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Abstract
Cophylogeny reconciliation is a powerful method for analyzing host-parasite (or host-symbiont)
co-evolution. It models co-evolution as an optimization problem where the set of all optimal solutions
may represent different biological scenarios which thus need to be analyzed separately. Despite
the significant research done in the area, few approaches have addressed the problem of helping
the biologist deal with the often huge space of optimal solutions. In this paper, we propose a new
approach to tackle this problem. We introduce three different criteria under which two solutions
may be considered biologically equivalent, and then we propose polynomial-delay algorithms that
enumerate only one representative per equivalence class (without listing all the solutions). Our
results are of both theoretical and practical importance. Indeed, as shown by the experiments, we
are able to significantly reduce the space of optimal solutions while still maintaining important
biological information about the whole space.
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1 Introduction

Reconstructing the evolutionary history of parasites (or symbionts) and their hosts has many
applications such as for example identifying and tracing the origins of emerging infectious
diseases [8, 16, 26]. These studies have become increasingly more important with the large
amount of publicly available sequence data. A powerful framework for modeling host-parasite
co-evolution is provided by cophylogeny models which derive evolutionary scenarios for both
hosts and parasites (usually evolutionary trees are computed from DNA sequence data).
Co-evolution is usually modeled as a problem of mapping the phylogenetic tree of the parasites
to the one of the hosts (see e.g. [6, 19, 7, 32]). Such mapping, called a reconciliation, allows
the identification of some biologically motivated events: (a) cospeciation, when the parasite
diverges in correspondence to the divergence of a host species; (b) duplication, when the
parasite diverges but not the host; (c) host-switching, when a parasite switches from one host
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species to another independent of any host divergence; and (d) loss, which can describe for
instance speciation of the host species independently of the parasite, which then follows just
one of the new host species. Finding the “best” reconciliation is modeled as an optimization
problem by assigning a cost to each of the different types of events and then seeking the
reconciliations that minimize the total cost (computed in an additive way). In practice, there
may often be many optimal solutions which, although having the same total cost, can be
quite different among them and correspond to different biological scenarios. Most of the
software proposed in the literature therefore do not rely only on one optimal solution but
enumerate all of them (e.g. [20, 32, 7, 15, 28]). A crucial issue is that often the number of
optimal solutions is unrealistically large (exponential in the size of the trees) [7, 14, 13, 18, 11],
making it practically impossible to analyze each one of them separately.

To tackle this problem, we observe that although many of the solutions can be indeed
very different, a large number of them are quite similar and can be considered biologically
equivalent. We thus first propose various equivalence relations for grouping the reconciliations
that may be considered biologically equivalent, then we provide algorithms which efficiently
enumerate only the equivalence classes or one representative reconciliation per class.

State of the art

Many methods have been proposed in the literature to deal with the large number of optimal
reconciliations. Some early approaches propose sampling the space of optimal reconciliations
uniformly at random [2, 29]. However, as the optimal reconciliation space can be both large
and heterogeneous [12], this does not guarantee that important information is not lost.

Other methods try to understand the structure of the space of solutions by computing
some global properties such as the frequency of the events across the space [29], the diameter
of the space [12], the pairwise distance among the optimal reconciliations [27]. In a similar
direction, other methods propose a single reconciliation (e.g. a “median” reconciliation)
to represent the whole space of optimal ones [22, 14, 11]. However, the results presented
in [13, 11, 12, 27] show that the space can be very diverse and making inferences from a
single reconciliation might lead to conclusions that can be contradicted by other optimal
reconciliations. The method in [22] has been generalized in [24] in order to find a set of k

medoids, or k centers that represent the space. However, these algorithms have a running
time of O(nk+3 log k) (where k is the number of clusters and n is the size of the trees) and
are thus not applicable in practice. Finally, in [18, 28] the solutions are clustered using a
similarity distance among the reconciliations. However, in some cases the results of the
clustering can be hard to interpret (see Section 3.3).

Our contribution

In this paper, we propose an approach that is entirely different from the ones discussed in
the state of the art section. We first formally define under what conditions two solutions can
be considered biologically equivalent. To this end, we introduce three different relations of
equivalence. We then propose an algorithm that efficiently enumerates the set of “equivalence
classes” or that enumerates one representative per class without having to first generate
all of them. The algorithms that we present are polynomial-delay, meaning that the time
between the output of any solution and the next one is bounded by a polynomial function
of the input size. Our results are of both practical and theoretical importance. Indeed, the
problem of enumerating equivalence classes, and particularly the generation of representative
solutions is a challenge in the context of enumeration algorithm. It has been identified as a
need in different areas, such as genome rearrangements [4], artificial intelligence [1], pattern
matching [3, 21], or the study of RNA shapes [9].
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The method has already been implemented in a software presented as an application
note in [33]. The algorithms, the proofs, and the experiments are presented here for the
first time. It is worth mentioning that the theoretical results in this paper have inspired the
introduction of a general framework to enumerate equivalence classes for a whole class of
problems which can be addressed by dynamic programming algorithms [34].

2 Model description and definitions of the equivalence relations

2.1 Definitions
In this section, we formally present the phylogenetic tree reconciliation problem that was
originally introduced by Goodman et al. in 1979 [10]. We start by providing some definitions
that will be used in the paper.

For a directed graph G, we denote by V (G) and A(G) respectively the set of nodes and
the set of arcs of G. The out-neighbors of a node v are called its children. We consider
ordered rooted trees in which arcs are directed away from the root. For a tree T , we denote
by L(T ) the set of leaf nodes, i.e. those nodes without children, and denote by r(T ) the root
of T ; the non-leaf nodes are called the internal nodes of T . A full rooted binary tree is a
rooted tree in which every internal node has two children.

