higher �delities, the � function will not
decrease to 0 either although required by 2. This issue
can be resolved by gradually increasing the number
of evaluations at higher �delities, to get a � function
that would converges to 0. Indeed using concentration
inequalities, we could then have Assumption 2 true
with high probability, which could bound the regret.

Cumulative regret in adaptive multi-�delity op-
timization Locatelli and Carpentier (2018) states
that the minimax optimal cumulative regret with the
knowledge of the smoothness cannot be attained by
single-�delity algorithm without the knowledge of the
smoothness of the function. We wonder if this result
remains true in multi-�delity settings using adapted
cumulative regret de�nitions.



Côme Fiegel, Victor Gabillon, Michal Valko

References

Auer, P., Ortner, R., and Szepesv�ari, C. (2007). Im-
proved rates for the stochastic continuum-armed ban-
dit problem. In Conference on Learning Theory.

Bartlett, P. L., Gabillon, V., and Valko, M. (2019).
A simple parameter-free and adaptive approach to
optimization under a minimal local smoothness as-
sumption. In Algorithmic Learning Theory .

Bubeck, S., Munos, R., Stoltz, G., and Szepesv�ari,
C. (2011). X-armed bandits. Journal of Machine
Learning Research, 12:1587{1627.

Cutler, M., Walsh, T. J., and How, J. P. (2014). Re-
inforcement learning with multi-�delity simulators.
In 2014 IEEE International Conference on Robotics
and Automation (ICRA) , pages 3888{3895. IEEE.

Ghosh, S., Kristensen, J., Zhang, Y., Subber, W., and
Wang, L. (2019). A Strategy for Adaptive Sampling
of Multi-�delity Gaussian Process to Reduce Predic-
tive Uncertainty. preprint .

Grill, J.-B., Valko, M., and Munos, R. (2015). Black-
box optimization of noisy functions with unknown
smoothness. InNeural Information Processing Sys-
tems.

Hoorfar, A. and Hassani, M. (2008). Inequalities on the
Lambert W function and hyperpower function. Jour-
nal of Inequalities in Pure and Applied Mathematics,
9(2):5{9.

Huang, D., Allen, T. T., Notz, W. I., and Miller,
R. A. (2006). Sequential kriging optimization using
multiple-�delity evaluations. Structural and Multi-
disciplinary Optimization , 32(5):369{382.

Kandasamy, K., Dasarathy, G., Oliva, J. B., Schnei-
der, J., and Poczos, B. (2016a). Gaussian process
bandit optimisation with multi-�delity evaluations.
30th Conference on Neural Information Processing
Systems.

Kandasamy, K., Dasarathy, G., Oliva, J. B., Schneider,
J., and Poczos, B. (2016b). Multi-�delity Gaussian
Process Bandit Optimisation. Journal of Arti�cial
Intelligence Research.

Kandasamy, K., Dasarathy, G., Poczos, B., and Schnei-
der, J. (2016c). The multi-�delity multi-armed ban-
dit. In Advances in Neural Information Processing
Systems, pages 1777{1785.

Kandasamy, K., Dasarathy, G., Schneider, J., and
Poczos, B. (2017). Multi-�delity bayesian optimisa-
tion with continuous approximations. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1799{1808. JMLR. org.

Kawaguchi, K., Maruyama, Y., and Zheng, X. (2016).
Global continuous optimization with error bound and

fast convergence.Journal of Arti�cial Intelligence
Research, 56:153{195.

Kleinberg, R., Slivkins, A., and Upfal, E. (2008). Multi-
armed bandit problems in metric spaces. InSympo-
sium on Theory Of Computing.

Li, L., Jamieson, K., DeSalvo, G., and Talwalkar, A.
R. A. (2017). Hyperband: Bandit-based con�gura-
tion evaluation for hyperparameter optimization. In
International Conference on Learning Representa-
tions.

Locatelli, A. and Carpentier, A. (2018). Adaptivity to
Smoothness in X-armed bandits. InConference on
Learning Theory.

Matyas, J. (1965). Random optimization. Automation
and Remote control, 26(2):246{253.

Munos, R. (2011). Optimistic optimization of determin-
istic functions without the knowledge of its smooth-
ness. InNeural Information Processing Systems.

Munos, R. (2014). From Bandits to Monte-Carlo Tree
Search: The Optimistic Principle Applied to Opti-
mization and Planning. Foundations and Trends in
Machine Learning.

Nesterov, Y. and Spokoiny, V. (2017). Random
gradient-free minimization of convex functions.Foun-
dations of Computational Mathematics, 17(2):527{
566.

Sen, R., Kandasamy, K., and Shakkottai, S. (2018).
Multi-Fidelity Black-Box Optimization with Hierar-
chical Partitions. International Conference on Ma-
chine Learning.

Sen, R., Kandasamy, K., and Shakkottai, S. (2019).
Noisy Blackbox Optimization with Multi-Fidelity
Queries: A Tree Search Approach.Proceedings of
the 22nd International Conference on Arti�cial In-
telligence and Statistics.

Shang, X., Kaufmann, E., and Valko, M. (2019). Gen-
eral parallel optimization without metric. In Algo-
rithmic Learning Theory .

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,
M. (2010). Gaussian process optimization in the
bandit setting: No regret and experimental design.
International Conference on Machine Learning.

Valko, M., Carpentier, A., and Munos, R. (2013).
Stochastic simultaneous optimistic optimization. In
International Conference on Machine Learning.

