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Abstract

How can neuroimaging inform us about the function of brain structures? This simple question immedi-
ately brings out two pertinent issues: (i) an inference problem, namely the fact that the function of a region
can only be asserted after observing a large array of experimental conditions or contrasts; and (ii) the fact
that the identity of a region can only be defined with accuracy at the individual level, because of intrinsic dif-
ferences between subjects. To overcome this double challenge, we consider an approach based on the deep
phenotyping of behavioral responses from task data acquired using functional Magnetic Resonance Imag-
ing. The concept of functional fingerprint—which subsumes the accumulation of functional information at
a given brain location—is herein discussed in detail through concrete examples taken from the Individual
Brain Charting dataset.

Highlights

* The accumulation of functional contrasts results in a univocal characterization of brain regions, called
functional fingerprint.

* Distributed functional responses can be captured in dictionaries of functional fingerprints.

* Dictionaries of fingerprints constitute a three-way brain model: functional specialization, connectivity
and topography of brain structures.

* Dictionaries of fingerprints can be defined at the individual level, leading to subject-specific topographies.

1 Introduction

So far, functional Magnetic Resonance Imaging (fMRI), has mostly been used in cognitive neuroscience to
observe differential responses to cognitive tasks across brain regions. These differential responses, called func-
tional contrasts, are usually reported at the population level in the literature. Representative brain maps are
either described in terms of peaks of activation or shared as data derivatives in public repositories, like Neu-
roVault [GVRT15]. The accumulation of such maps brings very useful information on the neural correlates
underlying cognitive operations, yet they do not allow for conclusions about the specific function of brain
regions [Hen06, VSP18].



In the last decade, a further line of research relying on resting-state fMRI data has emerged with the main
purpose of providing fine delineations of macro-scale structures (regions or networks) and hence deliver new
insights on brain organization; it is framed as connectome analysis. Indeed, studies involving connectome
analysis in humans have been fostered by large-scale initiatives, like the Human Connectome Project (HCP).
Some of these efforts have focused on the demarcation of brain structures using information from resting-
state fMRI as wall as other neuroimaging modalities [GCR " 16]. Such topographical mapping outlines brain
regions [CFD " 08] or networks [SFM 09, YKS™ 11, BVG™16] that can be grouped in brain atlases [GCR " 16,
SKG™17]. Another view on brain topography conceptualizes instead cortical organization in terms of large-
scale gradients [MGG ™ 16].

One of the current challenges is thus to bridge the information brought by both functional connectivity
analysis and functional contrasts [BVG'16]. Such integration is done much more accurately at the intra-
subject level [PAFT21], considering that large inter-individual variations related to location, magnitude or
spatial organization of functional contrasts or functional connectivity can only yield blurred models at the
population level.

To summarize, a functional atlas of the human brain should be informative with respect to three main
features: (i) the topographical structure of the selected regions or networks; (ii) the functional identity of the
extracted structures; and (7ii) the connectivity underlying the signals observed among these structures.

In this paper, we outline an approach based on the accumulation of contrast maps in few individuals,
wherein we discuss and illustrate the concept of functional fingerprint. This is based on the Individual Brain
Charting (IBC) dataset [PAR" 18, PAG"20], a high-resolution task-fMRI dataset acquired in a fixed environ-
ment and fixed cohort of twelve subjects. The IBC dataset provides a comprehensive collection of contrasts
that aims at characterizing the cognitive components underlying a very large collection of tasks, along with
high-resolution anatomical information. FMRI data are acquired at 1.5mm isotropic resolution (see [PAR™ 18]
for more details). This dataset currently features approximately 150 task-fMRI contrasts, together with passive
watching of visual and auditory naturalistic scenes, as well as anatomical contrasts. It thus constitutes an un-
precedented opportunity to test the feasibility of performing both individual- and population-based functional
atlasing through the description of regional fingerprints.

2 From Contrast Maps to Functional Fingerprints

The accumulation of functional contrasts at the individual level allows for a subject-specific description of
the functional properties of brain territories. More precisely, the functional specificity of brain regions can be
captured through the conjunction of many contrasts; for instance, the visual word form area can be functionally
characterized as an area which responds to visual objects in general, but more to language content than other
visual categories [DC11].