We denote by p(w) the parent of a node w. The children of a node w are denoted by a
couple (i.e. an ordered pair) ch(w). If there exists a directed path from a node v to a node w,
the node w is called a descendant of v, and v is called an ancestor of w; if moreover v ≠ w,
we say that w is a proper descendant of v, and that v is a proper ancestor of w. If neither w

is an ancestor of v nor w is an ancestor of v, we say that the two nodes are incomparable,
and denote this as v ̸∼ w. We denote by LCA(v, w) the lowest common ancestor of two nodes
v and w. The subtree of T rooted at a node v containing all descendants of v is denoted by
T |v. Finally, we denote by dT (v, w) the distance, i.e. the number of arcs on a directed path,
between two comparable nodes v and w in T .

We define next the Phylogenetic tree reconciliation problem (shortly, the
Reconciliation problem). Let H and P be respectively the rooted phylogenetic trees
of the host and parasite species, both binary and full. Let σ be a function from L(P ) to
L(H), representing the parasite/host associations between extant species. A reconciliation is
a function ϕ that assigns, for each parasite node p ∈ V (P ), a host node ϕ(p) ∈ V (H), and
satisfies the conditions stated in Definition 1. A reconciliation must induce an event function
Eϕ on V (P ) which associates each parasite node p to an event Eϕ(p). The set of events
is denoted by E := {C, D, S, T}; the leaf parasite node has a special event T; for internal
parasite nodes, the event Eϕ(p) is one among three options: cospeciation C, duplication
D, and host-switch S. The event for an internal node p will depend on the hosts that are
assigned by ϕ to p and to the two children p1 and p2 of p. In Definition 1, this dependency
is expressed by Eϕ(p) := E(ϕ(p), ϕ(p1), ϕ(p2)).

▶ Definition 1 (Reconciliation, Event of a node). Given two phylogenetic trees H and P , and
a function σ : L(P ) → L(H), a reconciliation of (H, P, σ) is a function ϕ : V (P ) → V (H)
satisfying the following:
1. For every leaf node p ∈ L(P ), ϕ(p) is equal to σ(p), and Eϕ(p) = T.
2. For every internal node p ∈ V (P )\L(P ) with children (p1, p2), exactly one of the following

applies:
a. E (ϕ(p), ϕ(p1), ϕ(p2)) = S, that is, either ϕ(p1) ̸∼ ϕ(p) and ϕ(p2) is a descendant of

ϕ(p), or ϕ(p2) ̸∼ ϕ(p) and ϕ(p1) is a descendant of ϕ(p),
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3:4 Efficient Listing of Representative Reconciliations

b. E (ϕ(p), ϕ(p1), ϕ(p2)) = C, that is, LCA(ϕ(p1), ϕ(p2)) = ϕ(p), and ϕ(p1) ̸∼ ϕ(p2),
c. E (ϕ(p), ϕ(p1), ϕ(p2)) = D, that is, ϕ(p1) and ϕ(p2) are descendants of ϕ(p), and the

previous two cases do not apply.

In a reconciliation, an internal parasite node can be additionally associated to a number
of loss events. The loss event is denoted by L. A loss can only occur in conjunction with
another event (S, C, or D), and the definition of the number of losses splits into several
cases according to the accompanying event. We give in Definition 2 the number of loss
events associated to an internal node p, called the loss contribution ξϕ(p). Since the loss
contribution is also determined by the hosts that are assigned to p and to the children of p,
we will also write ξϕ(p) := ξ(ϕ(p), ϕ(p1), ϕ(p2)).

▶ Definition 2 (Loss contribution). Let ϕ : V (P ) → V (H) be a reconciliation. Let p be an
internal node of the parasite tree with children p1, p2. Its loss contribution ξϕ(p) is defined by:

ξϕ(p) :=


dH(ϕ(p), ϕ(p1)) if Eϕ(p) = S and ϕ(p) ̸∼ ϕ(p2),
dH(ϕ(p), ϕ(p2)) if Eϕ(p) = S and ϕ(p) ̸∼ ϕ(p1),
dH(ϕ(p), ϕ(p1)) + dH(ϕ(p), ϕ(p2)) − 2 if Eϕ(p) = C,

dH(ϕ(p), ϕ(p1)) + dH(ϕ(p), ϕ(p2)) otherwise, Eϕ(p) = D.

The function Eϕ partitions the set of internal parasite nodes into three disjoint subsets
according to their event; these subsets are denoted by V C(P ), V D(P ), V S(P ). The number
of occurrences of each of the three events together with the number of losses make up the
event vector of the reconciliation ϕ:

▶ Definition 3 (Event vector). The event vector of a reconciliation ϕ is a vector of four
integers consisting of the total number of each type of events C, D, S, and L, i.e.

e⃗ (ϕ) :=

∣∣V C(P )
∣∣ ,

∣∣V D(P )
∣∣ ,

∣∣V S(P )
∣∣ ,

∑
p ∈V (P )\L(P )

ξϕ(p)

 . (1)

Given a cost vector c⃗ := (c(C), c(D), c(S), c(L)) assigning a real number to each type
of event, the cost of a reconciliation ϕ is equal to the dot product between the cost vector
and the event vector cost(ϕ) := c⃗ · e⃗ (ϕ). We are now ready to formulate the optimization
version of the Reconciliation problem: Given two phylogenetic trees H and P , a function
σ : L(P ) → L(H), and a cost vector c⃗, find a reconciliation ϕ of (H, P, σ) of minimum cost.

In Figure 1, we show two different reconciliations on the same input (H, P, σ). Depending
on the cost vector, these reconciliations may or may not be optimal. Notice that if the cost
vector is (0, 0, 0, 0), any valid reconciliation will be optimal.