Zhang, Y., Hoang, T. N., Kian, B., Low, H., and
Kankanhalli, M. (2019). Information-Based Multi-
Fidelity Bayesian Optimization. Proceedings of the
Thirty-Third AAAI Conference on Arti�cial Intelli-
gence.



Adaptive multi-�delity optimization with fast learning rates

A Proof of Theorem 1

In the following proof, we set � a bijective cost function, and � (z) = �( xz ), where � is the upper bound of the
cost-to-bias function given by the assumptions.

We �rst give a way to construct target and �delity function for the lower bounds. Let Ta a truncated tree of P
(more precisely, a tree with the same root asP, and included in P). Ta nodes are therefore sub spaces ofX .

We then de�ne:

� For all h � 0, Th
a , the union of all the sub spaces associated to nodes ofTa of depth h. We can notice that

(Th
a )h� 0 is a decreasing sequence for the inclusion, withT0

a = P0;0 = X .

� f Ta by f Ta (x) = sup h� 0f� �� h jx 2 Th
a g, the target function

� (f Ta
z )z2 Z by f Ta

z (x) = min f f Ta (x); � � (z)g, the �delities

We now state Lemma 5, related to the constructions above. It shows that the previous target and �delity functions
can be used as counter-examples in order to show the lower bounds.

Lemma 5. Let Ta a truncated tree of P such that, for every depthh � 0, Ta has between1 and
�
� � dh

�
cells of

depth h.

Then:
- f Ta 2 S(P; �; �; d; C )
- (f Ta

z )z2 Z 2 F (Asm; f Ta ; � )

Proof. We start by showing that f Ta 2 S(P; �; �; d; C ).
As Ta has an in�nite depth, there exists a sequence(i h )h 2 N of indexes such that8h 2 N, fP h;i h g 2 Ta . By
taking ( xh )h2 N, such that for all h 2 N xh 2 P h;i h , we have that sup

h2 N
f Ta (xh ) = 0, which means sup

x 2 X
f Ta (x) = 0

Furthermore, we have that, for all h 2 N, for all x 2 P h;i h , f Ta (x) � � �� h by de�nition of f Ta , which is
equivalent to f Ta (x) � sup

x 02 X
f Ta (x0) � �� h . We therefore have that Assumption 1 is true for f Ta for the

smoothness parameters (�; � ).

We now show that d is a near-optimality dimension of f Ta for these smoothness parameters. Letho =
j

log 3
log 1

�

k

(we de�ned Cmin with Cmin =
�

K
� � d

� ho

). Let h 2 N, let's show that the related assumption is true at depth h:
If h � ho, then the number of near-optimal cells at depth h is simply bounded by the number of cells of depthh,
K h . As

K h =
K ho

K ho � h �
K ho

� � d(ho � h )
=

�
K

� � d

� ho

� � dh � Cmin � � dh ;

the hypothesis is true at depth h.
If h � ho, then thanks to hypothesis (2), there are at most

�
� � d(h � ho )

�
cells of height h � ho such that

sup
x 2P h � h o ;i

f Ta (x) > � �� h� ho � 1. By taking for each of these cells itsK ho grandchildren, we get that there are at

most
�
K ho � � d(h � ho )

�
cells of depth h such that sup

x 2P h;i

f Ta (x) > � �� h� ho � 1.

As j
K ho � � d(h � ho )

k
� Cmin � � dh
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and

� �� h� ho � 1 = � ��
h�

�
log 3
log 1

�
+1

�

� � ��
h� log 3

log 1
� = � 3�� h = sup

x 02 X
f Ta (x0) � 3�� h ;

there are at most Cmin � � dh near-optimal cells at depth h, which concludes.

We �nally want to show that ( f Ta
z )z2 Z 2 F (Asm; f Ta ; � ). As we de�ned � (z) = �( xz ), where � is the upper

bound given by Assumption 1, we just need to show, by takinggz = Id for all z 2 Z , that kf Ta � f Ta
z k1 � � (z)

for all z 2 Z .
Taking x 2 X , we either have
- f Ta (x) � � � (z), and thus f Ta

z (x) = f Ta (x), or
- f Ta (x) > � � (z) which implies jf Ta (x) � f Ta

z (x)j = f Ta (x) + � (z) � � (z) as the function f Ta is non-positive by
de�nition.
The distinction between these two cases gives us that the bound on the in�nity norm is true, and thus concludes.

Lemma 6. By choosing appropriate target functions and �delity approximations, we can get two lower bounds of
the regret with � :

Lower bound a: r � � sup
�

r 2 ]0; 1
2 �� ] j � � 1

K

�
2r
��

� � d
inf � � 1

�
[0; 2r

� ]
� �

Lower bound b: r � � sup
n

r 2]0; 1
4 �� 6] j � �

�
log �

4 r
4 log 1

�
� 2

�
inf � � 1

�h
0; �

�

�
4r
�

� 1
4

i�o

Proof. We will denote by (X Ta
l ) l 2 N the family of random variables equal to the successive points requested by

� which has been given the �delity approximations
�
f Ta

z

�
(the values are null when l exceeds the number of

evaluations). We also denote, for a given depthh, by STa
h the (also random) set of indexesl such that the �delity

z associated to the request of the pointX Ta
l respects� (z) � �� h .