The benefits resulting from the accumulation of contrast maps have been explored in few studies. Some re-
cent large-scale mapping efforts, such as the Archi [PTM 07, PAD ™" 19] and HCP datasets [BBH" 13, GCR " 16],
aimed at a complete characterization of a few cognitive networks, according to their implication in task perfor-
mance as well as their variability at the population level. However the cognitive coverage of such datasets is
typically restricted to a handful of tasks, ultimately limiting the number of available contrasts to a few dozens
at best. Acquiring naturalistic stimuli can help to broaden the scope of such studies. As an example, the
StudyForrest initiative has produced a set of openly available multi-modal datasets featuring fMRI data on the
continuous presentation of scenes included in the “Forrest Gump” movie. This project has thus launched sev-



Figure 1: What is a functional fingerprint? A functional prototype or functional fingerprint is a vector of
response to a set of contrasts in a given brain location or brain region. It characterizes the profile of functional
response to a possibly wide array of experimental conditions in that particular region. In this example, we
observe that the voxel considered obtains large responses to conditions involving sounds and, specifically,
voice content.

eral studies investigating the neurocognitive encoding of complex auditory and visual information, by modeling
specific audio and visual properties of the stimuli [HBI" 14, HDH " 15, HAK ™16, SKG ™ 16]. Nonetheless, such
approaches forgo the simplicity and the interpretability of contrast-based mapping.

On the other hand, recent neuroimaging studies have started to adopt individual analysis in order to mitigate
the negative impact of both functional and anatomical inter-subject variability on the precise demarcation of
brain territories [FBK11, HGC™ 11, NCF12, FG12, HBI* 14, LGA™ 15, HdHG" 16, HLN " 16, BB17, GLG " 17,
CPM™19]. However, they typically refer to single task studies, that only probe very specific cognitive mech-
anisms. Among those, the IBC dataset consists in an extensive collection of task data, targeting an exhaustive
and spatially accurate characterization of individual cognitive networks. To this end, the dataset yields an
extensive collection of contrasts that span a large number of cognitive components. Its successive releases
[PAR" 18, PAG20] pertain foremost to:

(i) data acquired from localizers (task batteries), whose conditions range from perception to higher-order
thinking skills [PTM 07, BBH13];

(ii) data from a rapid-serial-visual-presentation paradigm on language comprehension [HBMLO06, PAR " 18];

(iii) data on specific cognitive tasks, such as mental time and space navigation [GPvW 18], reward [LADP15],
theory-of-mind [DFKHBS 1], pain [JBKHS 16], numerosity [KPS™ 14], self-reference effect [GBC " 14],
and speech recognition [CSW T 15];

(iv) an auditory task, tackling different kinds of naturalistic auditory stimuli;
(v) and retinotopic mapping.

Here, we consider a collection of 149 independent contrasts that were obtained from the task data of the
first three releases (see section A). With these data, we then propose to operationalize the concept of functional



fingerprinting [GRL " 18] illustrated in Figure 1: fingerprints refer to a vector of activation values that define
the functional prototype of a certain region of interest.

3 Discovering structure among functional prototypes

Deriving a principled description of such functional signatures across brain regions is not trivial. Indeed,
as noted e.g. in [LVKGI10], some arbitrariness arising from modeling choices might obfuscate the intrinsic
organization of the brain. Data-driven methods can thus be better suited to capturing the essence of such inner
representations. They mostly rely on clustering [LVKG10, YKS™11, YKE'16] or decomposition methods,
such as Independent Components Analysis (ICA) [SFM09] or Dictionary Learning [VSPT13, BVGT16].
These approaches broadly consist in factorizing the set of functional signatures collected across locations and,
potentially, across individuals. Note that all these methods entail some kind of ill-posed model selection, in
order to tune the hyper-parameters. Although this issue is not discussed in detail herein, we mostly recommend
avoiding overly complex models, that might induce overfit, and using methods’ default parameters whenever
possible.
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Figure 2: Principle of Dictionary Learning A set of 149 contrast images corresponding to distinct contrasts
(left) can be factorized into a set of functional profiles multiplied by sparse non-negative topographies (right).
This latent-factor data model yields an efficient description of the brain maps used as inputs. The sparsity of
the obtained topographies allows for a better characterization of the ensuing networks, while functional profiles
yield a precise specification of their functional role. This factorization can be easily extended to multi-subjects
settings [VSPT13].

In this article, we focus on Dictionary Learning, which stands as an intermediate between ICA and Clus-
tering. Similar to ICA, Dictionary Learning follows a linear decomposition approach that fits well the sig-
nal. Similar to clustering, Dictionary Learning provides clear delineations of brain structures. In recent work



[BVGT16, DMVTI6], it has been shown to yield good representations for fMRI data.