2.2 Dynamic programming algorithm
The Reconciliation problem can be solved by dynamic programming. One of the
first methods which took into account all the events described in the previous section was
introduced by Michael Charleston in 1998 [5] and has been improved since by different
authors. These methods have different ways of dealing with time feasibility which makes the
problem hard on undated trees. We will not discuss this further in the present paper, except
for mentioning that in the dynamic programming approach presented in this section, the
trees are considered undated, and the time feasibility issue can be dealt with in a subsequent
step as described in [7]. On the other hand, we show in this section a formulation of the
dynamic programming algorithm in terms of a certain directed graph which we will define.
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Eφ1(p0) = C
ξφ1(p0) = 1

Eφ1
(p1) = S

ξφ1
(p1) = 0

~e (φ1) = (1, 0, 1, 1)

p0

p1

pbpc

h0

h1

hchbpa ha

φ1 Eφ2(p0) = C
ξφ2(p0) = 1

Eφ2
(p1) = S

ξφ2
(p1) = 0

~e (φ2) = (1, 0, 1, 1)

p0

p1

pbpc

h0

h1

hchbpa ha

φ2

Figure 1 Example of two reconciliations ϕ1 and ϕ2 on the same input. For each reconciliation, we
draw the parasite tree on the left, the host tree on the right; the solid edges represent the associations
for the leaf parasite nodes; the dashed edges represent the associations for the internal parasite
nodes.

The graph structure can be seen as a means for efficiently enumerating all optimal solutions
of the optimization problem, and more importantly, we will use it later in Section 3 for
enumerating equivalence classes of optimal reconciliations.

2.2.1 Recurrence relations
Given an instance (H, P, σ, c⃗), the minimum cost of a reconciliation can be found by dynamic
programming. Recall that E := {C, D, S, T} is the set of possible events for a node. Let
U := V (P ) × V (H) × E . We call a triple (p, h, e) ∈ U a cell of the dynamic programming
table. Consider a function f : U → R ∪ {∞}, where the value of a cell f(p, h, e) is defined
to be the minimum cost of a reconciliation between the subtree P |p (i.e., the subtree of P

rooted at the node p) and the host tree H mapping p to h, such that the event of p is e.
Then f can be computed as follows:
1. If p is a leaf,

f(p, h, e) =
{

0 if h = σ(p) and e = T,

∞ otherwise.
(2)

2. Otherwise, p is an internal node with children (p1, p2). In this case,

f(p, h, e) = min
E(h,h1,h2)=e
h1,h2∈V (H)

e1,e2∈E

f(p1, h1, e1) + f(p2, h2, e2) + c(e) + c(L) ξ(h, h1, h2) . (3)

The minimum cost of a reconciliation is then given by minh∈V (H),e∈E f(r(P ), h, e).

2.2.2 ad-AND/OR graphs and solution subtrees
In order to find one optimal reconciliation or to efficiently enumerate all optimal reconciliations,
a directed graph can be constructed from the recurrence relations Equations (2) and (3): it is
a compact representation of all series of computations performed by dynamic programming
which result in the optimal cost value. To do this, we rely on a well-known structure in
Computer Science, that is the AND/OR graph [23]. More specifically, we consider a particular
flavor of AND/OR graphs that we call acyclic decomposable AND-OR graphs. This structure
is known for having an intimate relationship with dynamic programming on a tree.

▶ Definition 4 (ad-AND/OR graph). A directed graph G is an acyclic decomposable AND/OR
graph (an ad-AND/OR graph) if it satisfies the following:

G is a DAG.
G is bipartite: its node set V (G) can be partitioned into (A, O) so that all arcs of G are
between these two sets. Nodes in A are called AND nodes; nodes in O are called OR+

nodes.
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3:6 Efficient Listing of Representative Reconciliations

Every AND node has in-degree at least one and out-degree at least one. The set of nodes
with out-degree zero is then a subset of O and is called the set of goal nodes; the remaining
OR+ nodes are simply the OR nodes. The subset of OR nodes of in-degree zero is the set
of start nodes.
G is decomposable: for any AND node, the sets of nodes that are reachable from each one
of its child nodes are pairwise disjoint.

▶ Definition 5 (Solution subtree). A solution subtree T of an ad-AND/OR graph G is a
subgraph of G which: (1) contains exactly one start node; (2) for any OR node in T it
contains exactly one of its child nodes in G, and for any AND node in T it contains all its
children in G.

The set of solution subtrees of G is denoted by T (G). It is immediate to see that a
solution subtree is indeed a subtree of G: it is a rooted tree, the root of which is a start
node. If we would drop the requirement of G being decomposable, the object defined in
Definition 5 would not be guaranteed to be a tree.

▶ Definition 6 (Subgraph starting from a set of nodes). Let G be an ad-AND/OR graph. Let
O be a set of OR+ nodes of G. The subgraph of G starting from O, denoted by G/O, is the
subgraph obtained from G by setting O as the new set of start nodes (i.e. by removing all
nodes that are not reachable from O through directed paths).

2.2.3 The reconciliation graph
The reconciliation graph is a concept already present in the literature [29, 7, 17]. Since,
depending on the application, slightly different definitions of this structure exist, to avoid
ambiguity, we describe how to construct the reconciliation graph of a given instance of the
Reconciliation problem from the recurrence Equations (2)–(3).

The construction is done in two steps. In the first step, we build a graph in which every
node retains an additional attribute, its value, and every OR+ node is uniquely labeled by a
dynamic programming cell (p, h, e) ∈ U . In the second step, we prune the graph by removing
nodes that do not yield optimal values.
1. For each (p, h, e) ∈ U such that p is a leaf, create a goal node labeled by (p, h, e); its value

is equal to 0 if h = σ(p) and ∞ otherwise. Then, for each (p, h, e) ∈ U in the post-order
of V (P ), let p1, p2 be the two children of p,

i. For each (p1, h1, e1) and each (p2, h2, e2) such that E(h, h1, h2) = e, create an AND
node, connect it to the two OR+ nodes respectively labeled by (p1, h1, e1) and
(p2, h2, e2). Its value is equal to the sum of the values of its two children, plus
c(e) + c(L) ξ(h, h1, h2).

ii. Create a single OR node, connect it to every AND node created in the previous step.
Its label is (p, h, e), and its value is the minimum of the values of its children.

2. For each (r(P ), h, e) ∈ U , remove the OR node labeled by that cell unless its value is
equal to the optimal cost. For each OR node s, remove the arc to its child AND node si

if the value of si is not equal to the value of s. Finally, remove recursively all AND nodes
without incoming arcs.

