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Prediction of Squeal Instabilities
of a Finite Element Model
Automotive Brake With Uncertain
Structural and Environmental
Parameters With a Hybrid
Surrogate Model
This study focuses on the prediction of the stability behavior of an industrial automotive
brake system under structural and environmental uncertainties. Uncertainties are
modeled with a random distribution or an interval and are propagated with a hybrid sur-
rogate model associating polynomial chaos and kriging. The objective is to create a surro-
gate model of each eigenvalue computed with the complex eigenvalue analysis (CEA). As
the modes can be tracked only when unstable, the effective size of the training sets can
become extremely small. Despite this limitation, it is shown the hybrid meta-model is still
able to predict the stability of the brake system. Moreover, the hybrid meta-model gives a
direct access to the mean and variance of the eigenvalues with respect to the design param-
eters without any additional Monte Carlo simulations (MCS). By considering different
probability density function for the friction coefficient, it is shown it has a high influence
on the stability and the latter should be accurately estimated. [DOI: 10.1115/1.4051698]
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1 Introduction
Friction-induced vibrations are a complex and rich topic of

research since several decades for both industrials and academics
[1,2]. It is well-known that the phenomenon is fugitive and
depends on numerous parameters, such as the lining materials [3],
the wear [4], the environment [5], the geometry of the contact
surface [6], etc., making the study and the modeling complex.
Thus, the consideration of the variability or the uncertainty associ-
ated to some parameters emerged a few years ago. Indeed, in 2009,
Culla and Massi [7] considered some parameters as uncertain and
performed Monte Carlo Samplings (MCS) on a numerical model
to improve the squeal prediction. In 2010, Butlin and Woodhouse
[8] investigated the variability of squeal related parameters and
laid the foundations of the consideration of uncertainty for improv-
ing squeal predictions. In 2014, Tison et al. [9] demonstrated that
considering uncertainty improves the squeal prediction and con-
firmed their results with experiments. Since, numerous studies
were dedicated to the consideration and the modeling of uncertain-
ties in brake systems from a numerical and/or experimental point of
view [10–13]. These studies remain complex as the different types
of uncertainties must be identified and characterized, before using
advanced and costly tools to take them into account.
Meta-modeling is now a classical method to propagate uncertainty

for an expensive numerical model as it requires a small number of
evaluations for its construction. Froma few simulations, amathemat-
ical model that surrogates the real model is constructed. Different
methods exist to do so, chosen depending on the description of the
uncertainty. For random parameters, the polynomial chaos expan-
sion (PCE) [14,15], the perturbation method [16], or the FORM

method [17] can be employed. The fuzzy logic may also be consid-
ered [18,19]. An other approach consists in the creation of a surface
response function with regression [10,20], the kriging method
[11,13,21], support vector machine, neural networks, etc.
However, different types of uncertainties might be present in the

same system and the need for hybrid methods that allow different
descriptions of the uncertainty in the same surrogate model
emerges. Hence, Lu and Yu associate the interval approach with
the response surface method (RSM) [22] for optimizing a brake
system regarding squeal. In Ref. [19], they associate the RSM
method with the fuzzy logic. In both cases, a RSM model of one
eigenvalue of the system is created. This model depends on the
interval (resp. fuzzy) variables, and then, the uncertainty is propa-
gated through the RSM. In Ref. [23], Denimal et al. presented a
new hybrid surrogate model associating kriging with PCE. It
enables to deal with both random and parametric variables. The
method was tested and validated on a 4-dof phenomenological
model to predict its stability. If promising results were obtained,
some limitations were raised. First, a high number of learning
points were required to build the hybrid meta-model (about 3000
for three parameters). Thus, its application on a full finite element
model (FEM) remains an open question as the number of points
is limited due to large simulation time. Additionally, when
dealing with real FEM of industrial brake systems, one observes a
high modal density together with numerous unstable modes and
complex coupling phenomena. These make the modal identification
complex, and modes can only be tracked when unstable [13]. This is
a major limitation as it means the functions (here the eigenvalues) to
be surrogated are only partially defined and sometimes on a small
portion of the design space. More concretely, on the total number
of available points, only a part of them can be used to create the sur-
rogate model of an eigenvalue, reducing drastically the number of
training points. It raises the questions of the ability of the hybrid sur-
rogate model to deal with partially defined problems with a low
number of points in the experimental design. So, this work can be
seen as an extension of Ref. [23] not only to demonstrate the
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ability and validity of the hybrid surrogate model to predict the sta-
bility of industrial FEM of brake systems but also to discuss its
limitations.
The automotive brake system is subjected to three uncertain

parameters, namely the friction coefficient at the pad/disc interface
and two mass additions on the caliper. The first one varies from one
braking event to an other and is largely related to the environmental
conditions. For this reason, it is commonly described by a probabil-
ity density function (PDF) [1,24,25]. Different PDFs will be consid-
ered to demonstrate its high influence and the necessity to identify it
correctly. A uniform distribution but also beta distributions will be
considered as they are more likely to fit a large variety of experi-
mentally measured distributions.
The two mass additions on the caliper correspond to what one can

call design parameters and hence are modeled with an interval.
From a practical point of view, in a design process one will look
for the best choice of mass addition considering the uncertainty
on the friction coefficient. The hybrid surrogate method associating
the PCE and the kriging is adopted to propagate both uncertainties
simultaneously and to predict each unstable eigenvalue of the
system. From the hybrid formulation, a direct access to the stochas-
tic moments of each eigenvalue with regard to the design parame-
ters is assessed without any additional computation. Different
probability laws are considered for the friction coefficient, and in
each case, the hybrid meta-modeling method is able to predict cor-
rectly the evolution of each unstable mode. The results clearly show
the strong sensitivity of the brake system stability to the friction
coefficient probability law.