The key to the following proof is that, for any depth h � 0, for any tree Ta , if T0
a is the tree Ta whom nodes of

depth h0 � h + 1 have been cut, then for any l � 0, X Ta
l j (8m 2 STa

h ; m < l =) X Ta
m 62Th+1

a ) has the same

distribution as X T 0
a

l j (8m 2 ST 0
a

h ; m < l =) X T 0
a

m 62Th+1
a ). This is because, in this instance, all the previous

evaluations were either at a �delity z too low and were equal to � � (z) � � �� h , or were evaluated outside of the
sub space of a node ofTa of depth h+1. In both cases, the returned values were una�ected by the cutting of the
nodes of depthh0 � h + 1 of T0

a , which implies that the behavior of the algorithm will remain the same for the

request of the point X T 0
a

l .

We thus de�ne the idea of opening a cell C as, when C is of depthh, having a l 2 STa
h such that X Ta

l 2 C.
This means requesting a point of this cell with a high enough �delity to di�erentiate the cells of Th+1

a from the
rest of the cells.

To simplify the proof, we will assume that the output of the algorithm is done with a last free evaluation at the
highest �delity. This evaluation will thus belong to STa

h for any h � 0, and the lemma will be proved by showing
that this last evaluation has a certain chance not to belong toTh0

a for someh0 when
�
f Ta

z

�
is given to � .

We �nally de�ne, for any h � 0, ch = inf � � 1([0; �� h ]) and Nh =
j

�
ch

k
+1. ch is the minimum cost necessary to

get an evaluation of biasb � �� h , while Nh is the maximum number of such evaluations an algorithm can get,
including the last free one. This gives, for any truncated treeTa and h � 0, # STa

h � Nh

Reminder: If Ph;i is a cell of X , its children are the K cells Ph+1 ;Ki , ..., Ph+1 ;Ki + K � 1.

We then prove the two di�erent lower bounds:
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Lower bound a (width limitation) :

This lowerbound is based on the idea that, at a given depth h, the algorithm may have the budget to only open a
fraction of the children of the near optimal cells (remember that the idea of opening, previously de�ned, also
takes into account the �delity level). As the behavior of the algorithm is potentially random, we choose the cell C
that is the least likely to be opened as the only one potentially containing the optimum (ieTh+1

a = C), and then
bound the probability of its opening.

We �rst assume that there exists a non-negative integer h such that � � dh ch
� � K . Then, there also exists an integer

s such that �
ch

< K s � � � dh . Because� � dh � 1, we can assumes to be non-negative. SinceK s is an integer,

we get that K s �
j

�
ch

k
+1 = Nh . We also get that K s � � � dh � K h because ofd � logK

log 1
�

, which implies h � s � 0.

We now de�ne the trees we will use, along with Lemma 5, to lower bound the regret:

We start with T =
�

h� s� 1S

h0=0
fP h0;0g

�
S

 
hS

h0= h� s

K h 0� ( h � s ) � 1S

i =0
fP h0;i g

!

We can �rst notice that T partially satis�es the hypothesis of lemma 5. Indeed, the �rst h � s depths of T only
have one node. Forh � s � h0 � h, there are K h0� (h � s) nodes of depthh0. SinceK s � � � dh � � � dh 0

K h� h0
, we

indeed haveK h0� (h � s) � � � dh 0
. However, the theorem also requires at least one node per depth.

We now de�ne, for all integer i such that 0 � i � K s+1 ,

Ti = T
S

 
1S

h0= h+1
fP h0;K h 0� ( h +1) i g

!

We can notice that, for all i , Ti is a truncated tree of P, has at least one node per depth, and the upper bound is
still veri�ed, as only one node was added for each empty depth was added. It thus veri�es the hypothesis of the
lemma.

We also de�ne pi = P(9l 2 ST i
h ; X T i

l 2 P h+1 ;i ). It corresponds to the probability of the cell Ph0;i being



Côme Fiegel, Victor Gabillon, Michal Valko

opened when the algorithm is given (f T i
z )z2 Z . We then try to upper bound one of the pi

K s +1 � 1X

i =0

pi =
K s +1 � 1X

i =0

P

 
[

l 2 N

�
l 2 ST i

h ; X T i
l 2 P h+1 ;i

�
!

=
K s +1 � 1X

i =0

P

 
G

l 2 N

�
l 2 ST i

h ; X T i
l 2 P h+1 ;i and

�
8m 2 ST i

h ; m < l =) XT i
m 62 Ph+1 ;i

��
!

=
K s +1 � 1X

i =0

X

l 2 N

P
�

l 2 ST i
h ; X T i

l 2 P h+1 ;i and
�

8m 2 ST i
h ; m < l =) XT i

m 62 Ph+1 ;i

��

=
K s +1 � 1X

i =0

X

l 2 N

P
�
l 2 ST

h ; X T
l 2 P h+1 ;i and

�
8m 2 ST

h ; m < l =) XT
m 62 Ph+1 ;i

��

�
K s +1 � 1X

i =0

X

l 2 N

P
�
l 2 ST

h ; X T
l 2 P h+1 ;i

�

=
X

l 2 N

K s +1 � 1X

i =0

P
�
l 2 ST

h ; X T
l 2 P h+1 ;i

�

�
X

l 2 N

P
�
l 2 ST

h

�

= E
�
# ST

h

�

� Nh

� K s

We therefore have the existence ofi � K s+1 � 1 such that pi � 1
K � 1

2 .
By giving � the �delity approximations ( f T i

z )z2 Z , since Ti respect the hypothesis of Lemma 5, we can lower
bound the minimax regret with 1

2 �� h

This result needed that � � dh ch
� � K with h a positive integer, which can be rewrote

� � dh inf � � 1 ([0;�� h ])
K � �.

