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Abstract

In this paper, we formalise order-robust optimisa-
tion as an instance of online learning minimising
simple regret, and propose VROOM, a zeroth or-
der optimisation algorithm capable of achieving
vanishing regret in non-stationary environments,
while recovering favorable rates under stochas-
tic reward-generating processes. Our results are
the first to target simple regret definitions in ad-
versarial scenarios unveiling a challenge that has
been rarely considered in prior work.

1 Introduction

Derivative-free optimisation is a discipline by which learn-
ers attempt to determine optimal solutions while only ex-
ploiting function value information (Matyas, 1965). Such
a setting is of great interest for applications in which it
is either difficult to define, access or even compute first
and/or second-order function information (Nesterov and
Spokoiny, 2017). As such, derivative-free optimisation nat-
urally addresses optimising over functions that are non-
differentiable, non-continuous or even non-smooth.

A variety of versatile zero-order methods have been devel-
oped under minimal smoothness assumptions (Auer et al.,
2007; Kleinberg et al., 2008). Though flexible, most al-
gorithms in the literature are designed under specific as-
sumptions on the process by which evaluation data is gen-
erated. SOO (Munos, 2011), for instance, optimises sequen-
tially over a deterministic function, while StoSOO (Valko
et al., 2013) optimises a sequence of noisy but stationary
functions. No such algorithm, however, handles a sequence
of non-stationary observations – a setting commonly faced
in a variety of real-world problems. Consequently, in a sce-
nario in which the process generating the data is unknown
a priori, what algorithm would a practitioner employ?
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To illustrate the above concept, consider a lifelong learning
problem (Thrun and Mitchell, 1995; Ammar et al., 2014;
Parisi et al., 2019) where a model is updated while interact-
ing with a sequence of tasks. Here, the objective is to have
a learner capable of performing well on average over all ob-
served data. If the tasks are similar, learning online helps
in solving novel tasks. However, when task differences
are drastic, catastrophic forgetting occurs (French, 1999;
Kirkpatrick et al., 2017) leading to situations where newly
observed data hurts performance on earlier problems. In
fact, it has been reported that the order by which tasks are
streamed dramatically affects average performance. It is
for this reason that recent research in lifelong learning has
focused on building order-robust approaches (Yoon et al.,
2019) that we formalise in this work as an instance of on-
line learning with simple regret considerations.

Precisely, we formalise the above problem by optimising
over elements x in a continuous setX . n tasks are streamed
sequentially allowing the learner to attempt a sequence
x1, . . . , xn across rounds. At round t, the learner observes
a reward ft(xt) corresponding to the performance of pa-
rameter xt on task t as represented by the mapping ft. Af-
ter n rounds, the agent recommends a parameter x(n) with
the objective of maximizing its average reward over all ob-
served tasks, i.e., 1

n

∑n
t=1 ft(x(n)).

Contrary to other methods in the literature, we believe that
minimal assumptions on the order by which f1, . . . , fn are
observed have to be invoked to ensure order-robustness.
Furthermore, our algorithm should also behave near opti-
mally as if an a priori knowledge of such an order (e.g.,
stochastic observations) was explicitly provided. Interest-
ingly, this motivation unveils a novel problem which we re-
fer to as the best of both worlds (BOB) challenge. Here,
we aim to design one simple algorithm that is unaware of
the nature of the reward generating process but can acquire
near-optimal regret guarantees in both stochastic and adver-
sarial non-stationary settings. In this paper, we take the first
step to resolving the aforementioned challenge by propos-
ing VROOM a novel algorithm that optimises over f at dif-
ferent levels of discretisation of the input space X . VROOM
makes use of the standard importance-weighted estimates
used in non-stochastic literature for efficient exploration.
We realise, however, that the direct application of these
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techniques to our setting suffers from two major draw-
backs related to variance explosion when observation prob-
abilities diminish with discretisation widths, and estimate
unreliability due to variance disparities. Providing solu-
tions to each of these above problem, our contributions are
summarised as: 1) formally introducing simple regret min-
imisation in non-stochastic and order-robust optimisation,
2) analysing a uniform exploration algorithm and demon-
strating state-of-the-art bounds in non-stochastic settings,
and 3) introducing VROOM as a solution to order-robustness
proving vanishing regrets in non-stochastic settings and
Õ
(
n−

1
d+3

)
in the stochastic case.

2 Problem Formulation and Analysis Tools

In this section, we detail our problem formulation, its nov-
elty, the associated challenge, and our contributions.

In budgeted optimisation, a learner optimises a function f :
X → R having access to a number of evaluations limited
by n. This setting also includes the case X ⊂ RD. We
consider a general case where f is decomposable as,

f =
1

n

n∑
t=1

ft.

It is clear that f depends on n. However, since n is a
fixed input parameter of the problem, we drop such depen-
dency in our notation for ease of exposition. At each round
t ∈ {1, . . . , n}, the learner chooses an element xt ∈ X and
observes a real number yt, where yt = ft(xt) quantifying
its reward. As we are concerned with order-robustness, we
distinguish two feedback settings with respect to the pro-
cess by which ft’s are interconnected:

Stochastic feedback In stochastic feedback, function
evaluations are perturbed by a noise in the range b ∈
R+

1: Precisely, at any round, we have ft = f + εt
with εt being a random variable that is identically and
independently distributed (i.i.d.) over rounds. Further,
we consider the case when f is a function that is inde-
pendent of t and n, and where:

E[εt] = 0 and |εt| ≤ b. (1)

Non-stochastic feedback To consider non-stationary and
non-stochastic data, we minimally assume:

|ft′(x)− ft(x)| ≤ b for all t, t′ and x ∈ X . (2)

Actually we will sometimes rephrase this condition as
the equivalent condition |ft(x)| ≤ fmax for all x ∈ X
and t ∈ [n].

1Alternatively, we can turn the boundedness assumption into a
sub-Gaussianity assumption equipped with a variance parameter
equivalent to our range b.

Given these feedback laws, the learner’s objective is to re-
turn an element x(n) in X with the largest possible value
f(x) after the n evaluations. To that end, we allow the
learner to utilise internal randomisation, i.e., sample x(n)
from a distribution νn of its choice, x(n) ∼ νn.

Since we consider two feedback laws (i.e., stochastic and
non-stochastic), we quantify the agent’s performance using
two notions of simple regrets. In the first, we consider re-
gret as a random variable induced by ε1, . . . , εn and bound
its expectation over the random sequence f1, . . . , fn:

Ef [rn] , Ef1,...,fn
[

sup
x∈X

f(x)− Ex(n)[f(x)]

]
= sup
x∈X

f(x)− Ef1,...,fn

[
Ex(n)

[
f(x(n)) +

n∑
t=1

εt

]]

= sup
x∈X

f(x)− Ex(n)
[
f(x(n))

]
− Ef1,...,fn

[
n∑
t=1

εt

]
= sup
x∈X

f(x)− Ex(n)
[
f(x(n))

]
,

where the expectation with respect to νn. When it comes
to the non-stochastic setting, the situation is simpler where
for a given sequence of function observations, we define:

rn , sup
x∈X

f(x)− Ex(n)[f(x(n))] , (3)

We further consider the case when evaluation is costly.
Therefore, we minimise rn as a function of n assuming
that for any given sequence f1, . . . , fn, there exists at least
one point x? ∈ X such that f(x?) = supx∈X f(x).