We follow the functional approach to multi-subject Dictionary Learning, as described in [VSPT13] and
[PAFT21]. This outputs the factorization of individual contrast maps into a dictionary of cognitive profiles
common to all subjects, plus subject-specific spatial maps. Sparsity is enforced with a penalty on the loadings of
the components, together with a non-negativity constraint (see Figure 2). A formal description of the procedure
is drawn in section C. Given a set of input images, it returns a set of non-negative and sparse topographies
associated with functional fingerprints; these jointly summarize the input data.

As shown in [PAF'21] by a bootstrap analysis, a clear benefit of distilling functional maps into such a
dictionary is that the topography of the resulting components is more stable than that of the underlying contrast
maps. This makes dictionary decompositions more robust to inter-subject variability.

4 Topography, connectivity and functional specialization

We illustrate the result of applying Dictionary Learning to the IBC contrast maps in Figure 3. Based on a set of
¢ = 149 contrast maps available in n = 11 subjects, we derived £ = 20 networks using a dictionary-learning
technique as described in [PAF"21]. Each network is characterized by its connectivity to other networks as
well as by its functional signature. Here, the functional signature is coarsely summarized by the names of the
two contrasts eliciting the highest activation in the underlying network. Note that this may sometimes outline
arbitrarily some contrasts that have a higher signal-to-noise ratio. Improving such descriptions is therefore a
relevant topic for future research.

Moreover, the connectivity among these networks can be computed as the partial correlation between the
average activity within these networks.

Overall, derived networks show good coverage not only for the sensory and motor areas—the visual system
is notably divided into its ventral and dorsal pathways and different motor regions are clearly distinguished—
but also the default-mode, saliency and executive-control networks. The coverage of the prefrontal lobe is
lower, indicating less consistency across subjects in the corresponding regions. Most components display cross-
hemisphere symmetry, except for the left-lateralized language component and the right-lateralized attentional
fronto-parietal network.

The connectome among these 20 components was obtained by computing the partial correlations among
the functional fingerprints. In spite of the sparse prior used for estimating partial correlations, the network
is densely connected, showing a very ordered structure across networks. For instance, the bilateral network
associated with tongue motion (in red) has a strong partial connectivity with networks that are involved in
speech (“reversed speech” and “letters sounds”, in green), listening to or reading stories (“tale” and “read
words”, in yellow), and response to mental time travel’s events presented in auditory modality (“response to
events”, in pink), although those are not necessarily close in brain space.

5 Inter-individual variability in the obtained topographies

Connectome-type analyses enable whole-brain as well as regional brain comparisons. The individual topogra-
phies derived from these methods highlight the fact that shape, size and position of functional signatures
in brain territories differ from one subject to another [GLG"17, GLNT18, KLO"19, GMG™'20], although
the large-scale organization of the human brain is considered to be consistent across individuals. These



topographic differences are important, as they lay the groundwork to study inter-individual characteristics
[SNVT15, MAAB™16, BWG'18]. Capturing individual properties through the connectome can even lead
to the unique identification of individuals [FSS™15].

Nevertheless, functional mapping enables a more straightforward access to inter-individual variability,
namely the one that can be identified in contrast maps. The major challenge when capturing such variability
lies in teasing apart actual topographic variability from noise [VSPT13]. To address this problem, functional-
correspondence Dictionary Learning is used as it consists in the application of Dictionary Learning to data con-
catenated along the voxel dimension, thus enforcing functional correspondence across individuals [VSPT13].
Such a model does not impose any spatial correspondence which is ideal to uncover patterns of spatial similar-
ities/dissimilarities between subjects.

Figure 4 illustrates the brain networks obtained from the IBC dataset using the same setting as in the previ-
ous section. Although the global topographic organization is well-preserved across individuals, inter-individual
variability stands out as a major feature. Imputing this variability to actual inter-individual differences or to
noise constitutes a non-trivial issue and it cannot be well-addressed in a small sample. Therefore, the relevance
of these maps can be assessed through the fit of other neuroimaging variables, like cortical thickness or myelin
distribution, as well as non-neuroimaging ones, like behavioral scores.