Since this condition remains true if we take insteadh0 � h, we can just suppose thateh is a positive real number

such that
� � d eh inf � � 1

�
[0;��

eh ]
�

K � �, and in this case get r � � 1
2 �� behc+1 � 1

2 �� eh+1 . By replacing eh with 1
2 �� eh+1 ,

this is the same thing as assuming that there existsr 2]0; 1
2 �� ] such that ( 2r

�� ) � d
inf � � 1 ([0; 2r

� ])
K � � to get r � � r ,

which concludes.

Lower bound b (depth limitation) :

In this second lower bound, the idea is that, after a depth h, the depth an algorithm can consistently reach
when exploring a branch is at most proportional to the number of opening at depthh. We �rst take h such that
h � Nh . We de�ne recursively for h0 � h, (ph0;i )0� i � K � 1, i h0 and Th0 with

When h0 = h:

8
>><

>>:

ph;i = 1
ih = 0

Th =
hS

hp =0
fP hp ;0g
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When h0 > h

8
>>>>>><

>>>>>>:

ph0;i = P
�

9l 2 S
Th 0� 1

h ; X
Th 0� 1

l 2 P h0;Ki h 0� 1 + i and
�

8m 2 S
T h 0� 1

h ; m < l =) X
T h 0� 1
m 62 Ph0� 1;ih 0� 1

��

ih0 = Ki h0� 1 + arg min
i

ph0;i

Th0 = Th0� 1
S

fP h0;i h 0g

We also de�ne T =
1S

h0= h
Th0

SinceT only has one in�nite branch, we have that T veri�es the hypothesis of Lemma 5.

Because, for every depthh0 � h + 1, the ph0;i are K probability of disjoint events, we necessarily have that the
probability associated to i h0 is upper bounded by 1

K � 1
2 .

We now de�ne, for h0 � h+1 the events Eh0 =
�

9l 2 ST
h ; X T

l 2 P h0;i h 0 and
�

8m 2 ST
h ; m < l =) XT

m 62 Ph0� 1;ih 0� 1

��
,

and the random variable M =
4hP

h0= h+1
1E h 0 Let's �rst bound M with a certain probability, using Markov

inequality.

E(M ) =
4hX

h0= h+1

E
�
1E h 0

�

=
4hX

h0= h+1

P
�

9l 2 ST
h ; X T

l 2 P h0;i h 0 and
�

8m 2 ST
h ; m < l =) XT

m 62 Ph0� 1;ih 0� 1

��

=
4hX

h0= h+1

P
�

9l 2 S
Th 0� 1

h ; X
Th 0� 1

l 2 P h0;i h 0 and
�

8m 2 S
T h 0� 1

h ; m < l =) X
T h 0� 1
m 62 Ph0� 1;ih 0� 1

��

=
4hX

h0= h+1

ph0;i h 0� Ki h 0� 1

�
4hX

h0= h+1

1
2

=
3h
2

We then get P(M � 2h) � E(M )
2h � 3

4

We now de�ne the event B =
�
8l 2 ST

h ; X T
l 62 P4h;i 4h

�
and show that (M < 2h) � B .

We denote by j 1, ... , j t the di�erent elements of ST
h ranked from lowest to highest (with t = # ST

h ), and we
de�ne the (ar )0� r � t with a0 = h and ar = max f h0 2 Jh ; 4hKj 9m � r; X T

j m
2 P h0;i h 0g

S
f hg when r > 0. This

de�nition ensures that ar is superior or equal to the deepest opened depth afterr requests of points at �delities z
of biais � (z) � �� h . We especially have that the sequence (ar )0� r � t is non-decreasing. Note that all these values
are random variables, and that (at < 4h) is exactly the event B.

We can then notice that, with these de�nitions, for any h0 2 Jh + 1 ; 4hK,

�
9r 2 J0 ; t � 1K; X T

j ( r +1)
2 P h0;i h 0 and

�
8m < r + 1 ; XT

j m
62 Ph0� 1;ih 0� 1

��
=

�
9l 2 ST

h ; X T
l 2 P h0;i h 0 and

�
8m 2 ST

h ; m < l =) XT
m 62 Ph0� 1;ih 0� 1

��
= Eh0 (1)

Using this equality, we can see that the existence ofr 2 J0 ; t � 1Ksuch that h0 2 Jar + 2 ; ar +1 Kimplies Eh0.
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Counting the h0 then let us get that #
t � 1S

r =0
Jar + 2 ; ar +1 K�

4hP

h0= h+1
1E h 0 .

Since all the setsJar + 2 ; ar +1 Kare disjoints (because (ar )0� r � t is non-decreasing), we have
t � 1P

r =0
(ar +1 � al � 1) �

M , which gives at � a0 + t + M . As h � Nh by hypothesis anda0 = h, we haveat � 2h + M Thus, (M < 2h)
implies (at < 4h) , ie (M < 2h) implies B.

Finally, with P(B ) � P(M < 2h) � 1
4 , we can bound the regret with r � � 1

4 �� 4h by giving � the �delity
approximations (f T

z )z2 Z , since, as mentioned above,T respects the hypothesis of Lemma 5.

To conclude, we do the same thing as for Lower bound a. The hypothesis was the existence ofh such that
h � Nh to get a bound �� 4h . It is especially the case when (h + 1) inf � � 1

�
[0; �� h+1 ]

�
� �. This can similarly

be changed to the existence of a real numbereh � 1 such that eh inf � � 1
�

[0; �� eh]
�

� � to get a bound 1
4 �� 4(eh+2) .