Before commencing with our solution, it is worth noting
that optimising simple regret with non-stochastic data gen-
erating processes has not been studied as a stand-alone
problem in literature so far2. It is viewed by some au-
thors as an ill-defined problem (Hazan et al., 2016, Chap-
ter 3) as the objective varies at each round t. Moreover,
if the simple regret is formulated as in Equation 3, one
can, in some cases, derive bounds for such a quantity from
the analysis of cumulative regret, supx∈X

1
n

∑n
t=1 ft(x)−

1
n

∑n
t=1 ft(xt) – a notion extensively studied in (Auer,

2002; Zinkevich, 2003; Bubeck et al., 2017). In the
stochastic setting or when ft = f1 for t ∈ [n], obtain-
ing an upper bound, Rn, on the cumulative regret leads to
an upper bound rn = Rn/n on the simple regret as noted
in Hazan et al. (2016); Bubeck et al. (2011). It is worth
noting that though a bound can be attained, these two ob-
jectives are not equivalent. Precisely, a bound obtained in
the cumulative regret case is often sub-optimal from a sim-
ple regret point of view (Bubeck et al., 2009). Further-
more, contrary to simple-regret algorithms, cumulative-
regret learners find it challenging to adapt function smooth-

2Section 4 extensively reviews the long history of existing re-
sults for stochastic and deterministic feedback laws.
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ness without extra information on f (Locatelli and Car-
pentier, 2018). In fact, it is intuitive to realise that min-
imising cumulative regret aims at accumulating rewards
(see the term 1

n

∑n
t=1 ft(xt)), as opposed to identifying the

optimum (the term 1
n

∑n
t=1 ft(x(n))); a property dictated

through simple regret considerations. Finally, note that to
the best of our knowledge no upper bound on the cumula-
tive regret exists in non-stochastic settings under minimal
assumptions on f used in this paper and that the connec-
tion between cumulative and simple regret is unclear in the
non-stochastic setting.

2.1 Mathematical Tools

During the remainder of this paper, we will make use of
mathematical tools that we briefly survey in this section.
Firstly, we describe partitioning assumptions facilitating
our search for an optimal solution of our optimisation prob-
lem, and then detail tree-based learners that we build on in
developing VROOM.

2.1.1 Partitioning & Near-Optimality Dimension

During our exploration for an optimum, we discretise the
search space into cells (nodes) allowing us to consider tree-
like learners. To do so, we follow a hierarchical partitioning
P = {{Ph,i}Ihi=1}∞h=0 previously introduced in (Munos,
2011; Valko et al., 2013; Grill et al., 2015). For any depth
h ≥ 0 (which we think of as a tree representation), the set
{Ph,i}1≤i≤Ih of cells (or nodes) forms a partition of X ,
where Ih is the number of cells at depth h. At depth 0, the
root of the tree, there is a single cell P0,1 = X . A cell
Ph,i of depth h is split into children sub-cells {Ph+1,j}j of
depth h+1. The objective of many algorithms is to explore
the value of f in the cells of the partition and to identify at
the deepest possible depth a cell containing a global max-
imum. For simplicity and without loss of generality we
assume all cells have K children sub-cells.

Given a global maximum x? of f , i?h denotes the index of
the unique cell of depth h containing x? , i.e., such that
x? ∈ Ph,i?h . We follow the work of Grill et al. (2015) and
state a single assumption on both the partitioning P and the
function f .

Assumption 1. For any global optimum x?, there exists
ν > 0 and ρ ∈ (0, 1), where the values of ν and ρ depend
on x?, such that ∀h ∈ N, ∀x ∈ Ph,i?h , f(x) ≥ f(x?)−νρh.

Assumption 1 is weaker than global or local Lipschitzness.
Smooth functions being locally Lipschitz, assumption 1 is
implied by (and therefore weaker than) smoothness.

The notion of a near-optimality dimension d aims at cap-
turing the smoothness of the function and characterises the
complexity of the optimisation task. We adopt the defini-
tion of near-optimality dimension given recently by Grill
et al. (2015) that unlike Bubeck et al. (2011), Valko et al.

(2013), Munos (2011), and Azar et al. (2014), avoids topo-
logical notions and does not artificially attempt to separate
the difficulty of the optimisation from the partitioning. For
each depth h, it simply counts the number of near-optimal
cells Nh, i.e., those whose value is close to f(x?), and de-
termines how this number evolves with the depth h. The
smaller d, the more accurate is the optimisation.

Definition 1. For any ν > 0, C > 1, and ρ ∈ (0, 1), the
near-optimality dimension3 d(ν, C, ρ) of f with respect to
the partitioning P , is

d(ν, C, ρ) , inf
{
d′ ∈ R+ : ∀h ≥ 0, Nh(3νρh) ≤ Cρ−d

′h
}

,

where Nh(ε) is the number of cells Ph,i of depth h such
that supx∈Ph,i f(x) ≥ f(x?)− ε.

By construction we have d ≤ log(K)/ log(1/ρ). In gen-
eral d � log(K) log(1/ρ) as having d = 0 is the most
common case in practice (Valko et al., 2013).

2.1.2 Tree-Based Learners

Tree-based exploration or a tree search algorithm is an ap-
proach that has been widely applied to optimisation as well
as bandits or planning problems (Kocsis and Szepesvári,
2006; Coquelin and Munos, 2007; Hren and Munos, 2008);
see Munos (2014) for a survey.

First we define the sampling of an element x in a cell Ph,i
with respect to P , denoted x ∼ UP(Ph,i) as follows: Start-
ing from a cell c1 = Ph,i, we descend the partition until
depth n by choosing at depth h′ (with h ≤ h′ < n) a sub-
cell ch′+1 of ch′ chosen uniformly at random among the K
children cells of ch′ . Once at depth n in Pn,i, we pick an
element x uniformly at random in Pn,i. 4

At each round t, the learner selects an element xt ∈ X .
First the learner selects a cell Pht,it according to the distri-
bution pt on P that associates to each cell Ph,i the proba-
bility ph,i,t = P(Pht,it = Ph,i) of being the selected cell
Pht,it at time t. We have

∑
Ph,i∈P ph,i,t = 1 for any given

t. Then, the learner samples an element xt in Pht,it with
respect to P , xt ∼ UP(Pht,it), and asks for its evaluation.

We denote the value fh,i , Ex∼UP(Ph,i)[f(x)], fh,i,t ,
Ex∼UP(Ph,i)[ft(x)] and, in the stochastic feedback case,
fh,i = Ex∼UP(Ph,i)

[
f(x)

]
. We use Th,i(t) =∑t−1

s=1 1xs∈Ph,i to denote the total number of evaluations
that have been allocated by the learner between round 1 and
the beginning of round t to the cell Ph,i. For the stochas-
tic noisy case, we also define the estimated value of the

3Grill et al. (2015) define d(ν, C, ρ) with the constant 2 instead
of 3. 3 eases the exposition of our results.

4Assuming that each parent cell has K children, sampling
from UP(Ph,i) is just a uniform sampling from the descendants
of Ph,i at depth n. If we assume that each cell can have different
number of children, then UP(Ph,i) follows the topology of P .
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cell Ph,i ∈ T as follows: given the Th,i(t) evaluations
y1, . . . , yTh,i(t), we have

f̂h,i(t) ,
1

Th,i(t)

Th,i(t)∑
s=1

ys,

the empirical average of rewards obtained at this cell.

Similarly, for the non-stochastic case, we define f̃h,i(t) that
estimates fh,i,t for cell Ph,i at time t. This estimates uses
the function values ft(xt) if collected from sampling di-
rectly cell Ph,i as xt ∼ UP(Ph,i) which corresponds to
ht = h and it = i. In addition, the estimate f̃h,i(t) also
takes into account ft(xt) if both xt ∈ Ph,i and ht ≤ h.
This addition improves the accuracy of our estimate while
forcing ht ≤ h insures that ft(xt) is an unbiased estimate
of the quantity of interest fh,i,t as proven below. Having
a sample xt ∼ UP(Pht,it) with Pht,it ∼ pt, possibly
Pht,it 6= Ph,i, and an observation yt = ft(xt), we have

f̃h,i(t) ,
yt1xt∈Ph,i1h≥ht

P(xt ∈ Ph,i ∩ h ≥ ht)
. (4)

Note that EPht,it∼pt [Ext∼UP(Pht,it )[f̃h,i(t)]]
= Ext∼UP(Pht,it )[yt|xt ∈ Ph,i and h ≥ ht]

(a)
= Ext∼UP(Ph,i)[yt] = fh,i,t.

where (a) is by definition of UP(Pht,it). We define
F̃h,i(t) ,

∑t
s=1 f̃h,i(t), the sum of rewards obtained at

this cell. We define Fh,i(t) ,
∑t
s=1 fh,i,s. Finally, let

[a : c] = {a, a + 1, . . . , c} with a, c ∈ N, a ≤ c, and
[a] = [1 : a]. logd denotes the logarithm in base d ∈ R.
Without a subscript, log is the natural logarithm in base e.