The results reported in Figure 4 show a relatively ordered structure in the occipital, temporal and parietal
lobes, in contrast with the large variability present in frontal regions; such variability is particularly evident in
the right frontal lobe, which appears to be almost unstructured. In the left hemisphere, the consistency of the
language network creates a more stable representation.
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Figure 3: Identifying suitable network descriptions of the brain. From 149 contrast maps available in 11
subjects, we derive £ = 20 networks in a data-driven way. (left) Each network is characterized by its functional
connectivity to other networks as well as by a functional signature. The functional signature is summarized
by the names of the two contrasts that elicit most activation in that particular network. Using activation or
resting-state data, the connectivity among these networks is captured by partial correlations among the regional
signals. (right) The networks are also characterized by topographic maps, summarized herein by their cortical
representation.



As this asymmetry is, to the best of our knowledge, not fully accounted for by previous resting-state-based
network studies, it suggests further comparisons between the network structure implied by such contrasts versus
those observed with resting-state studies. We defer that question to future work. Moreover, as surface-based
alignment is thought to provide state-of-the-art alignment of individual anatomical organization, a great deal
of functional variability remains, which clearly points to variable underlying function of brain regions across
individuals. Once again, this deserves more investigation.

Figure 4: Variability of individual topographies pertaining to task-elicited brain responses. Based on the
decomposition of a set of contrast maps in 11 subjects, we define 20 networks through a data-driven procedure.
The resulting topographies are mapped on the left and right hemispheres of the cortex. The cross-subject
consensus maps are shown at the top-right corner of both panels; they are identical to those displayed on
Figure 3. Individual topographies show conspicuous variability across individuals, although the large-scale
organization remains consistent.

6 Discussion

The dictionary-learning strategy outlined herein provides a qualitative assessment of the spatial organization of
brain function: first, by providing synthetic summaries of the system-level organization of the brain; second,
by outlining the differences across individuals. Bearing these intuitions in mind and proceeding toward a sys-
tematic analysis, the next step is to assess quantitatively the information conveyed by this functional fingerprint
representation. This could be done by assessing external validity of the employed features, which involves
typically involves some kind of generalization (see e.g. [VP19]): predicting some feature of brain organization
that can be checked with unseen data gives an arguably stronger evidence for these observations. For instance,



can one predict the precise location of the visual word form area in a given individual based on such functional
fingerprints? If yes, this would lay the ground for automatic regions identification from fingerprints. Such
approach was pursued by [GCRT16], though the ground truth was based on non-replicable expert-supplied
segmentation.

Another implication of the functional fingerprint concept is the possibility to impute non-observed contrasts,
given some observed ones. This framework has been used to predict task contrasts from either resting-state to-
pographies [TIM ™ 16] or other task-fMRI contrasts [TVG™ 14, PAF"21]. The interest of this type of prediction
is to open the possibility to generalize the information from cohorts comprising a few densely sampled subjects
to cohorts that share some common contrasts, e.g. from the IBC to the whole HCP cohort.

Here, we have considered only task-fMRI contrasts, but including more functional features from naturalistic
stimuli and resting state as well as anatomical features would bring complementary information worth of further
investigation. Finding the correct generalization of the fingerprint concept to different types of information,
such as connectional fingerprints, is still an open question. We note that, while it is a common hypothesis that
connectivity underlies function (among others, see [SOK™12]), the link between connectivity and functional
fingerprints [GRL " 18] is still elusive.

Finally, we have noticed in section 4 that it was helpful to annotate each functional fingerprint with proper
cognitive terms; yet we have only relied on the contrasts referring to the largest functional responses for the
considered component. A finer functional characterization asks for defining proper ontologies in cognitive
neuroscience [PKK ' 11, PY16]. Such formal representations can then provide annotations that better define
the function of brain areas.
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A List of contrasts used for the IBC data functional fingerprinting

The choice of tasks and contrasts included in the analysis follow the following principles:

(i) whenever they were available, battery-structured experiments that systematically assess brain systems
with a wide arrays of conditions ranging from perception to higher-order cognition have been used;

(i1) we also used tasks probing core sensory and motor systems (auditory task tackling different kinds of
naturalistic auditory stimuli, retinotopic mapping, motor mapping)

(iii)) we eventually reproduced domain-specific tasks have been used to map more specific aspects of cogni-
tion, such as reading, with rapid-serial-visual-presentation paradigm on language comprehension, mental
time and space navigation, reward processing, theory-of-mind, pain, numerosity, self-reference effect,
and speech recognition, so far; the goal was to cover as many domains as possible, in order to probe the
corresponding brain systems.