With r = 1
4 �� (4eh+2) , we needr � 1

4 �� 6 and
�

log �
4 r

4 log 1
�

� 2
�

inf � � 1
�h

0; �
�

�
4r
�

� 1
4

i�
� �

Proof of Theorem 1: We now apply Lemma 6 to get the wanted lower bounds in the di�erent cases.

Under Assumption 2(a):

We �rst try to solve y = �( c) for c � 1. We have y = A
c� , which means that c =

� y
A

� � 1
� when A � y. This

implies that, if r � �A
2 , inf � � 1

�
[0; 2r

� ]
�

=
�

2r
�A

� � 1
�

.

We thus try, for r � r 1
min , minf 1

2 �A; 1
2 �� g, to solve the equation � r = 1

K

�
2r
��

� � d
inf � � 1

�
[0; 2r

� ]
�

in order to

apply Lemma 6.a. We have � r = 1
K

�
2

��

� � d �
2

�A

� � 1
�

r � d� 1
� , which is equivalent to K

�
2

��

� d �
2

�A

� 1
�

� r = r � d� 1
� .

With D1 , K
� 1

d + 1
�

�
2

��

� � d
d + 1

�

�
2

�A

� � 1
1+ d�

, we haveD1�
� 1

d + 1
�

r = r .

Finally, using Lemma 6.a, if � � � r 1
min

, we have the boundr � � D1�
� 1

d + 1
� . Otherwise, if � < � r 1

min
we only get

that r � � r 1
min .

Under Assumption 2(b)

d = 0 : Similarly, we solve y = �( c) for c � 1. Since �( c) = Be� c �
� , we get c =

�
� log

�
B
y

�� 1
�

when B � y. Using

this, we have that if �
�

�
4r
�

� 1
4 � B , ie r �

�
�B
�

� 4
�
4 , then inf � � 1

�h
0; �

�

�
4r
�

� 1
4

i�
=

�
� log

�
�B
�

�
�
4r

� 1
4

�� 1
�

.

To use Lemma 6.b, we then try to solve, for r � min f 1
4 �� 6;

�
�B
�

� 4
�
4 g, the equation

� r =
�

log �
4 r

4 log 1
�

� 2
�

inf � � 1
�h

0; �
�

�
4r
�

� 1
4

i�
. This equation is equivalent to 41+ 1

� log 1
� �

� 1
� � r =

�
log �

4r � 8 log 1
�

��
log

� �
B
�

� 4 �
4r

�� 1
�

. We de�ne L 1 , log �
4 � 8 log 1

� , L 2 , log
� �

B
�

� 4 �
4

�
, and D , 41+ 1

� log 1
� �

� 1
�

to get it in the form D� r =
�
L 1 + log 1

r

��
L 2 + log 1

r

� 1
� . We now also assumeL 1 � � 1

2 log 1
r and L 2 � � 1

2 log 1
r

(equivalent to r � e2 L 1 and r � e2 L 2 ), to get D � r �
�

1
2 log 1

r

��
1
2 log 1

r

� 1
� , ie 2D

�
1+ � �

�
1+ �
r � log

�
1
r

�
. This gives

e� D 2 �
�

1+ �
r � r with D2 , 2D

�
1+ � .

We now conclude like above, this time using Lemma 6.b. If we de�ner 2
min , minf 1

4 �� 6;
�

�B
�

� 4
�
4 ; e2 L 1 ; e2 L 2 g,
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for all � � � r 2
min

, we can get the boundr � � e� D 2 �
�

1+ � , and r � � r 2
min otherwise.

d > 0 : In this case, we simply use thatinf � � 1
�

[0; 2r
� ]

�
� 1 by de�nition of �. We try to apply the Lemma

6.a, and solve forr � 1
2 �� , � r = 1

K

�
2r
��

� � d
inf � � 1

�h
0; �

�

�
4r
�

� 1
4

i�
. We here have � r � 1

K

�
2r
��

� � d
, which means

��
2 K

� 1
d �

� 1
d

r � r . With D3 = ��
2 K

� 1
d , we haveD3 �

� 1
d

r � r , and we conclude like above withr 3
min = 1

2 �� .

Under Assumption 2(c)

d=0: We try to apply the Lemma 6.b, and solve, for r � r 4
min = 1

4 �� 6, � r �
�

log �
4 r

4 log 1
�

� 2
�

inf � � 1
�h

0; �
�

�
4r
�

� 1
4

i�
.

Since the required cost to get any information on the function isa, we have that inf � � 1
�h

0; �
�

�
4r
�

� 1
4

i�
= a, which

means that � r =
�

log �
4 r

4 log 1
�

� 2
�

a, ie log 4
� + 8 log 1

� + 4 log 1
�

� r
a = log 1

r . If we assume �r � a
4 log 1

�

�
log 4

� + 8 log 1
�

�
,

we have 8 log1
�

� r
a � log 1

r , and with D4 = 8 log 1
�

1
a , we �nally get e� D 4 � r � r .

We then conclude like before by applying the Lemma 6.b, and then, for any � �
max

n
� r 4

min
; a

4 log 1
�

�
log 4

� + 8 log 1
�

�o
, we can get the boundr � � e� D 4 � r

d > 0 : The reasoning and the wanted bounds (withD3 = D5) are exactly the same as the cased > 0 of
Assumption 2(b).