3 VROOM: An Order-Robust Algorithm

This section details our contributions to addressing order-
robustness. On a high level, we split the exposition in three
parts. First, we provide a robust version of uniform explo-
ration that sets state-of-the-art regret guarantees for non-
stochastic settings. While these guarantees are believed
to be unimprovable, uniform exploration is known to per-
form sub-optimally in stochastic scenarios. As such, we
revert-back to the BOB challenge discussing achievable re-
gret rates before presenting VROOM.

Before diving into details of our proposed method, it is in-
structive to recap the challenges faced when considering
two feedback laws. Targeting only stochastic feedbacks,
it is well known that StroquOOL and GPO, achieve state-
of-the-art regret bounds. Unfortunately, the direct appli-
cation of these methods to an adversarial setting is chal-
lenging due to the potential blunder that can be caused by
feeding uninformative rewards for a deterministic learner
as pointed in Bubeck and Cesa-Bianchi (2012, Section 3).

Therefore, it is essential for an efficient learner to em-
ploy internal randomisation that defines a positive probabil-
ity P(xt ∈ Ph,i) for each cell during its exploration quest.
Given positive probabilities, we can now target an estima-
tor for f(x) to perform meaningful updates. Clearly, the
simple usage of empirical averaged rewards f̂h,i(t) in cell
Ph,i is easily biased by an adversary. Fetching an unbiased
estimate, we realise that f̃h,i(t) is a meaningful alterna-
tive. Though viable, f̃h,i(t) can possess high variance espe-
cially if ph,i,t is small (scaling with 1/P(xt ∈ Ph,i)). Two
sources contribute to these high variance occurrences: 1)
long uniform exploration, and 2) Kh increase in the num-
ber of cells with depth (leading to variances of Kh magni-
tude). Realising these problems, we present our first chal-
lenge that we tackle in this paper as:
Challenge I: How to control potentially large estimator
variances (especially in the stochastic setting)?

Apart from variance control, we face another interesting
problem related to the optimum recommendation, x(n),
made by the learner after n rounds of interaction. If we
are to recommend the best cell as that with the highest
estimate

∑n
t=1 f̃h,i(t), we might end-up comparing esti-

mates with widely different confidence intervals5. At first
sight, one can attempt to follow the approaches proposed
by others in the literature to tackle this issue. In StoSOO,
for instance, x(n) is chosen among the cells that have
been pulled in an order of Õ(n). Though appealing, this
method does not fit-well the cases where we need to sam-
ple a large number of cells with a limited number of pulls
such as in the low noise, deterministic feedback and/or
d = 0 settings6. In StroquOOL, on the other hand, a
separate cross-validation phase allocates Õ(n) extra sam-
ples to the best cells recommended at the end of an initial
exploration phase. Nonetheless, when dealing with non-
stochastic reward-generating processes, there are no guar-
antees on the relationship between collected data in two
successive phases. Hence, following such a recommen-
dation introduces a (hard-to-control) bias typically lead-
ing to additional hyper-parameters measuring exploration
lengths. Observing optimum recommendation difficulties
arising from considering two feedback laws, our second
challenge can be stated as:
Challenge II: How to recommend an optimum x(n) capa-
ble of operating successfully in both feedback settings?

The remainder of this section provides solutions to each of
the above challenges ultimately proposing VROOM as a sim-
ple yet effective algorithm for order-robust optimisation.

5Please note that this is due to the dependence on the num-
ber of pulls allocated to Ph,i, as well as on the variance of the
estimates.

6In such cases StoSOO lacks any theoretical guarantees.
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3.1 Uniform Allocation Baselines

In this section, we derive achievable baseline simple re-
gret rates in non-stochastic scenarios. We note that such
a problem has not yet been targeted by current litera-
ture. To do so, we consider a uniform exploration strat-
egy allowing us to achieve initial results addressing Chal-
lenge II7. We specifically discuss two optimum recommen-
dation techniques: 1) cross-validation, and 2) lower con-
fidence bounds (LCBs). We report how existing cross-
validation techniques can be used to obtain regret rates in a
stochastic case where the learner is unaware of smoothness
parameters and discuss corresponding limitations in non-
stochastic settings. We then demonstrate that LCB allows
building a robust version of uniform allocation ROBUNI for
non-stochastic environments8.

Stochastic feedback To determine regret rates, we dis-
tinguish two scenarios depending on the knowledge of the
smoothness parameters. First, the uniform strategy exploits
(ν, ρ), while, second, the learner is oblivious to (ν, ρ).

◦With knowledge of (ν, ρ): At depth h a uniform algorithm
can explore all Kh cells

⌊
n/Kh

⌋
times. Such a strategy

recommends a valid parameter x that attains the highest
observed f̂(x). At depth h, errors are bounded by νρh, and
the estimation error is given by O

(√
Kh/n

)
. Optimising

over h for the sum of these two errors, we can state that by

setting H =
⌊
logK/ρ2(n)

⌋
, rn = Õ(log(1/δ)/n)

1
logK
log 1/ρ

+2

with probability at least 1− δ.

◦ Without knowledge of (ν, ρ): So far, we derived a bound
where the optimal choice of H is dependent on smooth-
ness parameters (ν, ρ). When not knowing (ν, ρ), our strat-
egy uses a budget of n/2 rounds to explore all depths
h ∈ [0 : blogK(n)c]. A depth h is explored uniformly with
a budget of n/(2blogK(n)c). We define blogK(n)c candi-
dates xh with the highest observed f̂(xh) among the cells
of depth h. Now, the final recommendation corresponds to
a choice between these blogK(n)c candidates. However,
each has been pulled Txh(n/2) = n/(2blogK(n)c)

Kh number
of times and as such, arrives with different confidence esti-
mates. We can implement a cross validation step, as used
in Bartlett et al. (2019), which only requires n to make
use of the remaining n/2 rounds. Each candidates is sam-
pled additionally n/(2blogK(n)c) This leads us to obtain

rn = Õ

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
. With this strategy, we recover

the same results as if smoothness parameters were provided
up to a logarithmic factor. An alternative to cross valida-

7Note that as the above exposition considers no stochasticity.
As such, answers to Challenge I are considered in later sections
when attempting to determine a best of both worlds algorithm.

8We report the complete proofs in Appendix A.

Parameters: P = {Ph,i}, b, n, fmax

Set δ = 4b
fmax

√
n

.
For t = 1, . . . , n J Exploration I

Evaluate a point xt sampled from UP(P0,1).

Output x(n) ∼ U(Ph(n),i(n))
where (h(n), i(n))← arg max

h,i
F̃h,i(n)−Badvh (n)

Figure 1: The ROBUNI algorithm

tion with same theoretical guaranties is, after a uniform al-
location on all cells at a depth smaller than blogK(n)c, to
recommend among all cells these with largest lower confi-

dence bound f̂h,i(n) − b
√

log(n2/δ)
Th,i(n)

. This allows to com-
pare candidate cells at different depths by taking into ac-

count the uncertainty b
√

log(n2/δ)
Th,i(n)

around their estimated
averages. Though this approach requires the knowledge of
b (the range of εt), it will come handy in the non-stochastic
setting detailed next.

Non-stochastic feedback As discussed above, in the
non-stochastic setting we use a uniform allocation
combined with a recommendation based lower confi-
dence estimate of the value of cell Ph,i as F̃h,i(n) −
Badvh (n) where Badvh (n) ,

√
2nf2maxK

h log(n2/δ) −
f2
max

3 Kh log(n2/δ). We name such an algorithm ROBUNI
and detail its pseudo-code in Figure 1. ROBUNI is required
knowledge of b (See Equation 2), and fmax that upper
bounds the maximal value of the functions f1, . . . , fn, i.e.,
|ft(x)| ≤ fmax for all x ∈ X and t ∈ {1, . . . , n}.