Yet, the difference between domain-general tasks and domain-specific tasks should not be over-emphasized.
Localizer tasks, which are domain-general tasks, typically represent a consensual way to characterize brain
functions and their neural correlates. Therefore, they tend to be less specific than those addressing a particular
cognitive system. These tasks also have a battery-type organization, where multiple conditions are related in a
factorial structure that helps segregating territories.

Gathering and running a large number of tasks hinges on the community ability to share existing exper-
imental protocols. This is in general hard to achieve given the current research practices stimulus-delivery
software maintenance) or labor contingencies (e.g. personnel change). Data acquisition is still ongoing, with
novel protocols being added to the present IBC collection (e.g. biological motion, spatial navigation, narrative
listening, movie watching, among other task batteries).

Regarding the contrasts herein employed, we have focused on the independent contrasts of the studies;
they refer to the main conditions versus baseline, also including the corresponding baselines when they deliver
meaningful information. A comprehensive description of the tasks and corresponding contrasts used in this
study can be found in the IBC dataset documentation, which is available on https://project.inria.
fr/IBC/data.

Task Contrast Description

archi standard left-right button press left vs. right hand button press
archi standard horizontal-vertical horizontal vs. vertical checkerboard
archi standard computation-sentences mental subtraction vs. sentence reading
archi standard reading-listening reading sentence vs. listening to sentence
archi standard reading-checkerboard read sentence vs. checkerboard
archi standard motor-cognitive button presses vs. narrative/computation

archi spatial saccades saccade vs. fixation
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Task

Contrast

Description

archi spatial
archi spatial
archi spatial
archi spatial
archi social
archi social
archi social
archi social
archi social

archi social

archi social

archi social
archi emotional
archi emotional
archi emotional

archi emotional

hcp emotion
hcp emotion
hcp gambling
hcp gambling
hcp motor
hcp language
hcp language
hcp relational
hcp relational
hep social
hcp social
hcp wm
rsvp language
rsvp language
rsvp language
rsvp language
rsvp language
rsvp language
rsvp language
rsvp language
mtt we

rotation side

hand-side

object orientation
grasp-orientation

triangle random

triangle mental-random
mechanistic video
mechanistic audio

false belief-mechanistic
video
false
audio
non speech sound
speech-non speech

face gender-control

face trusty-gender
expression gender-control

belief-mechanistic

expression intention-
gender

shape

face-shape

reward
punishment-reward
tongue-avg

math

story-math

match
relational-match
random
mental-random
2back-0Oback
consonant string
word-consonant string
pseudo-consonant string
word-pseudo
complex-simple
sentence-word
jabberwocky-pseudo
sentence-jabberwocky
we average reference

hand palm or back vs. fixation

left or right hand vs. hand palm or back
image orientation reporting

object grasping vs. orientation reporting
randomly drifting triangle

mental motion vs. random motion
reading a mechanistic story

listening to a mechanistic tale
false-belief story vs. mechanistic story

false-belief tale vs. mechanistic tale

listen to natural sound

listen to voice sound vs. natural sound

guess the gender from face image

assess face trustfulness vs. gender

guess the gender from eyes image vs. view scram-
bled image

guess intention vs. gender from eyes image

shape comparison

emotional face comparison vs. shape comparison
gambling with positive outcome

negative vs. positive gambling outcome

move tongue vs. hands and feet

mental additions

listening to tale vs. mental additions

visual feature matching vs. fixation

relational comparison vs. matching

random motion vs. fixation

mental motion vs. random motion

2-back vs. 0-back

read and encode consonant strings vs. fixation
read words vs. consonant strings

read pseudowords vs. consonant strings

read words vs. pseudowords

read sentence with complex vs. simple syntax
read sentence vs. words

read jabberwocky vs. pseudowords

read sentence vs. jabberwocky

updating ones position in space and time in west-
east island

17



Task ‘ Contrast Description

mtt we we all space cue spatial cue of the next event in west-east island

mtt we we all time cue time cue of the next event in west-east island

mtt we we all space-time cue spatial vs. time cues in west-east island

mtt we we all time-space cue time vs. spatial cues in west-east island

mtt we we average event figuring out the space or time of an event in west-
east island

mtt we we space event figuring out the position of an event in west-east is-
land