B Upper bounds

Proof of Proposition 2. When a cell is opened at �delity j , the maximum budget used for this opening can not
exceedKe j . We can therefore upper bound the budget used for all of the cell opening, ignoring the initial cell
opening ofP0;0

be� cX

h=1

j
e�
h

k

X

m =1

j
log e�

hm

k

X

j =0

Ke j �
be� cX

h=1

j
e�
h

k

X

m =1

Ke
j

log e�
hm

k
+1

e � 1

�
be� cX

h=1

j
e�
h

k

X

m =1

Ke e�
(e � 1)hm

�
be� cX

h=1

Ke e�
(e � 1)h

 

log
e�
h

+ 1

!

�
Ke e�

(e � 1)

�
log e� + 1

�
 

log
e�
h

+ 1

!

�
Ke e�

(e � 1)
(log � + 1) 2

�
�
2

The budget used for the initial opening and for the cross-validation can be bounded by

�
K + log e�

�
e� � K (log � + 1) e� �

�
2



Côme Fiegel, Victor Gabillon, Michal Valko

This shows that the total budget can be bounded by �.

Lemma 7. Let 	 a non-increasing function upper bounding� , j a non-negative integer andeh a positive real
number such that

1. 	( ej ) � �� eh ; and

2. e�
4ehe j

� C� � deh .

Then, r � � 3�
� � eh + 2 	

�
e�

�
.

Proof. We denote by Px ? ;h 0 the cell of depth h' containing x?, i? the associated index andh = behc.

Case h > 0 : To prove this lemma, we �rst want to show that the cell Px ? ; is opened with a costch with c � ej .
We do it by induction, and show this is true for any h0 such that h0 � h
When h0 = 0, the proposition is trivial since there is only one cell of depth 0, opened by the algorithm with
c0 = e� � ej because of (2) andeh > 1.
When 0 < h 0 � h, we assume thatPx ? ;h 0� 1 is opened, andch0� 1 � ej . We want to show that at least C� � dh 0

cells are opened at a cost superior or equal toej and strictly inferior to ej +1 . This number nh0 of cells is equal to
nh0 = # f m 2 J1 ; e�

h0 Kjej +1 > e�
h0m � ej g = # f m 2 N? j e�

h0ej +1 < m � e�
h0ej g � e�

h0ej � e�
h0ej +1 � 1 � e�

2h0ej � 1

Since e�
2h0ej � e�

2ehe j
� 2C� � deh � 2, we conclude thatnh0 � e�

4h0ej � e�
4ehe j

� C� � deh � C� � dh 0
.

We now suppose that the cellPx ? ;h 0� 1 was not opened withch0 � ej . Then at least nh0 cells of depth h0 were
such that f h0;i;j � f h0;i ? ;j , with i denoting the index of any of these cells. This means that, using Assumption 1
and hypothesis (1) of the lemma,

supx 2P h 0;i
f (x) + �� h0

� f (xh0;i ) + 	( ej ) � f ze j (xh0;i ) = f h0;i;j � f h0;i ? ;j = f ze j (xh0;i ? ) � f (xh0;i ? ) � 	( ej ) �

f (xh0;i ? ) � �� h0
� f (x?) � 2�� h0

(�)

absurd sinceNh0 � C� � dh 0
� nh0. We thus have that Px ? ;h 0� 1 was opened withch0 � ej

We have shown that the cell Px ? ; has been opened with a costch � ej . This means that the cell has
been evaluated at least once for a �delity of costej 0

with j 0 � j . Using the same chain of inequality (�) for h,
and 	( ej 0

) � 	( ej ), we get that the cross-validation candidate xc
j

0 is such that f (xc
j ) � f (x?) � 3�� h . Then, if

xc
j " is the returned value, we have that

f (xc
j " ) + 	( e�) � f z e�

(xc
j " ) � f z e�

(xc
j 0) � f (xc

j 0) � 	( e�) � f (x?) � 	( e�) � 3�� h

, and we can conclude thatr � � 3 �
� � � deh sinceeh � h � 1

Case h=0 : Since any returnedxc belongs toPx ? ;0, we have that r � � �� 0 � �
� � eh � 3�

� � eh + 2 	( e�)

Proof of Theorem 3. The proofs for the �rst two hypothesis are similar since they use the same techniques to
apply the lemma

Under Assumption 2(a) (�( c) � A
c� ):

We �rst try to solve
e� �

1
� �

h
�

4eA
1
� h

= C� � dh with h unknown. Since this equality is equivalent to

e� �
1
� (d+ 1

� ) log 1
�

4CeA
1
� h

= ( d + 1
� ) log 1

� h e(d+ 1
� ) log 1

� h , there exists a single positive real number h, which we will
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name h1, such that the equality is respected, with h1 = 1
(d+ 1

� ) log 1
�

W(
e� �

1
� (d+ 1

� ) log 1
�

4CeA
1
�

). We de�ne the same way

h2 as the only solution of the equation e�
4h = C� � dh (equal to e�

4C if d = 0 and 1
d log 1

�
W(

e� d log 1
�

4C ) if d > 0). Note

that h1 and h2 are both increasing with the budget.
We also de�ne 	 with 	( x) = A

x � We then discriminate between the two cases:

First case (High Budget) : �� h1 � e� A

We set j 1 = blog( eA
1
�

�
1
� �

h 1
�

)c. Thanks to the hypothesis, we have thatj 1 is a positive integer.