We are now ready to present the simple regret bounds at-
tained by ROBUNI in the following theorem:

Theorem 1 (Upper bounds for ROBUNI). Consider any se-
quence of functions f1, . . . , fn such that |ft(x)| ≤ fmax
for all x ∈ X and t ∈ [n]. Let f = 1

n

∑n
t=1 ft, and x? be

one of the global optima of f with associated (ν, ρ). Then
after n rounds, the simple regret of ROBUNI is bounded as:

E[rn] = O

(
log(n/δ)

(
K

nρ2

) 1
logK
log 1/ρ

+2

)

The above result demonstrates that using ROBUNI uni-
form exploration strategies can be made order-robust re-
taining same regret guarantees in the non-stochastic setting
as those obtained in the stochastic case. However, we con-
jecture that this is not true for most learners, where we be-
lieve that any algorithm can only obtain, at best, the same
regret rates as ROBUNI in non-stochastic cases. This is
not unlike best-arm identification problems( when X is re-
duced to X = [K]), where the authors in (Abbasi-Yadkori
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b = 0 stochastic (b > 0) non-sto

VROOM open 1
n

max
(

1
d+3 ,

1
logK

log 1
ρ

+2

)
1
n

1
logK

log 1
ρ

+2

StroquOOL
(
1
n

) 1
d

(
1
n

) 1
d+2 7

SequOOL
(
1
n

) 1
d 7 7

Uniform(s) 1
n

log 1
ρ

logK 1/n

1
logK
log 1/ρ

+2

Table 1: Õ rates of SOTA in deterministic, stochastic and
non-stochastic settings. 7 denotes a non-vanishing regret.
Though VROOM stochastic bounds can be applied when b =
0, we leave a better bound open direction of future research.

et al., 2018) showed unimprovable regret rates to those ob-
tained by uniform strategies.

3.2 Achievable Rates for BOB

Though the uniform exploration algorithm discussed above
achieves order-robustness in non-stochastic settings, it can
become highly sub-optimal for stochastic scenarios. In
fact, it is well known that for stochastic data generating pro-
cesses, StroquOOL and GPO obtain a state-of-the-art simple

regret of the order Õ
((

1
n

) 1
d+2

)
. Yet, as detailed in Sec-

tion 2, one can design a sequence of functions (i.e., non-
stochastic scenario) f1, . . . , fn with any associated param-
eter d, ν, ρ such that simple regret of StroquOOL, for in-
stance, is lower bounded by a constant for any n.

Given the lack of algorithm performing well in both sce-
narios, we next attempt to design a learner that is unaware
of the nature of the reward-generating process but simulta-
neously achieves near-optimal simple regret bounds, i.e.,

E[rn] = Õ

((
1

n

) 1
d+2

)
(stochastic feedback)

E[rn] = Õ

((
1

n

) 1
log(K)
log(1/ρ)

+2

)
(non-stochastic feedback)

Rates of Optimality: To understand the optimality state-
ments that can be considered when tackling both scenarios,
we draw upon results from best-arm identification prob-
lems, i.e., when X = [K]. There, Abbasi-Yadkori et al.
(2018) showed that obtaining optimal rates in stochastic
and non-stochastic cases simultaneously is impossible. We
conjecture that this result carries to our setting, where we
believe simultaneous optimal rates are also not achievable.

This, consequently, poses the question of what type of op-
timal rates can an algorithm obtain in stochastic feedback
settings, while still guaranteeing vanishing regrets in non-
stochastic cases. A formal lower bound guarantee of opti-
mality is beyond the scope of this paper, and is left as an

Parameters: P = {Ph,i}, b, n, fmax

Set δ = 4b
fmax

√
n

.

For t = 1, . . . , n J Exploration I
For each depth h ∈ [blogK(n)c], ranka the cells by

decreasing order of f̂−h,i(t−1): Rank cell Ph,i as 〈̂i〉h,t.
xt ∼ UP(Pht,it) where Pht,it is sampled so that for

any h ∈ [blogK(n)c] and any i ∈ [Kh],

ph,i,t , P(Pht,it = Ph,i) ,
1

h〈̂i〉h,tlogK(n)

and where logK(n) =
∑blogK(n)c
h=1

∑Kh

i=1
1
hi .

Output x(n) ∼ UP(Ph(n),i(n)) where (h(n), i(n)) ←
arg max

(h,i)

F̃h,i(n)−Bh,i(n)

a Equalities between cells or comparisons with cells that
have not been pulled yet are broken arbitrarily.

Figure 2: The VROOM algorithm

open question for future research. We do, however, demon-
strate VROOM to be the first algorithm acquiring vanishing
regrets in non-stochastic scenarios, while still achieving
favourable rates compared to state-of-the-art stochastic al-
gorithms, i.e., E[rn] = Õ

(
n−

1
d+3

)
.

3.3 Robust optimisation

In this section, we present a new learner and analyse its the-
oretical performance against any i.i.d. stochastic problem
or any non-stochastic environment.

This Very Robust Online Optimisation Method, VROOM, is
detailed in Figure 2. Intuitively, VROOM first selects a depth
h with a probability inversely proportional h. Given its
depth selection, VROOM queries the best estimated cell with
“probability” one, the second-best estimated cell with a
“probability” of one half, and so on until pulling the worst-
estimated cell with a “probability” 1

Kh . To guarantee valid
probabilities, we need a normalisation factor. As it is suf-
ficient to sample depths h ∈ [blogK(n)c], the normalising
constant can be bounded as:

logK(n) =

blogK(n)c∑
h=1

Kh∑
i=1

1

hi
≤
blogK(n)c∑
h=1

1

h
(log(Kh) + 1)

≤ 2

blogK(n)c∑
h=1

log(K) ≤ 2 log(n).

At round t, the estimate used in VROOM to rank the cell dur-
ing exploration is given by f̂−h,i(t − 1) , f̂h,i(t − 1) −

Biidh (t−1) for cell Ph,i, whereBiidh (t−1) =
√

log(4n3/δ)
2Th,i(t−1)
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with f−h,i(t − 1) set to −∞ if Th,i(t) = 0. Following this
ranking procedure, we denote the estimated rank of cell i
at depth h at time t as 〈̂i〉h,t. After n rounds, VROOM rec-
ommends the element x(n) sampled uniformly from the
estimated best cell Ph(n),i(n). Recommendation of the best
cell Ph(n),i(n) after n rounds is based on F̃h,i(n)−Bh,i(n)
where Bh,i(t) defines the confidence bound around our es-
timate F̃h,i(t). For all t ∈ [n], such a bound is given by:

Bh,i(t) =fmax

√√√√2hlogK(n) log 2n2/δ

t∑
s=1

〈̂i〉h,s

+ fmaxlogK(n)
log 2n2/δ

3
.

One can view the sampling strategy of VROOM as a ran-
domised version of that introduced in StroquOOL (Bartlett
et al., 2019). Essentially, it implements a Zipf explo-
ration (Powers, 1998) meaning that it first ranks the differ-
ent options (here cells), and then attempts to allocate eval-
uations inversely proportional to their rank. We note that
such a strategy has also been used in previous algorithms,
e.g., Successive Rejects (SR) of Audibert et al. (2010) and
P1 of Abbasi-Yadkori et al. (2018).

To minimise simple regret in the stochastic case, it is cru-
cial to limit the variance of the best-cell estimators. There-
fore VROOM, from its very first pull, chooses with higher
probability the cells that are estimated to be among the
best. This comes with almost no additional cost. Indeed,
at depth h, pulling the estimated best cell with probability
1/(hlogK(n)) does not prevent from pulling all the cells al-
most uniformly. More precisely, for any k ∈ [Kh] all cells
ranked below k, i.e., 〈̂i〉h,t ≤ k, are pulled with a proba-
bility of at least 1/(hklogK(n)). Therefore, no suboptimal
cell is actually left out in the early chase for a cell con-
taining x?. Hence, the variances of the estimators can only
increase by a factor of logK(n) w.r.t. the uniform strategy.