It can be checked that the reconciliation graph is indeed an ad-AND/OR graph as defined
in Definition 4. An OR+ node labeled by (p, h, e) is a start node if and only if p = r(P ), and
is a goal node if and only if p ∈ L(P ). It is also immediate to see that each AND node in the
reconciliation graph has exactly one in-neighbor and exactly two children. We will consider
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the two children as a couple: for an AND node s, if its in-neighbor is labeled by (p, h, e)
and its two children s1 and s2 are respectively labeled by (p1, h1, e1) and (p2, h2, e2), we will
say that s1 is the first child and s2 is the second child of s if p1 and p2 are respectively the
first and second child of p; otherwise, we say that s1 is the second child and s2 is the first
child. Keeping the correct order of the children, we can extend the notation “ch” to the set
of nodes of the reconciliation graph: if s is an AND node, ch(s) is the couple (ordered pair)
of the two child OR+ nodes of s; if s is an OR node, ch(s) is simply the set of its AND child
nodes. For an OR node, we will typically be interested not in its children but in its set of
“grandchildren”, hence we introduce here a new notation. If s is an OR node, we call the
grandchild couples, denoted by gch(s), the union of the children of its child AND nodes (it is
a set of couples of OR+ nodes): gch(s) :=

⋃
si∈ch(s) ch(si). Notice that an OR+ node can

appear as grandchild of two different nodes, and can also appear in two different grandchild
couples of a same node (see Figure 2).

The dynamic programming algorithms for the Reconciliation problem which enable
the efficient enumeration of all optimal reconciliations are based on the following observation:

▷ Claim. Let (H, P, σ, c⃗) be a given instance of the Reconciliation problem. The
reconciliation graph G, constructed as described in the previous paragraph is an ad-AND/OR
graph, and the set T (G) of solution subtrees of G correspond bijectively to the set of optimal
reconciliations.

To see this, consider an OR+ node s labeled by a cell (p, h, e) ∈ U of the dynamic programming
table. For the subgraph G/{s} (see Definition 6), the following can be proven by induction: the
set of solution subtrees T (G/{s}) corresponds bijectively to the set of optimal reconciliations
of the dynamic programming subproblem at (p, h, e), i.e. the optimal reconciliations between
the subtree P |p and H such that p is mapped to h and the event of p is e. In practice, to
convert a solution subtree T1 ∈ T (G) into a reconciliation ϕ, we only need to look at the
labels (p, h, e) of the OR+ nodes in T1 (a reconciliation can simply be viewed as a collection
of triples of the form (p, h, e)). We will henceforth use interchangeably the terms solution
subtrees of the reconciliation graph and optimal reconciliations of the problem instance.

The reconciliation graph can be constructed using O(|V (P )||V (H)|3) time and space
complexity [7]. After the construction, the total number of optimal reconciliations can
also be computed. It is a well-known folklore result that the set of solution subtrees of
an ad-AND/OR graph can be enumerated efficiently: the delay between outputting two
consecutive solutions is linear in the size of the solution. Therefore, there is an algorithm
with a O(|V (P )||V (H)|3) time pre-processing step and O(|V (P )|) time delay for enumerating
the optimal reconciliations.

Figure 2 shows a reconciliation graph based on the same input (H, P, σ) as in Figure 1 with
nine solution subtrees. Among these nine reconciliations, four have event vector (0, 0, 2, 0),
two have (1, 0, 1, 0), two have (1, 0, 1, 1) (ϕ1 and ϕ2 of Figure 1), and one has (2, 0, 0, 0). The
event vector of the reconciliation shown in bold is (1, 0, 1, 1).

2.3 Equivalent optimal reconciliations

In this section, we first introduce four definitions of equivalence between reconciliations
and study the relationship between them, then we explain the motivation for defining such
equivalence relations and state the problems of enumerating the equivalence classes and
counting the size of each class. The algorithmic contribution solving these problems and the
experimental results will be presented in the subsequent sections.
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3:8 Efficient Listing of Representative Reconciliations

p0, hb, S p0, h0,C p0, ha, S p0, hc, S p0, h1, S

p1, hb, S

pc, hc,T

pa, ha,T p1, h1,C

pb, hb,T

p1, hc, S

Figure 2 Example of a reconciliation graph for the input (H, P, σ) in Figure 1. Crossed circles
are AND nodes. Rectangles are OR+ nodes. The cells with which the OR+ nodes are labeled are
written inside. One solution subtree is shown in bold.

2.3.1 Definitions
In Definitions 7–9, we give three equivalence relations on the set of optimal reconciliations.
One is based on a global property, the event vector, which is already defined in Definition 3.
The other two equivalence relations are based on “local properties”, i.e. on the event Eϕ(p)
and the host ϕ(p) that are assigned by ϕ for each parasite node p.

▶ Definition 7 (V-equivalence). Two reconciliations ϕ1 and ϕ2 are Vector-equivalent, or
shortly V-equivalent, if their event vectors are equal: e⃗ (ϕ1) = e⃗ (ϕ2).

▶ Definition 8 (E-equivalence). Two reconciliations ϕ1 and ϕ2 are Event-equivalent, or
shortly E-equivalent, if Eϕ1(p) = Eϕ2(p) for all p ∈ V (P ).

▶ Definition 9 (CD-equivalence). Two reconciliations ϕ1 and ϕ2 are Cospeciation-Duplication-
equivalent, or shortly CD-equivalent, if Eϕ1(p) = Eϕ2(p) for all p ∈ V (P ) (i.e. they are
E-equivalent), and the hosts of non-host-switch parasite nodes are the same: Eϕ1(p) ̸= S =⇒
ϕ1(p) = ϕ2(p).