mtt we we time event figuring out the time of an event in west-east island

mtt we we space-time event event in space vs. event in time in west-east island

mtt we we time-space event event in time vs. event in space in west-east island

mtt we westside-eastside event events occuring westside vs. eastside

mtt we eastside-westside event events occuring eastside vs. westside

mtt we we before-after event events occuring before vs. after in west-east island

mtt we we after-before event events occuring after vs. before in west-east island

mtt we we all event response motor responses performed after every event condi-
tion in the west-east island

mtt sn sn average reference updating ones position in space and time in south-
north island

mtt sn sn all space cue spatial cue of the next event in south-north island

mtt sn sn all time cue time cue of the next event in south-north island

mtt sn sn all space-time cue spatial vs. time cues in south-north island

mtt sn sn all time-space cue time vs. spatial cues in south-north island

mtt sn sn average event figuring out the space or time of an event in south-
north island

mtt sn sn space event figuring out the position of an event in south-north
island

mtt sn sn time event figuring out the time of an event in south-north is-
land

mtt sn sn space-time event event in space vs. event in time in south-north island

mtt sn sn time-space event event in time vs. event in space in south-north island

mtt sn southside-northside event | events occuring southside vs. northside

mtt sn northside-southside event | events occuring northsife vs. southside

mtt sn sn before-after event events occuring before vs. after in south-north island

mtt sn sn after-before event events occuring after vs. before in south-north island

mtt sn sn all event response motor responses performed after all event condition

preference food

preference food

preference food
preference paintings

food constant
food linear

food quadratic
painting constant

in the south-north island
evaluation of food

linear effect of food preference
quadratic effect of food preference
evaluation of paintings
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Task

Contrast

Description

preference paintings
preference paintings

preference faces
preference faces
preference faces
preference houses
preference houses
preference houses
theory of mind
theory of mind
emotional pain
emotional pain
pain movie
pain movie
self
bang
bang
lyon lec2
lyon lec2
lyon lec2
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon audi
lyon visu
lyon visu
lyon visu
lyon visu
lyon visu
lyon visu
lyon visu
lyon visu

painting linear
painting quadratic
face constant

face linear

face quadratic
house constant
house linear

house quadratic
photo

belief-photo
physical pain
emotional-physical pain
movie pain

movie mental-pain
instructions
talk-no talk

no talk

attend

unattend
attend-unattend
silence
tear-silence
suomi-silence
yawn-silence
human-silence
music-silence
reverse-silence
speech-silence
alphabet-silence
cough-silence
environment-silence
laugh-silence
animals-silence
scrambled
face-scrambled
characters-scrambled
scene-scrambled
house-scrambled
animal-scrambled
pseudoword-scrambled
tool-scrambled

linear effect of paintings preference
quadratic effect of paintings preference
evaluation of faces

linear effect of face preference
quadratic effect of face preference
evaluation of houses

linear effect of houses preference
quadratic effect of houses preference
manipulation of fact judgments

belief vs. factual judgments

reading physical pain story

emotional vs. physical pain story
movie with physically painful events
mental events vs. physically painful events
read instruction in form of a question
speech vs. non-speech sections in movie watching
non-speech section in movie watching
response to attended text

response to unattended text

response to attended vs. unattended text
listen to silence

listen to tears

listen to unknown language

listen to yawning

listen to human sounds

listen to music

listen to reversed speech

listen to speech

listen to letters

listen to coughing

listen to environment sounds

listen to laugh

listen to animals

view a scrambled image

view a face image

view a characters

view a scene

view a house

view an animal

view a pseudoword

view a tool
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Task ‘ Contrast Description
lyon lecl random string read a random string
lyon lecl word-random string read a word vs. a random string
lyon lecl word-pseudoword read a word vs. a pseudoword
lyon lecl pseudoword-random read a pseudoword vs. a random string
string
lyon mveb 2 letters different-same maintaining two letters vs. one
lyon mveb 4 letters different-same maintaining four letters vs. one
lyon mveb 6 letters different-same maintaining six letters vs. one
lyon mveb 6 letters different-2 letters | maintaining six letters vs. two
different
lyon mvis 2 dots-2 dots control maintain position of two dots vs. one
lyon mvis 4 dots-4 dots control maintain position of four dots vs. one
lyon mvis 6 dots-6 dots control maintain position of six dots vs. one
lyon mvis 6 dots-2 dots maintain position of six dots vs. two
Iyon moto instructions read instructions
lyon moto finger right-fixation right finger tapping vs. any movement
lyon moto finger left-fixation left finger tapping vs. any movement
lyon moto foot left-fixation move left foot vs. any movement
Iyon moto foot right-fixation move right foot vs. any movement
lyon moto hand left-fixation move left hand vs. any movement
Iyon moto hand right-fixation move right hand vs. any movement
lyon moto saccade-fixation saccade vs. any movement
lyon moto tongue-fixation move tongue vs. any movement
Iyon mcse salience left-right looking for a symbol in left vs. right visual field
lyon mcse low-high salience looking for a low-salient symbol
audio music-silence listen to music vs. silence
audio speech-silence listen to speech vs. silence