Additionally, compared to a fixed-phase algorithm, our
analysis is also more flexible. In fact, we can analyse,
for instance, the quality of the estimated ranking 〈̂·〉 and,
consequently, the adaptive sampling procedure of the arms
at any round. Actually, these rounds can be chosen in a
problem-dependent fashion, to minimise the final regret9.

Remarkably, VROOM uses a lower confidence bound (LCB)
to guide exploration and recommendation. As mentioned
earlier, this allows us to compare cells at different and
within the same depth by taking into account the uncer-

tainty b
√

log(n2/δ)
Th,i(n)

around their estimated averages. For
recommendation, this replaces the use of hand-coded cross-
validation techniques. For exploration, the use of LCB

9We detail the process by which such rounds are chosen in the
sketch of the proof in Section 3.2.

needs to be handled carefully. For instance, implementing
a pessimism in front of uncertainty that pulls the cell with
the highest LCB would likely result in exclusively pulling
one single arm as such bounds increase with the number
of pulls. However, LCB are found to combine well with a
Zipf sampler that guarantees the estimated k best cells are
pulled with an order of Õ(n/k) almost uniformly.

Interestingly, we demonstrate that potentially biased esti-
mates f̂h,i can be used to guide exploration as long uni-
form exploration is guaranteed for all arms. This helps
to overcome high variances (in the stochastic case) that
the unbiased estimate

∑n
t=1 f̃h,i(t) possess and allows us

to guaranty that cells containing x? are well ranked soon
enough. After n rounds, however, we use the unbiased es-
timate

∑n
t=1 f̃h,i(t) to recommend x(n). Being unbiased,

our estimates are robust to non-stationary data. Moreover,
it is also possible to prove that cells containing a x? which
have been pulled enough now possess a limited variance in
the stochastic setting.

Let us now present our main results for both stochastic and
non-stationary data-generating process using VROOM:

Theorem 2 (Upper bounds for VROOM). In the non stochas-
tic setting, for any sequence of functions f1, . . . , fn with
f = 1

n

∑n
t=1 ft, we have, after n rounds, the simple regret

of VROOM is bounded as follows:

E[rn] = O

(
log(n/δ)/n

1
logK
log 1/ρ

+2

)
Moreover in the stochastic setting, let x? one of the global
optimum of f with associated (ν, ρ), C > 1, and near-
optimality dimension d = d(ν, C, ρ). Then we have,

E[rn] = Õ
(

1

n

)max

(
1
d+3 ,

1
logK
log 1/ρ

+2

)

where the expectation is taken both other νn and the ran-
dom generation of f with respect to f .

It is worth noting that the exponent obtained in the stochas-

tic setting is max

(
1
d+3 ,

1
logK
log 1/ρ

+2

)
. As mentioned in Sec-

tion 2, in general we have 1
d+2 �

1
logK
log 1/ρ

+2
. Therefore in

most cases the exponent in the rate of VROOM is 1
d+3 and is

never worst than the one of uniform allocations 1
logK
log 1/ρ

+2
.

Sketch of proof: In the non-stochastic setting, we use the
fact that VROOM pulls at any depth h all the cells almost
uniformly, of order 1/(hKh) up to logarithmic factors, to
obtain the same rate as ROBUNI.

For the stochastic case, we face Challenge I. Indeed,
VROOM uses for recommendation the estimates F̃h,i(n) for
cell Ph,i. Consequently, we need to carefully bound the
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variance of F̃h,i(n) =
∑n
t=1

fh,i,t1xt∈Ph,i
ph,i,t

for the cells that
are near-optimal. To limit the variance, our algorithm has
then two objectives, first identify a deep cell containing x?

and then pull this cell enough so that the variance of its es-
timate is low. Intuitively we follow the idea developed for
the stochastic case in Section 3.1 that an algorithm which
does not know the smoothness parameter (ν, ρ) can divide
its budget of n rounds into two consecutive parts, one for
each objective: First explore P for nα rounds with α < 1
in order to build a small number of good candidate cells
C and then secondly cross validate, meaning allocate the
rest of the budget, n − nα rounds, to estimate better and
compare this limited number of candidates in C.

We identify two sources of errors. First the exploration er-
ror, er is the smallest simple regret among the candidate
recommended at the end of the exploration phase after nα

rounds. Following Locatelli and Carpentier (2018) we have
er = Ω

(
n−

α
d+2
)
. The second error, the cross validation er-

ror, ec is the confidence interval of F̃h,i(n)/n where our
final recommendation x(n) is in cell Ph,i. Assuming we
cannot guaranty the candidates are pulled more than uni-
formly during the exploration phase of nα rounds, we ob-
tain, at time n, ec = O(nα/n).10 Simultaneously we
want large α to increase the length the exploration phase
and reduce the simple regret of our candidates and small
α to reduce the variance of our final estimates. Equaling
both source of error we get that n−α/(d+2) = nα−1 gives
α = (d+ 2)/(d+ 3) which leads to a regret O(n−

1
d+3 ).

VROOM is implementing implicitly such a strategy without
explicitly considering two separate phases and without the
knowledge of d. In the stochastic setting, as discussed
above we can study the quality of the estimated ranking
at any point in time t ∈ [n]. We divide the nα in parts
n1 = 1, n2, . . . , nlog(nα) and analyse the ranking of cell
Pl,i? at the end of round nl for l ∈ [nlog(nα)]. To analyse
the ranking of the cell Ph,i we use Lemma 2 that provides
conditions on h such that we can guarantee that after round
nl, t ≥ nl the ranking of Ph,i verifies 〈i?〉l,t . Cρ−dl.
Then Lemma 1 shows that the confidence interval around
the average estimate of that cell is n

1
d+2
α .

4 Related Work

BOB A best of both world question has already been ad-
dressed by Abbasi-Yadkori et al. (2018) in a more reduced
optimisation problem where X = [K] is composed of a
finite number of K elements known as the best-arm identi-
fication (BAI) problem (Bubeck et al., 2009). They propose
P1, an algorithm that achieves, in the stochastic setting, the
optimal simple regret rate that any algorithm, with vanish-
ing simple regret in the non-stochastic setting, can achieve.

10Alternatively one can bound ec by recommending with esti-
mates as

∑n
t=nα+1 f̃h,i(t) which bias w.r.t. Fh,i(n) is O(nα).

Prior work for stochastic and deterministic cases
Among the large work on derivative-free optimisation, we
focus on algorithms that perform well under minimal as-
sumptions as well as minimal knowledge about the func-
tion. While some prior works assume a global smooth-
ness of the function (Pintér, 1996; Strongin and Sergeyev,
2000; Hansen and Walster, 2003; Kearfott, 2013), another
line of research assumes only a weak/local smoothness
around one global maximum (Auer et al., 2007; Klein-
berg et al., 2008; Bubeck et al., 2011). However, within
this latter group, some algorithms require the knowledge
of the local smoothness such as HOO (Bubeck et al., 2011),
Zooming (Kleinberg et al., 2008), or DOO (Munos, 2011).
Among the works relying on an unknown local smoothness,
SequOOL (Bartlett et al., 2019) improves on SOO (Munos,
2011; Kawaguchi et al., 2016) and represents the state-of-
the-art for the deterministic feedback. For the stochastic
feedback, StoSOO (Valko et al., 2013) extends SOO for a
limited class of functions. POO (Grill et al., 2015) and
GPO (Shang et al., 2019) provides more general results.
StroquOOL (Bartlett et al., 2019) combines up to log fac-
tors the guarantees of SequOOL and GPO for determinis-
tic and stochastic feedback respectively without the knowl-
edge of the range of the noise b.