Each one of these equivalence relation splits the set of optimal reconciliations of a given
instance into equivalence classes, i.e. subsets of pairwise equivalent reconciliations. One
representative of an equivalence class is simply a reconciliation in the corresponding subset.
We will abuse the terminology and call equivalence classes the objects that best represent
the common property of the reconciliations in that subset. A reconciliation in a particular
equivalence class will then be a reconciliation satisfying that property.

▶ Definition 10 (Equivalence classes). In this paper, the term equivalence class has the
following meanings, depending on the equivalence relation:

For the V-equivalence relation, a V-equivalence class is an event vector e⃗ , i.e. a vector
of four integers.
For the E-equivalence relation, an E-equivalence class is a function E : V (P ) → E that
associates each node of the parasite tree with an event.
For the CD-equivalence relation, a CD-equivalence class is a function ECD : V (P ) →
E × (V (H) ∪ {?}) that associates each node of the parasite tree with an ordered pair (e, h),
where either

e is an event between T, C and D and h is a node of the host tree, or
e is the host-switch event S and h is a special symbol ?.
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We can make the following remarks about the relationships between these equivalence
relations. CD-equivalent reconciliations are also E-equivalent. Being E-equivalent implies that
the first three elements of their event vectors are equal. As we only consider reconciliations
having the same minimum cost, if the cost of a loss event c(L) is nonzero, E-equivalent
reconciliations necessarily have the same number of losses, hence are also V-equivalent. On
the other hand, if c(L) = 0, E-equivalent reconciliations are not necessarily V-equivalent.

In Figure 1, the pair ϕ1 and ϕ2 are equivalent under all three equivalence relations. In
Figure 2, the nine reconciliations split into four V-equivalence classes (the four event vectors).

2.3.2 Motivation and challenges

The first and foremost motivation of defining equivalence relations is the need of capturing
useful biological information from the set of optimal reconciliations, when this set is too large
for manual analyses or for exhaustive enumeration. The V-equivalence classes already conveys
some information about the co-evolutionary history of the hosts and their parasites. Indeed,
a high number of cospeciations may indicate that hosts and parasites evolved together, while
a high number of host-switches may indicate that the parasites are able to infect different
host species. Under the scope of the E-equivalence relation, we are also interested in which
parasites are associated to each type of event (disregarding losses).

The CD-equivalence relation is motivated by the idea that when a host-switch happens,
there may be various hosts that can be selected as the parasite’s “landing site”. In this case,
we choose to consider as equivalent those reconciliations for which, while the hosts that receive
the switching parasites may differ, all the other parasite-host associations (not corresponding
to a host-switch) are the same. These reconciliations are similar and often indistinguishable
without additional biological information. Indeed, take the two reconciliations ϕ1 and ϕ2
in Figure 1: they are identical except for one switching parasite p1, which is mapped to
hb by ϕ1 and to hc by ϕ2. Since hb and hc are two sibling nodes sharing the same parent
in the host tree, without further information, there is no good way to tell apart the two
reconciliations ϕ1 and ϕ2, hence we consider them as equivalent.

Equipped with our definitions of equivalence classes, we aim at studying the features of
the set of optimal reconciliations by enumerating the equivalence classes. Naively, one would
iterate through every reconciliation and record their properties, then report the equivalence
classes, and, only at the end, report the statistics of the reconciliations in each equivalence
class. However, when the number of reconciliations is too large, for example, > 1042 (see
Section 3.3 and [33]), the naive method is not feasible.

The challenge is then to enumerate directly the equivalence classes of optimal reconcilia-
tions without enumerating the latter explicitly. Concretely, the set of optimal reconciliations
will be represented implicitly as T (G), the set of solution subtrees of a reconciliation graph
G. Given a reconciliation graph as input, we will tackle the following problems:

Count the number of equivalence classes.

Enumerate the equivalence classes.

Study a particular equivalence class. That is, given an equivalence class,

Count the number of reconciliations in that class,

Find one representative (i.e. one optimal reconciliation) of that class,

Enumerate all reconciliations of that class.
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3 Equivalence classes enumeration: algorithms and results

3.1 V-equivalence class enumeration
The enumeration of V-equivalence classes (i.e. all event vectors among the optimal reconcili-
ations) can be achieved by a simple modification of the dynamic programming algorithm.

First, we can notice that the number of different event vectors is bounded by a polynomial.
Let n = |V (H)| and m = |V (P )|. The first three elements of any event vector necessarily
sum up to m−1

2 , the number of internal parasite nodes, hence there are only O(m2) possible
combinations. The loss contribution ξϕ(p) for each parasite node p for any ϕ is at most twice
the diameter of the host tree (i.e. twice the maximum distance between two nodes), so the
fourth element of any event vector is bounded by O(nm). Therefore, the number of event
vectors is bounded by O(nm3).

We are interested in the following two problems: listing all event vectors, and, given a
particular event vector, listing one (or all) optimal reconciliations of that event vector. Both
can be done without much difficulty by doing some additional book-keeping in the dynamic
programming algorithm, i.e. during the construction of the reconciliation graph. The idea is
to remember the set of event vectors in every step, corresponding to the event vectors of the
optimal solutions of the current dynamic programming subproblem. Then, for each event
vector, one reconciliation (or all reconciliations) of the V-equivalence class can be found by
backtracking. Since the technique is quite standard, the details are omitted.

3.2 E-equivalence class enumeration
By Definition 10, an E-equivalence class is a function from the set of nodes V (P ) of the
parasite tree to the set E := {C,D,S,T} of events. In this section, we will represent an
E-equivalence class as a set T of ordered pairs of the form (p, e) where p ∈ V (P ) and e ∈ E .
In the same manner, a reconciliation ϕ, i.e. a solution subtree in T (G), can be written
as a set of ordered triples of the form (p, h, e). We say that a reconciliation ϕ belongs to
the E-equivalence class T , and denote it as π(ϕ) = T , if for each (p, h, e) ∈ ϕ, there exists
a unique couple (p, e) ∈ T . Using this notation, a set of couples of the form (p, e) is an
E-equivalence class if and only if there exists ϕ ∈ T (G) such that π(ϕ) = T ; the set of all
E-equivalence classes is denoted by π(T (G)).