We then try to apply Lemma 7 on 	, h1 and j 1. Since j 1 > log ( eA
1
�

�
1
� �

h 1
�

) � 1 = log( A
1
�

�
1
� �

h 1
�

), we have A
e�j 1

< �� h1

which means 	( ej 1 ) < �� h1 , hypothesis (1).

We also havej 1 � log( eA
1
�

�
1
� �

h 1
�

), ie 1
ej 1

� �
1
� �

h 1
�

eA
1
�

, which givesC� � dh 1 =
e� �

1
� �

h 1
�

4eA
1
� h1

� e�
4h1 ej 1

, hypothesis (2). Applying

the lemma then let us obtain the claimed results.

Second case (low budget) : �� h1 > e � A

We set j 2 = 0 and here try to apply Lemma 7 on 	, h2 and j 2. We have h1� � dh 1 =
e� �

1
� �

h 1
�

4eA
1
� C

> e�
4C = h2� � dh 2 ,

which meansh1 > h 2 sinceh� > h� � dh is increasing onR+ . This gives 	( ej 2 ) = A < e � A < �� h1 < �� h2 (1)
The de�nition of h2 immediately gives e�

4h2 ej 2
� C� � dh 2 (2), and we conclude with the lemma.

Under Assumption 2(b) (�( c) � Be
� c �

� ):

We �rst de�ne ab;� as equal tomax( 1
2� ; log( B

� )). Similarly to assumption 2.a, we then de�ne h1 as the only

real positive number h such that e�

4he(2 �h log 1
� )

1
�

= C� � dh , and h2 the only real positive number h such that

e�

4he(2 �a b;� )
1
�

= C� � dh .

Value of h1: We have that e�

4Ce(2 � log 1
� )

1
�

= h
1+ �

�
1 � � dh 1 , which gives ( e�

4Che )
�

� +1 ( 1
2� log 1

�
)

1
� +1 = h1� � �

� +1 dh .

When d = 0, we then get h1 = ( e�
4Che )

�
� +1 ( 1

2� log 1
�

)
1

� +1 . When d > 0, we have �
� +1 d log 1

� ( e�
4Che )

�
� +1 ( 1

2� log 1
�

)
1

� +1 =

( �
� +1 d log 1

� )h1e
�

� +1 d log 1
� h1 . We �nally get h1 = � +1

�d log 1
�

W ( �
� +1 d log 1

� ( e�
4Che )

�
� +1 ( 1

2� log 1
�

)
1

� +1 )

Value of h2: The de�nition gives e�

4Ce(2 �a b;� )
1
�

= h2� � dh 2 . If d = 0, we have h2 = e�

4Ce(2 �a b;� )
1
�

. If d > 0, we

get, like for a) h2 = 1
d log 1

�
W (

e� d log 1
�

4Ce(2 �a b;� )
1
�

).

We also de�ne 	 with 	( x) = Be
� x �

� . We again discriminate between the two cases.

First case (High Budget): h1 � ab;�

log 1
�

We set j 1 = b1
� log(2�h 1 log 1

� )c + 1. Since 2�h 1 log 1
� � 2�a b;� � 1, j 1 � 1

We thus try to apply Lemma 7 on 	 h1 and j 1. Thanks to

e�j 1 � 2�h 1 log
1
�

� � (h1 log
1
�

+ log
B
�

)

we haveBe
� e �j 1

� � �� h1 , ie 	( ej 1 ) � �� h1 , hypothesis (1).
Sinceej 1 � e(2�h 1 log 1

� )
1
� , we have

e�
4h1ej 1

�
e�

4h1e(2�h 1 log 1
� )

1
�

= C� � dh 1 (2)
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We then get the wanted results by applying the lemma.

Second case (Low Budget): h1 < ab;�

log 1
�

We set j 2 = b1
� log(2�a b;� )c + 1 � 1 and apply Lemma 7 on 	, h2 and j 2.

The proof is really similar to the previous case, but we �rst need to show that h1 � h2. This is due to

h1� � dh 1 =
e�

4Ce(2�h 1 log 1
� )

1
�

�
e�

4Ce(2�a b;� )
1
�

= h2� � dh 2

which implies h1 � h2 We then use this inequality to show

e�j 2 � 2�a b;� � � (h1 log
1
�

+ log
B
�

) � � (h2 log
1
�

+ log
B
�

)

and we conclude like before with 	( ej 2 ) � �� h2 (1).

Like in the previous case, we haveej 2 � e(2�a b;� )
1
� and thus

e�
4h2ej 2

�
e�

4h2e(2�a b;� )
1
�

= C� � dh 2 (2)

which let us conclude with the lemma.

Under Assumption 2(c) (�( c) = 0 for all c � a)

We de�ne h1 as the only real solution to the equation e�
4aeh = C� � dh . Similarly to the two previous

cases, we geth1 = e�
4Cae when d=0 and h1 = 1

d log 1
�

W (
e� d log 1

�

4Cae ) when d > 0.

If e� � a :

We now de�ne 	 with 	( x)= + 1 if x < a
0 if x � a

, j 1 with j 1 = blog(ea)c and we try to apply Lemma 7 on

	, h1 and j 1.
Sinceej 1 � a, 	( ej 1 ) � �� h1 (1). Using ej 1 � ea, we have

e�
4h1ej 1

�
e�

4h1ea
= C� � dh 1 (2)

. We then use the lemma (and 	( e� ) = 0, but in its proof, since we can upper bound 	( ej 0
) by 0 in this speci�c

case, we can loose a 3 factor in the result and just keep�� � h1

If e� < a :
We then have h1 < 1. Sincer � � � , as explained in the lemma proof, we haver � � �

� � h1 which concludes.