5 Discussion and Future Work

Our current result holds simultaneously for stochastic and
non-stochastic settings. However, it is desirable to also
consider the deterministic feedback where evaluations are
noiseless and stationary, that is ∀t ∈ [n], ft = f1. Please
refer to the work by de Freitas et al. (2012) for a motivation,
many applications, and references on the importance of this
case. The question of obtaining the best of the three worlds
(BOT) which includes additionally the deterministic set-
ting remains open. Note that StroquOOL, for instance, was
able to obtain theoretical guarantees that hold for stochas-
tic and deterministic case settings simultaneously by hav-
ing a method that adapts to the level of noise b without its
knowledge. However, VROOM requires the knowledge of b
and fmax to build the lower confidence bound used for rec-
ommendation. To address the BOT question, computing
higher moments of our estimates and therefore using con-
centration inequalities such as the one in the work by Cappé
et al. (2013) is a potential direction. We also wonder if a
version of VROOM that is fully using unbiased estimates can
solve BOB, while VROOM uses the f̂− estimates to guide ex-
ploration. and is, therefore, over-fitting the stochastic case.
Finally, fully answering the BOT question may require in-
vestigating lower bounds results.
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A Proofs of simple regret for the uniform
strategies

Results in the deterministic and stochastic cases with
known smoothness parameters were also reported in Hren
and Munos (2008) and Bubeck and Munos (2010).

A.1 Deterministic case

Deterministic feedback Let us consider the uniform ex-
ploration that evaluates all the cells at the deepest possible
depth H with a budget of n and recommends x(n) the x
with the highest observed f(x). We have H the largest
value such that KH ≤ n. Therefore H = blogK(n)c.
Because of Assumption 1 we have rn ≤ νρH . Therefore

rn = O
(

(K/n)
log 1/ρ
logK

)
.

Proof. Consider one global optimum x?. For all i ∈ [KH ],
let xH,i be the element selected for evaluation by the uni-
form exploration in PH,i. Then,

f(x(n))
(a)
≥ f(xH,i?H )

(b)
≥ f(x?)− νρH .

where (a) is because uniform has opened all the cells at
depth H and x(n) = arg maxPH,i∈T f(xH,i), and (b) is
by Assumption 1. Therefore rn = f(x?) − f(x(n)) ≤
νρH = νρblogK(n)c = νρblogK(n/K)+1c ≤ νρlogK(n/K) =

ν
(

(K/n)
log 1/ρ
logK

)
.

A.2 Stochastic case without knowledge of the
smoothness parameters ν, ρ

Proof. Consider one global optimum x?. For all i ∈ [KH ],
let us fix xh,i be the element selected for evaluation by the
uniform exploration in Ph,i each of the

⌊
n
KH

⌋
times this

cell is selected. We define and consider event ξδ and prove
it holds with high probability.

Let ξδ be the event under which all average estimates in
the cells receiving at least one evaluation from uniform are
within their classical confidence interval, then P (ξδ) ≥ 1−
δ, where

ξδ ,

{
∀i ∈

[
KH

]
,
∣∣∣f̂H,i − f(xH,i)

∣∣∣ ≤ b√ log(2n/δ)

n/KH

}
·

We have P (ξδ) ≥ 1 − δ, using Chernoff-Hoeffding’s in-
equality taking a union bound on all opened cells. On ξδ

we have,

f(x(n))
(a)
≥ f̂(x(n))− b

√
log(2n/δ)

n/KH

(b)
≥ f̂H,i? −

√
log(2n/δ)

n/KH

(a)
≥ f(xH,i?)− 2b

√
log(2n/δ)

n/KH

(c)
≥ f(x?)− νρH − 2b

√
log(2n/δ)

n/KH
.

where (a) is because ξδ holds and (b) is because uni-
form has opened all the cells at depth H and x(n) =

arg maxPh,i∈T f̂(xh,i), and (c) is by Assumption 1. We

have νρH ≤ ν

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
and

√
log(2n/δ)
n/KH ≤

√
log(2n/δ)

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
.

Therefore rn = f(x?)− f(x(n)) ≤ νρH − 2b
√

log(2n/δ)
n/KH .

rn = Õ

(
log(1/δ)ν

((
K
nρ2

) 1
logK
log 1/ρ

+2

))

A.3 The non-stochastic case

Theorem 1 (Upper bounds for ROBUNI). Consider any se-
quence of functions f1, . . . , fn such that |ft(x)| ≤ fmax
for all x ∈ X and t ∈ [n]. Let f = 1

n

∑n
t=1 ft, and x? be

one of the global optima of f with associated (ν, ρ). Then
after n rounds, the simple regret of ROBUNI is bounded as:

E[rn] = O

(
log(n/δ)

(
K

nρ2

) 1
logK
log 1/ρ

+2

)

Proof. Let us fix some depth H and consider a collection
of functions f1, . . . , fn. Given f1, . . . , fn, after n rounds
the random variables f̃H,i(t) are conditionally independent
from each other for all i at depth H and for all t ∈ [n] as
we have P(xt ∈ PH,i ∩ h ≥ 0) = P(xt ∈ PH,i) ≥ 1/KH

are fixed for all i at depth H and t ∈ [n].

The variance of f̃H,i(t) is the variance of a scaled
Bernoulli random variable with parameter P(xt ∈ PH,i) ≥
1/KH and range

[
0,KHEx∼U(Ph,i)[ft(x)]

]
, therefore

we have |f̃H,i(t) − Ex∼U(Ph,i)[ft(x)]| ≤ KH , and
σ2
f̃H,i(t)−Ex∼U(Ph,i)[ft(x)]

= σ2
f̃H,i(t)

≤ 1/KH(1 −

1/KH)K2H f̃2H,i(t) ≤ KHf2max.

We define and consider event ξδ and prove it holds with
high probability. Let ξδ be the event under which all av-
erage estimates in all the cells at depth H are within their
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classical confidence interval, then P (ξδ) ≥ 1− δ, where

ξδ ,
{
∀PH,i,

∣∣∣F̃H,i(n)− FH,i(n)
∣∣∣

≤
√

2nf2maxK
H log(n2/δ) +

f2max
3

KH log(n2/δ)

}
·

We have P (ξδ) ≥ 1 − δ, using Bennett’s inequality
from Theorem 3 in Maurer and Pontil (2009) and from
taking a union bound on all opened cells. We denote
Bh =

√
2nKh log(n2/δ) + bKh log(n2/δ) and we de-

note by h(n) the depth of x(n). On ξδ we have, for any
H ∈ [blogK(n)c],

E[f(x(n))]
(a)
≥ 1

n

(
F̃ (x(n))−Bh(n)

) (b)
≥ 1

n

(
F̃H,i? −BH

)
(a)
≥ 1

n
(FH,i? − 2BH)

(c)
≥ f(x?)− νρH − 2BH/n. (5)

where (a) is because ξδ holds (b) is by definition of x(n) as
x(n)← arg max

xh,i

F̃h,i(n)−Bh, and (c) is by Assumption 1.

In order to maximize the lower bound in 5 we
set H =

⌊
logK/ρ2(n)

⌋
. We have νρH ≤

ν

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
and

√
log(n2/δ)KH/n ≤

√
log(n2/δ)

((
K
nρ2

) 1
logK
log 1/ρ

+2

)
and bKH/n log(n2/δ) =

O

(√
log(n2/δ)

((
K
nρ2

) 2
logK
log 1/ρ

+2

))
.

Therefore Eνn [rn] = f(x?) − E[f(x(n))] ≤ νρH+1 −

2B/n. rn = O

(
log(n/δ)

(
K
nρ2

) 1
logK
log 1/ρ

+2

)

B Proofs of simple regret for VROOM

The non-stochastic feedback case

Proof. Let us fix some depthH and consider a collection of
functions f1, . . . , fn. Given f1, . . . , fn, after n rounds the
random variables f̃H,i(t) can be dependent of each other
for all h ≥ 0 and i ∈ [KH ] and t ∈ [n] as ph,i,t depends
on previous observations at previous rounds. Therefore,
we use the Bernstein inequality for martingale differences
by Freedman (1975).