The problem of studying a particular E-equivalence class is easy: given an E-equivalence
class T , the reconciliation graph G can be pruned in such a way that its set of solution
subtrees corresponds to the reconciliations that belong to the class T (we simply need
to remove all OR nodes unless its label (p, h, e) corroborates the given class: (p, e) ∈ T ).
Counting and enumerating the E-equivalence classes are, however, more challenging problems.
We will at present concentrate on the problem of enumerating all E-equivalence classes.

The algorithm is based on the simple idea of traversing the reconciliation graph in a
top-down fashion (a similar approach can be used in the algorithm that finds all the solution
subtrees). In order to obtain a polynomial time delay algorithm, during the traversal, we can
no longer consider the nodes one by one; the sets of nodes that are in the solution subtrees of
the same E-equivalence class must be traversed together. To make this clear, it is convenient
to define the color of the OR+ nodes; an E-equivalence class will then simply be a set of
colors.

▶ Definition 11 (Color of a node, Color couple).
If an OR+ node s in the reconciliation graph is labeled by (p, h, e) ∈ U , we say that s is
colored by the ordered pair (p, e) ∈ V (P ) × E.
Let s1 and s2 be two OR+ nodes colored respectively by (p1, e1) and by (p2, e2). The color
couple of the couple of nodes (s1, s2) is the couple of colors ((p1, e1), (p2, e2)).
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To enumerate the E-equivalence classes by a top-down recursive traversal of the reconcili-
ation graph, our algorithm should achieve the following goal: given a set O of OR+ nodes of
the same color (p, e), enumerate π(T (G/O)), i.e. all E-equivalence classes of the subgraph
G/O. Any such a class will include the color (p, e). If p is not a leaf, the events of the
two children of the node p are given by the color couples of the grandchild couples gch(O)
(by extension, gch of a set of nodes is the union of gch of every node in the set). A naive
algorithm can be described as follows: for each color couple ((p1, e1), (p2, e2)) of gch(O),
first take the union O1 of the first grandchildren of color (p1, e1) and the union O2 of the
second grandchildren of color (p2, e2), then call the algorithm on O1 and independently on
O2, and finally combine the results together, that is, perform a Cartesian product between
π(T (G/O1)) and π(T (G/O2)).

The pitfall of the naive approach is that not every combination between the E-equivalence
classes of the reconciliations of the two child subtrees is valid. Our algorithm, shown in
Algorithm 1, can be viewed as an improved version of the naive algorithm in which particular
care has been taken to ensure that only valid combinations are outputted. Along with each
E-equivalence class T , it also outputs a set Õ which is a subset of the input set O: it is equal
the union of the root OR+ nodes of all solution subtrees ϕ ∈ T (G/O) such that π(ϕ) = T .
Notice that in Algorithm 1 we employ both the return and the yield statements for the
output, the difference being that the latter does not halt the algorithm.

Algorithm 1 Enumerating E-equivalence classes.

1 Input: a node p of the parasite tree, an event e ∈ E, a set O of OR+ nodes
2 Require: The nodes in O are all colored with (p, e).
3 Output: all E-equivalence classes of G/O, and for each class, a subset of O
4 Function Enumerate(p, e, O):
5 if p is a leaf then // necessarily e = T and O only contains goal nodes
6 return {(p, e)}, O
7 end

/* otherwise, necessarily e ∈ {C,D,S} and O only contains OR nodes */
8 Let (p1, p2) be the children of p

9 Partition the set of grandchild couples gch(O) according to their color couples
10 for each subset {(si

1, si
2)}1≤i≤k of gch(O) of color couple ((p1, e1), (p2, e2)) do

11 Let O1 :=
⋃

1≤i≤k{si
1} // O1 is the set of the first grandchildren

12 for each pair of T1 and Õ1 outputted by Enumerate(p1, e1, O1) do
13 Let O2 :=

⋃
1≤i≤k

{
si

2
∣∣ it exists s1 ∈ Õ1 such that (s1, si

2) ∈ gch(O)
}

/* O2 is the set of the second grandchildren compatible with Õ1 */
14 for each pair of T2 and Õ2 outputted by Enumerate(p2, e2, O2) do
15 Let Õ :=

{
s ∈ O

∣∣ ∃s1 ∈ Õ1, ∃s2 ∈ Õ2, s.t. (s1, s2) ∈ gch(s)
}

16 yield T1 ∪ T2 ∪ {(p, e)}, Õ
17 end
18 end
19 end

Before the proof of correctness, let us recall some important notations. For a subgraph
G/O of the reconciliation graph G, a solution subtree is denoted by ϕ ∈ T (G/O). The
root OR+ node of a solution subtree ϕ is denoted by r(ϕ). If the root node r(ϕ) is labeled
by (p, h, e), the solution subtree ϕ is interpreted as an optimal reconciliation between the
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parasite subtree P |p and the host tree H such that p is mapped to h and the event of p is
e (shortly, we say that ϕ is a reconciliation of P |p). We will use interchangeably the terms
solution subtree and reconciliation, and we will represent a reconciliation ϕ as a set of triples.

▶ Lemma 12. In Algorithm 1, Enumerate(p, e, O) outputs all E-equivalence classes in
π(T (G/O)) exactly once, and for each outputted pair of T and Õ, we have Õ =

⋃
ϕ {r(ϕ) |

π(ϕ) = T, ϕ ∈ T (G/O)}.

Proof. The proof is by induction on the height hp of the P |p. We use the fact that the pre-
condition in the Require statement in Algorithm 1 is true for all recursive calls of Enumerate
(easy induction). When hp = 0, p is a leaf and {(p, σ(p),T)} is the only reconciliation in
T (G/O), therefore, {(p, e)} is the only E-equivalence class. The outputted set O contains in
this case the unique goal node of G labeled by (p, σ(p),T). Now we assume hp > 0.