B Preprocessing of the IBC data

A detailed description of the preprocessing pipeline of the IBC data is provided in [PAF*21]. Raw data were
preprocessed using PyPreprocess (https://github.com/neurospin/pypreprocess).

All fMRI images, i.e. GE-EPI volumes, were collected twice with reversed phase-encoding directions,
resulting in pairs of images with distortions going in opposite directions. Susceptibility-induced off-resonance
field was estimated from the two Spin-Echo EPI volumes in reversed phase-encoding directions. The images
were corrected based on the estimated deformation model. Details about the method can be found in [ASAO03].

Further, the GE-EPI volumes were aligned to each other within every participant. A rigid-body transforma-
tion was employed, in which the average volume of all images was used as reference [FFFT95]. The anatomical
and motion-corrected fMRI images were given as input to FreeSurfer v6.0.0, in order to extract meshes of the
tissue interfaces and the sampling of functional activation on these meshes, as described in [VEGD " 12]. The
corresponding maps were then resampled to the fsaverage7 template of FreeSurfer [FSTD99].
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FMRI data were analyzed using the General Linear Model. Regressors of the model were designed to
capture variations in BOLD response strictly following stimulus timing specifications. They were estimated
through the convolution of boxcar functions, that represent per-condition stimulus occurrences, with the canon-
ical Hemodynamic Response Function (HRF). To build such models, paradigm descriptors grouped in triplets
(i.e. onset time, duration and trial type) according to BIDS Specification were determined from the log files’
registries generated by the stimulus-delivery software. To account for small fluctuations in the latency of the
HRF peak response, additional regressors were computed based on the convolution of the same task-conditions
profile with the time derivative of the HRF. Nuisance regressors were also added to the design matrix in or-
der to minimize the final residual error. To remove signal variance associated with spurious effects arising
from movements, six temporal regressors were defined for the motion parameters. Further, the first five prin-
cipal components of the signal, extracted from voxels showing the 5% highest variance, were also regressed to
capture physiological noise [BRLLO7].

In addition, a discrete-cosine basis was included for high-pass filtering (cutoﬁ”=ﬁHz). Model specifica-
tion was implemented using Nilearn [APE " 14], a Python library for statistical learning on neuroimaging data
(https://nilearn.github.io).

C Technical description of the functional correspondence dictionary-learning
method

Formally, consider the set of brain maps X* = (X3),j € [c] obtained for ¢ = 149 contrasts in a subject
s € [n]. By enumerating the values across a mesh of vertices, each X7 is a p—dimensional vector, where p
is the number of vertices; X° is thus a matrix of size p X c. Functional-correspondence Dictionary Learning
solves the following minimization problem for A > 0:

minys)ys—t..nvee P (1X° = UV|? + A|U°||1),
s=1

where U® > 0, Vs € [n]. Here, C denotes the set of matrices with row norm smaller than 1. U matrices have
shape p x k, whereas the functional-loading matrix V has shape k£ X ¢, k being the number of components.
Herein, we used £ = 20. In addition, V describes the functional characteristics of the components. The
estimated subject-specific spatial components (U?®), s € [n] can be interpreted as individual topographies;
these components may overlap, although their values are zero in most regions. This is why the median value
of these components is also sparse, even without applying explicit thresholds. The A parameter was calibrated
in order to yield a sparsity of around 75%. As the estimation problem is non-convex, initialization matters;
here, we created an initial V matrix by clustering the voxels across subjects into & = 20 clusters and took the
normalized average of the cluster signal. This is illustrated in Figure 2.

The implementation relies on the mini-batch k-means and the dictionary-learning methods of scikit-learn
v0.21.3 [PVG ™ 11], a Python machine-learning library (https://scikit—learn.org/stable/).
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