The variance of f̃H,i(t) is the variance of a
scaled Bernoulli random variable with parame-
ter P(xt ∈ PH,i) ≥ 1/KH log2

K(n) and range[
0,KHEx∼U(Ph,i)[ft(x)) log2(n)

]
,

therefore we have |f̃H,i(t) − Ex∼U(Ph,i)[ft(x)]| ≤
KH log2

K(n)fmax , and σ2
f̃H,i(t)−Ex∼U(Ph,i)[ft(x)]

=

σ2
f̃H,i(t)

≤ 1/KH(1− 1/KH)K2H f̃2H,i(t) ≤ KHf2max.

Then, following the same reasoning as in the proof of
Theorem 1, but replacing the Bernstein inequality by the
Bernstein inequality for martingale differences of Freed-
man (1975) applied to the martingale differences f̃k,t−f̃k,t,
we obtain the claimed result for the adversarial case.

The i.i.d. stochastic feedback case

Proof. Note that as the regret guaranties proved in the non-
stochastic case also hold in the stochastic case. So we are
left to prove E[rn] = Õ

(
1
n

) 1
d+3 .

We place ourselves in the i.i.d. stochastic setting described
in Section 1. Let us consider a fixed depth H which value
will be chosen towards the end of the proof in order to min-
imize the simple regret with respect to this H .

We consider one global optimum x? of f with associ-
ated (ν, ρ), C > 1, and near-optimality dimension d =
d(ν, C, ρ).

We define nα ∈ [n] and will analyze how VROOM explore
the depth h ≤ blogK(nα)c.

First, we define the rounds used for comparisons.

We define the times nh = βnα

∑h
h′=1

1
h′

logK(nα)
for h ∈

blogK(nα)c and where β > 1 is a constant that we will
fix later such that nh ≤ n. To ease the notation and with-
out loss of generality, for each depth h, we assume that the
cells are sorted by their means so that cell 1 is the best,
fh,1 ≥ fh,2 ≥ . . . ≥ fh,Kh .

We define and consider event ξδ and prove it holds with
high probability.

Let ξδ be the event under which all average estimates in all
the cells at depth H are within their classical confidence
interval, then P (ξδ) ≥ 1 − δ, where ξδ is decomposed in
three sub-events ξδ = ξ1δ ∩ ξ2δ ∩ ξ3δ where

ξ1δ ,{∀Ph,i, h ≤ blogK(n)c :∣∣∣F̃h,i(n)− nfh,i
∣∣∣ ≤ Badvh,i (n)

and
∣∣∣F̃h,i(n)− Fh,i(n)

∣∣∣ ≤ Badvh,i (n)
}

,

ξ2δ ,{∀Ph,i, h ≤ blogK(n)c,∀t ∈ [n],∣∣∣f̂h,i(t)− fh,i∣∣∣ ≤ Biidh,i(t)},
ξ3δ ,{∀h ≤ blogK(nα)c,

∀t ≥ 8nα log3(n), Th,i?(t) ≥ E
[
Th,i?(t)

2

]}
·

We have P (ξ1δ ) ≥ 1 − δ/2. Indeed to bound
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∣∣∣ we use the Bernstein inequality for mar-

tingale differences of Freedman (1975) applied to the mar-
tingale differences f̃k,t − fk,t and from taking a union
bound on all cells at depth h ≤ blogK(n)c. We have
P (ξ1δ ) ≥ 1− δ/2. Indeed, to bound

∣∣∣f̂h,i(t)− fh,i∣∣∣ we use
the Chernoff-Hoeffding inequality and take a union bound
on all cells at depth h ≤ blogK(n)c. Finally we have
P (ξ3δ ) ≥ 1 − log(n)/n. Indeed, using a Chernoff bound
we have for ∀h ≤ blogK(nα)c,∀t ≥ 8nα log3(n),

P
(
Th,i?(t) ≤ E

[
Th,i?(t)

2

])
≤ exp

(
−1

8
E
[
Th,i?(t)

2

])
≤ exp

(
−1

8
E

[
t−1∑
s=1

P(xs ∈ Ph,i?)

])
(a)
≤ exp

(
−1

8

t−1∑
s=1

1

nα log2(n)

)

≤ exp

(
−1

8

8nα log3(n)

nα log2(n)

)
= exp(− log(n)) =

1

n

where (a) is because P(xt ∈ Ph,i?) ≥
ph,i?,t = 1

h〈̂i?〉h,tlogK(n)
≥ 1

logK nαKhlogK(n)
≥

1
logK nαnαlogK(n)

≥ 1
nα log2

K(n)
≥ 1

nα log2(n)
.

We can therefore decompose the regret rn as

E[rn] =

(
δ +

log(n)

n

)
E[rn|ξcδ ] +

(
1− δ − log(n)

n

)
E[rn|ξδ]

≤
(
δ +

log(n)

n

)
fmax + E[rn|ξδ]. (6)

As we will set δ = 4b
fmax

√
n

the first term of Inequality 6 is
already smaller than the claimed result of the Theorem so
we now focus on bounding the second term.

For any x?, we write

⊥h =
{
h′ ≥ 0 : ∀t ≥ nh, ̂〈Ph′,i?〉h′,t ≤ Cρ

−dh′
}

that contains all the depth h such that for all time t ≥ nh the
cell containing x? at depth h is ranked with a smaller index
than Cρ−dh by VROOM. As explained above we are trying
here to introduce tools that will help us to upper bound the
ranking of the best arm to be able then to upper bound the
variance of its estimates.

On ξδ we have, for all H ∈ [blogK(n)c]

E[f(x(n))]
(a)
≥ 1

n

(
F̃h(n),i(n) −Bh(n),i(n)(n)

)
(b)
≥ 1

n

(
F̃⊥H ,1 −B⊥H ,1(n)

)
(a)
≥ 1

n

(
nf⊥H ,1 − 2B⊥H ,1(n)

)
(c)
≥ f(x?)− νρ⊥H − 2B⊥H ,1(n)/n. (7)

where (a) is because ξδ holds (b) is by definition of x(n)

as x(n) ← arg max
xh,i

F̃h,i(n) − Bh,i(n), and (c) is by As-

sumption 1.

We now need to bound ⊥H and bound B⊥H ,1(n) for some
H ∈ [blogK(nα)c]. To obtain a tight bound we try to have
νρ⊥H and B⊥H ,1(n) of the same order.

We use for that Lemma 2 that provide sufficient condition
in Equation 17 to lower bound ⊥H . We now define the
quantity h̃ that verify this condition. h̃ is so that the νρ⊥H

and Biid⊥H ,1(n) are equal. We denote h̃ the real number sat-
isfying

nαν
2ρ2h̃

Kh̃b2 log2(2n2/δ)
= Cρ−dh̃. (8)

Our approach is to solve Equation 8 and then verify that it
gives a valid indication of the behavior of our algorithm in
term of its optimal h. We have

h̃ =
1

(d+ 2) log(1/ρ)
W

(
ν2nα(d+ 2) log(1/ρ)

KCb2 log2(2n2/δ)

)
where standard W is the Lambert W function.

Using standard properties of the b·c function, we have

nαν
2ρ2bh̃c

K
⌊
h̃
⌋
b2 log2(2n2/δ)

≥ nαν
2ρ2h̃

Kh̃b2 log2(2n2/δ)

= Cρ−dh̃ ≥ Cρ−dbh̃c.

From the previous inequality we also have, as d ≤
log(K)/ log(1/ρ),

nα ≥

nαν
2ρ2bh̃c

K
⌊
h̃
⌋
b2 log2(2n2/δ)

≥ Cρ−dbh̃c ≥ Kbh̃c.

which leads to
⌊
h̃
⌋
≤ blogK(nα)c. Having

⌊
h̃
⌋
∈

[blogK(nα)c] and using Lemma 2 we have that if β ≥
8 log3(n)blogK(nα)c then ⊥bh̃c ≥

⌊
h̃
⌋

.