First direction. Consider a fixed pair of T := T1 ∪ T2 ∪ {(p, e)} and Õ outputted at Line 16,
and take a node s in Õ. We show that there exists a reconciliation ϕ ∈ T (G/O) such
that s = r(ϕ) and π(ϕ) = T (i.e. T is a valid E-equivalence class). By the induction
hypotheses, T1 is an E-equivalence class so there exists a reconciliation ϕ1 of P |p1 such
that π(ϕ1) = T1. Let s1 := r(ϕ1). Take a node s2 ∈ O2 such that (s1, s2) ∈ gch(s). By
the induction hypotheses, there exists a reconciliation ϕ2 of P |p2 such that r(ϕ2) = s2 and
π(ϕ2) = T2. Define ϕ := ϕ1 ∪ ϕ2 ∪ {(p, h, e)}, where (p, h, e) is the label of s. Then ϕ is a
valid reconciliation in T (G/O) (notice that ϕ is a solution subtree of G/O if and only if
(s1, s2) ∈ gch(s)), and satisfies π(ϕ) = T .

Second direction. Consider an E-equivalence class T ∈ π(T (G/O)), and take a recon-
ciliation ϕ ∈ T (G/O) such that π(ϕ) = T . We show that T is outputted exactly once
at Line 16 together with a set Õ containing the root node of ϕ. Assume that the root
node s := r(ϕ) is labeled with the triple (p, h, e), then ϕ can be uniquely written as the
union ϕ1 ∪ ϕ2 ∪ {(p, h, e)} where ϕ1 and ϕ2 are respectively reconciliations of P |p1 and P |p2 .
Furthermore, T can be uniquely written as the union T1 ∪ T2 ∪ {(p, e)} where T1 = π(ϕ1) and
T2 = π(ϕ2). Notice that T1 and T2 do not depend on the choice of ϕ; for T to be outputted
exactly once, it suffices to show that each of T1 and T2 is outputted exactly once. For
i = 1, 2, let si := r(ϕi) and let (pi, ei) be the color of si. At Line 10, we only need to consider
the iteration corresponding to the color couple ((p1, e1), (p2, e2)), as no other iteration can
output T1 or T2 from a recursive call. Since s1 ∈ O1 and ϕ1 ∈ T (G/O1), by the induction
hypotheses, T1 is outputted exactly once in Line 12 together with a set Õ1 containing s1.
For this pair of T1 and Õ1, the set O2 computed at Line 13 contains the node s2. Hence,
by applying again the induction hypotheses to ϕ2 ∈ T (G/O2), T2 is outputted exactly once
in Line 14 together with Õ2 containing s2. It remains to check that the set O outputted
together with T does contain the node s. As si ∈ Õi for i = 1, 2, this is straightforward from
the computation of O. ◀

▶ Theorem 13. Using Algorithm 1, the E-equivalence classes of a reconciliation graph can
be enumerated in O(mn2) time delay, where m = |V (P )| and n = |V (H)|.

Proof. To obtain all E-equivalence classes π(T (G)), it suffices to first partition the set of
start nodes of the reconciliation graph according to their colors, then, for each subset Oi of
start nodes of color (p, e), make one call of Enumerate(p, e, O). By Lemma 12, we output
every E-equivalence class of T (G/O) exactly once. Since any E-equivalence class of T (G) is
an E-equivalence class of T (G/Ok) for a unique k, we output every E-equivalence class of
T (G) exactly once.
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For the complexity, consider the recursion tree formed by the recursive calls of Enumerate.
Notice that each node p of the parasite tree corresponds to exactly one recursive call, the size
of the recursion tree is thus O(m). In each recursive call, the partitioning of gch(O) and the
computation of the sets O1, O2, and Õ can all be done in time linear in the size of gch(O),
which is O(n2). Therefore, O(mn2) time is needed in the worst case between outputting two
E-equivalence classes. ◀

CD-equivalence class enumeration

For the CD-equivalence relation, the problems of enumerating the equivalence classes and
studying one particular equivalence class can be solved using the exact same method as for
the E-equivalence relation. One only needs to adapt the Definition 11 of the color of an OR+

node. Instead of the couple (p, e), the color of an OR+ node labeled by (p, h, e) ∈ U is now
a triple: the triple (p, h, e) for e ̸= S, or, when e = S, the triple (p, ?,S) (see Definition 10).

3.3 Experimental results
To evaluate the usefulness of the equivalence classes in practice, we obtained 20 real datasets
from the literature. The choice of the datasets was motivated by the goal of covering many
different situations (such as different sizes of the trees), different contexts (such as the
genes/species one that has been shown to be very closely related to the hosts/parasites
context, see for instance [25, 35]), different topologies, etc. We also chose five cost vectors c⃗ :=
(c(C), c(D), c(S), c(L)) from the literature, namely (−1, 1, 1, 1) (maximizing the cospeciation),
(0, 1, 1, 1) (minimizing the events that lead to incongruencies between the tree topologies),
(0, 1, 2, 1), (0, 2, 3, 1) (host-switches are more penalized), and (0, 1, 1, 0) which is a vector
chosen only for theoretical purposes and does not penalize cospeciations and losses.

The goal of the first set of experiments is to check that when the number of all optimal
reconciliations is large, the number of equivalence classes is significantly smaller. To this
purpose, we ran the algorithm on all the datasets with all the five cost vectors, and computed
the number of optimal solutions and the number of equivalence classes. For each instance (i.e.
dataset and cost vector) having at least 50 optimal reconciliations, we computed for each
equivalence relation a value that we called Reduction and which is equal to the number of
equivalence classes over the number of optimal reconciliations. In Figure 3, each x coordinate
corresponds to an instance; for each instance we plotted three points that correspond to the
Reduction values for the three equivalence relations. One can observe that the Reduction
values of the V- and the E-equivalence relations (blue circles and red triangles) are almost
all below the value of 0.1. In other words, for these two definitions of equivalence, one can
strongly hope for at least a ten-fold decrease, and in some cases for a thousand-fold decrease
in the number of reconciliations that need to be analyzed. As expected, the V- and the
E-equivalence relations are the ones that usually lead to a small number of equivalence
classes, while the CD-equivalence relation may lead to a larger number of classes, sometimes
close to the optimal reconciliations (Reduction close to 1).