Proof of Corollary 4. For the proof of the di�erent bounds, we use that W (x) � log x � log log x for x � e, as
shown in Hoorfar and Hassani (2008). We can also notice that forx � e, we haveW (x) � x=e.
We remind that the value of e� is bounded by

(e � 1)�

2Ke(log � + 1) 2

Under Assumption 2(a) (�( c) � A
c� ):
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High Budget: We de�ne e� c =
e� �

1
� (d+ 1

� ) log 1
�

4CeA
1
�

.

If e� c � e then

r � �
3�
�

� h1 + 2
A
e� �

=
3�
�

�
1

( d + 1
� ) log 1

�
W ( e� c )

+ 2
A
e� �

�
3�
�

�
1

( d + 1
� ) log 1

�
log

�
e� c

log e� c

�

+ 2
A
e� �

=
3�
�

 
e� c

log e� c

! � 1
d + 1

�

+ 2
A
e� �

If e� c � e, then

r � �
3�
�

� h1 + 2
A
e� �

=
3�
�

�
1

( d + 1
� ) log 1

�
W ( e� c )

+ 2
A
e� �

=
3�
�

�
1

( d + 1
� ) log 1

�

e� c
e

+ 2
A
e� �

Low Budget: If d = 0, the exponential upper bound is given by

r � �
3�
�

� h2 + 2
A
e� �

�
3�
�

�
e�

4C + 2
A
e� �

If d > 0, we de�ne e� c =
e� d log 1

�

4C

Then, if e� c � e

r � �
3�
�

� h1 + 2
A
e� �

=
3�
�

�
1

d log 1
�

W ( e� c )
+ 2

A
e� �

�
3�
�

�
1

d log 1
�

log
�

e� c
log e� c

�

+ 2
A
e� �

=
3�
�

 
e� c

log e� c

! � 1
d

+ 2
A
e� �

Else, if e� c < e
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r � �
3�
�

� h1 + 2
A
e� �

=
3�
�

�
1

d log 1
�

W ( e� c )
+ 2

A
e� �

�
3�
�

�
1

d log 1
�

e� c
e

+ 2
A
e� �

Under Assumption 2(b) (�( c) � Be
� c �

� ):

High Budget: If d = 0, then we directly get

r � �
3�
�

� h1 + 2Be
� e� �

� �
3�
�

�
( e�

4Che )
�

� +1 ( 1
2 � log 1

�
)

1
� +1

+ 2Be
� e� �

�

If d > 0, we de�ne e� c =
�

�
� +1 d log 1

�

�
1

2� log 1
�

� 1
� +1

� � +1
�

e�
4Che

Then, if e� c � e

r � �
3�
�

� h1 + 2Be
� e� �

�

=
3�
�

�
� +1

�d log 1
�

W ( e�
�

� +1
c )

+ 2Be
� e� �

�

�
3�
�

�

� +1
�d log 1

�
log

0

@ e�

�
� +1
c

log e� c

1

A

+ 2Be
� e� �

�

=
3�
�

0

B
B
@

e� c
�

log e� c

� � +1
�

1

C
C
A

� 1
d

+ 2Be
� e� �

�

Else, if e� c < e

r � �
3�
�

� h1 + 2Be
� e� �

�

=
3�
�

�
� +1

�d log 1
�

W ( e�
�

� +1
c )

+ 2Be
� e� �

�

�
3�
�

�
� +1

�d log 1
�

e�

�
� +1
c

e
+ 2Be

� e� �

�

Low Budget: If d = 0, we get

r � �
3�
�

� h1 + 2Be
� e� �

� �
3�
�

�

e�

4Ce (2 �a b;� )
1
� + 2Be

� e� �

�
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If d > 0, we de�ne e� c = �
� +1 d log 1

� ( e�
4Che )

�
� +1 ( 1

2� log 1
�

)
1

� +1

Then, if e� c � e

r � �
3�
�

� h1 + 2Be
� e� �

�

=
3�
�

�
1

d log 1
�

W ( e� c )
+ 2Be

� e� �

�

�
3�
�

�
1

d log 1
�

log
�

e� c
log e� c

�

+ 2Be
� e� �

�

=
3�
�

 
e� c

log e� c

! � 1
d

+ 2Be
� e� �

�

Else, if e� c < e

r � �
3�
�

� h1 + 2Be
� e� �

�

=
3�
�

�
1

d log 1
�

W ( e� c )
+ 2Be

� e� �

�

�
3�
�

�
1

d log 1
�

e� c
e

+ 2Be
� e� �

�

Under Assumption 2(c) (�( c) = 0 for all c � a)

If d = 0, we get

r � �
�
�

� h1 �
�
�

�
e�

4Cae

If d > 0, we de�ne e� c =
e� d log 1

�

4Cae

Then, if e� c � e

r � �
�
�

� h1

=
�
�

�
1

d log 1
�

W ( e� c )

�
�
�

�
1

d log 1
�

log
�

e� c
log e� c

�

=
�
�

 
e� c

log e� c

! � 1
d
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Else, if e� c < e

r � �
�
�

� h1

=
�
�

�
1

d log 1
�

W ( e� c )

�
�
�

�
1

d log 1
�

e� c
e
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