To boundB⊥H ,1(n) we use Lemma 1. Therefore, choosing
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H =
⌊
h̃
⌋

, we get to rewrite Equation 7 as

E[f(x(n))] ≥ f(x?)− νρ⊥bh̃c − 2B⊥bh̃c,1(n)/n

≥ f(x?)− νρbh̃c

− 4fmax

√√√√log3(2n2/δ)

(
n2α
n2

+
Cρ
−d⊥bh̃c

n

)
(9)

Moreover, as proved by Hoorfar and Hassani (2008), the
Lambert W (x) function verifies for x ≥ e, W (x) ≥
log
(

x
log x

)
. Therefore, if ν2nα(d+2) log(1/ρ)

KCb2 log(2n2/δ) > e we have,
we have the first term in Equation 9

ρbh̃c ≤ ρ
1

(d+2) log(1/ρ)
W

(
ν2nα(d+2) log(1/ρ)

KCb2 log2(2n2/δ)

)
−1

≤ ρ
1

(d+2) log(1/ρ)
log

 ν2nα(d+2) log(1/ρ)

KCb2 log2(2n2/δ)

e log2
(
ν2nα(d+2) log(1/ρ)

KCb2 log2(2n2/δ)

)


=

 ν2nα(d+2) log(1/ρ)
KCb2 log2(2n2/δ)

e log
(
ν2nα(d+2) log(1/ρ)
KCb2 log2(2n2/δ)

)


−1
(d+2)

Then we have, from Equation 8,√
Cρ
−d⊥bh̃c

n
≤

√
Cρ−dh̃

n
=

√
nαν2ρ2h̃

nKh̃b2 log2(2n2/δ)

≤ νρh̃√
Kb log2(2n2/δ)

,

which is bounded above.

Then in Equation 9, using that
√
a′ + b′ ≤

√
a′ +

√
b′ for

two non negative numbers (a′, b′), we have three terms of

the shape: n
−1
d+2
α +nα/n+n

−1
d+2
α . As explained in the sketch

of proof we need to have nα of order n
d+2
d+3 in order to min-

imize the previous sum.

More precisely we set nα = n
d+2
d+3 /(8 log4(n)) and set β =

8 log4(n) and δ = 4b
fmax

√
n

and obtain the claimed result.

Lemma 1. If β ≥ 8 log4(n)blogK(nα)c, for any global
optimum x? with associated (ν, ρ) from Assumption 1, any
C > 1, for any δ ∈ (0, 1), on event ξδ defined above, for
any depth h ∈ [blogK(nα)c], we have that if

nα
K
ν2ρ2h/(b2h log2(2n2/δ)) ≥ Cρ−d(ν,C,ρ)h, (10)

that

B⊥h,1(n) ≤ 2fmax

√
log3(2n2/δ)(n2α + nCρ−d⊥h).

Proof. The assumptions of Lemma 2 being verified we
have h ∈ ⊥h. Also we have,

B⊥h,1(n) (11)

= fmax

√√√√2⊥h(n)logK(n) log 2n2/δ

n∑
s=1

〈̂1〉h,s (12)

+ fmaxlogK(n)
log 2n2/δ

3
. (13)

We bound the first term by having

n∑
s=1

〈̂1〉h,s =

blogK(nα)c−1∑
h=0

nh∑
s=nh+1

〈̂1〉h,s

+

n∑
s=nblogK (nα)c+1

〈̂1〉h,s

(a)
≤
blogK(nα)c−1∑

h=0

nh∑
s=nh+1

Kblog(nα)c

+

n∑
s=nblogK (nα)c+1

Cρ−d⊥h

≤
blogK(nα)c−1∑

h=0

nh∑
s=nh+1

nα + nCρ−d⊥h

≤ n2α + nCρ−d⊥h

where (a) is because h ∈ [blogK(nα)c] and ⊥h ≥ h.

Because in Equation 11 the second term is smaller than the
first, we have

B⊥h,1(n) (14)

= 2fmax

√
2 logK(nα)logK(n) log(2n2/δ)(n2α + nCρ−d⊥h)

(15)

≤ 2fmax

√
2 log3(2n2/δ)(n2α + nCρ−d⊥h). (16)

Lemma 2. If β ≥ 8 log4(n)blogK(nα)c, For any global
optimum x? with associated (ν, ρ) from Assumption 1, any
C > 1, for any δ ∈ (0, 1), on event ξδ defined above, for
any depth h ∈ [blogK(nα)c], we have that if

nα
K
ν2ρ2h/(b2h log2(2n2/δ)) ≥ Cρ−d(ν,C,ρ)h, (17)

that h ∈ ⊥h.

Proof. To simplify notation we write d(ν, C, ρ) as d. We
place ourselves on event ξδ defined above. We prove the
statement of the lemma, given that event ξδ holds, by induc-
tion in the following sense. For a given h, we assume the
hypotheses of the lemma for that h are true and we prove
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by induction that h′ ∈ ⊥h′ for h′ ∈ [h].
1◦ For h′ = 0, we trivially have that 0 ∈ ⊥h′ .
2◦ Now consider h′ > 0, and assume h′ − 1 ∈ ⊥h′−1 with
the objective to prove that h′ ∈ ⊥h′ . Therefore, for all
t ≥ nh′−1, ̂〈Ph′−1,i?〉h′−1,t ≤ Cρ

−d(h′−1).

For the purpose of contradiction, let us assume that their ex-
ists t ≥ nh′ , such that ̂〈Ph′,i?〉h′,t > Cρ−dh

′
. This would

mean that there exist at least Cρ−dh
′

cells from {Ph′,i},
distinct from Ph′,i?h , satisfying f̂−h′,i(t) ≥ f̂−h′,i?

h′
(t). This

means that, for these cells we have

fh′,i
(b)
≥ f̂−h′,i(t) ≥ f̂

−
h′,i?

h′
(t)

(b)
≥ fh′,i?

h′
(t)− 2b

√
log(2n2/δ)

2Th′,i?
h′

(t)

(c)
≥ fh′,i?

h′
(t)− 2b

√√√√ log(2n2/δ)
βnα

hblogK(nα)cCKρ−dh′−1

≥ fh′,i?
h′

(t)− 2b

√
log(2n2/δ)

nα
hblogK(nα)cCKρ−dh′

(d)
≥ fh′,i?

h′
− 2νρh ≥ fh′,i?

h′
− 2νρh

′
,

where (b) is because ξδ holds, (d) is because
by assumption (Equation 17) of the lemma,
for h′ ∈ [h], nα

K ν2ρ2h
′
/(b2h log2(2n2/δ)) ≥

nα
K ν2ρ2h/(b2h log2(2n2/δ)) ≥ Cρ−dh ≥ Cρ−dh

′
.

(c) is because on ξδ , as β ≥ 8 log3(n)blogK(nα)c and h ≤
blogK(nα)c, ∀t ≥ nh = βnα

∑h
h′=1

1
h′

logK(nα)
≥ 8nα log3(n),

have

Th′,i?
h′

(t) ≥ E

[
t−1∑
s=1

P(xs ∈ Ph′,i?)

2

]

≥ E

 nh′∑
s=nh′−1

P(xs ∈ Ph′,i?)

2


(e)
≥

nh′∑
s=nh′−1

1

2CKρ−dh′−1

≥ β nα
2hblogK(nα)cCKρ−dh′−1

,

where (e) is because we have 〈Ph′−1,i?〉h′−1,t ≤
Cρ−d(h

′−1) which gives P(xt ∈ Ph,i) ≥ 1
KCρ−d(h′−1) as

fh′,i?
h′
≥ f(x?) − νρh

′
by Assumption 1, it follows that

Nh′(3νρh
′
) >

⌊
Cρ−dh

′
⌋

. This leads to having a contra-
diction with the function f being of near-optimality dimen-
sion d as defined in Definition 1. Indeed, the condition
Nh′(3νρh

′
) ≤ Cρ−dh

′
in Definition 1 is equivalent to the

condition Nh′(3νρh
′
) ≤

⌊
Cρ−dh

′
⌋

as Nh′(3νρh
′
) is an

integer. Reaching the contradiction proves the claim of the
lemma.
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