We show now that the equivalence classes not only allow us to reduce the number of
reconciliations to consider, but also provide useful information about the set of optimal
reconciliations. In Table 1, we present the detailed results obtained for the dataset of
Wolbachia and their arthropod hosts [31, 30] and the five cost vectors. All the cost vectors
lead to a number of optimal reconciliations that is at least 1042, a number too large for any
exhaustive enumeration method. However, in all cases there are only a small number of opti-
mal event vectors (except for the least biologically meaningful cost vector (0, 1, 1, 0)). For the
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Figure 3 X-axis: All 46 instances (i.e. the pairs of datasets and cost vectors). Y-axis: In
logarithmic scale, the Reduction value that is equal to the number of equivalence classes over the
total number of reconciliations. For each instance, three points are plotted: the blue circle, the red
triangle, and the black X, corresponding respectively to the V-, E-, and CD-equivalence relations.
Four points of Reduction values less than 10−6 are omitted.

cost vector (0, 2, 3, 1), the seven optimal event vectors are: (102, 0, 284, 36), (103, 0, 283, 39),
(104, 0, 282, 42), (105, 0, 281, 45), (106, 0, 280, 48), (107, 0, 279, 51), and (108, 0, 278, 54). From
the list of event vectors, one can see that the dataset can be explained by a large number of
host-switches and cospeciations, and that there have probably been no duplication. Therefore,
by simply considering the equivalence classes one already has an idea of the diversity of
the optimal reconciliations. Our approach is thus helpful for drawing conclusions about the
co-evolutionary history of this pair of host/parasite association for which few prior analysis
methods apply.

Table 1 Experimental results for the Wolbachia dataset and for each cost vector. |L(H)| and
|L(S)| are the number of leaves of the host tree and the parasite tree; |R| is the number of optimal
reconciliations; |Veq|, |Peq|, and |CDeq| are respectively the number of V-, E-, and CD-equivalent
classes. The dash indicates that the counting of the equivalence classes did not finish.

Dataset |L(H)| |L(S)| Cost vector |R| |Veq| |Eeq| |CDeq|

Wolbachia [31, 30] 387 387

(−1, 1, 1, 1) ≈ 1047 10 4080 24192
(0, 1, 1, 1) ≈ 1048 11 40960 76800
(0, 1, 2, 1) ≈ 1047 10 4080 24192
(0, 2, 3, 1) ≈ 1042 7 96 1152
(0, 1, 1, 0) ≈ 10136 — ≈ 1027 —

Finally, the algorithm is quite efficient in practice, as for example for the cost vector
(−1, 1, 1, 1), to enumerate all the optimal event vectors, it took around 8 minutes for the
dataset of Wolbachia and their arthropod hosts on a single thread of the Intel Core i5-3380M
CPU. The enumeration of equivalence classes, together with other features such as the
visualization of the E- and the CD-equivalence classes, is freely available in the software
Capybara; more information can be found in [33].
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3.4 Comparison with eMPRess

eMPRess [18, 28] is a tool that includes the possibility for the user to cluster the space of
optimal solutions using agglomerative hierarchical clustering. The user can define the desired
final number of clusters and a lower bound for the initial number of clusters (the actual initial
number depends on the structure of the reconciliation graph, and can be much larger than
the chosen lower bound). Then, pairs of clusters are merged using a linkage criterion until
the desired number of clusters is obtained. The authors consider two different linkage criteria:
(i) minimizing the average distance between the solutions within each cluster with respect to
a given distance metric (the symmetric distance or the path distance), (ii) maximizing the
average event support in each cluster.

As already mentioned in the introduction, the approach of eMPRess is fundamentally
different from the one we propose. We believe that it is interesting to remark some of the
differences between the two methods that the user should keep in mind when applying one
method or the other.

It is important to notice that the results obtained with our algorithm and with eMPRess
can be very different. Two solutions that may be considered equivalent may have a large
symmetric or path distance. Indeed, the symmetric distance between two reconciliations is
defined as the number of associations that are found in one reconciliation or the other but not
in both. Inside an E-equivalence class, even though the type of the events is consistent among
the reconciliations, all the associations can potentially be different, so the symmetric distance
can take the largest possible value. Moreover, when using the event support criterion, it is
important to keep in mind that within a cluster, by construction, the more ancestral events
are more supported than the more recent events. While this may be biologically motivated,
it is a bias that we may not want in some datasets.

These differences are also seen in practice as we applied eMPRess to some of the datasets
used in the previous section, requiring that the number of final clusters is the same (or
slightly larger) than the number of equivalence classes that we have found for that dataset.
By analyzing the median reconciliations of the final clusters, we saw that, even for the
V-equivalence relation (which is among those most analyzed in practical studies), some
classes are not represented.

Finally, the worst case running time of the clustering method of eMPRess depends
quadratically on the initial number of clusters and the time can be a limitation in practice.
When we applied it to the Wolbachia dataset with the default cost vector (0, 2, 3, 1) and the
symmetric distance criterion, by starting with 336 initial clusters (level L = 6 in [18]) and
choosing 10 as the final number of clusters, the software did not finish within 24 hours.

4 Conclusion

In this paper, we proposed a method that lists representative reconciliations from the (often
huge) space of optimal solutions. To this purpose, we first defined when two reconciliations
can be considered equivalent and then we provided efficient algorithms that output in
polynomial delay only one reconciliation from each equivalence class. We proposed three
different biologically motivated equivalence relations. We applied our algorithms to real
datasets and showed that we were able to analyze the space of optimal reconciliations even
in cases when the latter has a huge size (e.g. 1042). As a future direction, we plan to extend
our algorithms to other definitions of equivalence for reconciliations.
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