2 Mechanical System Under Study
In this section, the mechanical system as well as the uncertain

parameters are presented. Then, the numerical strategy used to
predict the squeal propensity is briefly reminded.

2.1 Finite Element Model and Uncertain Parameters. The
mechanical system studied is a FEM of an industrial automotive
brake system with a floating caliper technology. It is represented in
Fig. 1(a). During a breaking action, a hydraulic pressure makes
move the pistonwhich pushes the inner pad against the disc. The reac-
tion forces bring back the caliper and the outer pad,which also tackles
against the disc. The contact between the pads and the disc creates
friction. The contact is modeled with a linear penalty enforcement
law andwith a Coulomb’s law for the friction. For the sake of consis-
tency, the implementationof theFEMand the influenceof the internal
contacts as well as its validation are not presented here, but the
interested reader is invited to refer to Refs. [13,26] for more details.
The friction coefficient μ at the pad/disc interface has a high influ-

ence on the stability of the brake. Moreover, this parameter is often
not well known and varies from one braking action to another one

and largely depends on the environment (temperature, humidity,
surface, etc.) [1,2,8,9,27,28]. For this reason, the latter is often con-
sidered as variable to indirectly take into consideration these envi-
ronmental variabilities. Moreover, results shown in Refs. [24,25]
demonstrate that the friction coefficient has a statistical distribution
and can be described by a probability density function. When a
brake exhibits a too high squeal propensity, structural modifications
are investigated to improve the brake with regard to the squeal. From
an industrial point of view, a classical structural modification con-
sists in the addition of mass at the extremities of the bracket as it is
illustrated Fig. 1(b). These modifications have a high impact on the
squeal propensity of the brake system [13] as they directly modify
the modes that are involved in the mode coupling instabilities.
In the present study, these three parameters are considered as

uncertain and will be modeled with the hybrid surrogate model.
First of all, experimental data on the distribution or evolution of
the friction coefficient was not accessible for the example of automo-
tive brake system proposed in our study. This explains why the fric-
tion coefficient is taken as random. From the authors’ knowledge, the
number of available experimental studies in the literature about the
distribution law of the friction coefficient in industrial brakes is
low. From Ref. [29], the range of variation is taken in [0.3, 0.8].
To illustrate the importance of identifying correctly the friction dis-
tribution, three laws are considered here, illustrated in Fig. 2, namely
a uniform distribution, which can be seen as “neutral” and two beta
laws of shape parameters (2,8) and (8,2) are considered. The choice
of using beta distributions is motivated by the idea that they are more
likely to fit experimental distribution than a Gaussian one. Indeed, in
Refs. [1,24,25], the distributions observed for the friction coefficient
are non-Gaussian. The shape parameters are chosen arbitrarily in this
study for illustration. Once the random parameter is generated, a
linear transformation on [0.3, 0.8] is applied to get the corresponding
physical friction coefficient. On the other hand, two small masses are
added on each part of the bracket and can vary between 0 g and 250 g.
They correspond to design parameters, and so they are not described
by a probability law. They aremodeled in the FEMby amodification
of the density of a few elements of the caliper, represented in
Fig. 1(b).

2.2 Complex Eigenvalue Analysis. The squeal propensity of
a brake system is determined from the complex eigenvalue analysis
(CEA). It consists in the analysis of the stability of the non-linear
equilibrium position.
First of all, the complete nonlinear equation of the automotive

brake system can be written as follows:

MẌ + CẊ +KX + Fnl X( ) = Fp (1)

where M, C, and K are the structural mass, damping and stiffness
matrices of the FEM, respectively. Fp is the external forces
applied on the system (i.e., the pressure on the piston) and Fnl is

Fig. 1 (a) Exploded view of the brake and (b) mass modification on the caliper
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the non-linear forces coming from the contact and friction. It is
worth emphasizing here that the mass modifications affect directly
the mass matrix M, whereas the uncertainty on the friction coeffi-
cients impacts the non-linear forces Fnl.
The nonlinear sliding equilibrium positionUS of the system is the

solution of KUS+Fnl(US)=Fp. To study the stability of the solu-
tion, a small perturbation of the equilibrium position is considered
and the corresponding eigenvalue problem is:

λ2M + λC + (K + Jnl)
( )

Ψ = 0 (2)

where Jnl is the Jacobian matrix of the non-linear forces Fnl at the
point US. The eigenvalues λj= aj+ iωj are complex and ωj corre-
sponds to the pulsation of the mode. The mode shape is given by
Ψj. The equilibrium position is considered as stable if all the real
parts are negative and is considered as unstable if at least one real
part is positive.

3 Hybrid Surrogate Method
In this section, the hybrid method used is presented. The objective

of the surrogate model is to predict the evolution of the eigenvalues
with respect to the different uncertain parameters. The influence of
the friction coefficient, which is described by a PDF, is modeled
with the PCE, whereas the two masses are taken in consideration
with a kriging surrogate model.

3.1 Mathematical Descriptions

3.1.1 Polynomial Chaos Expansion. Let’s consider that an
eigenvalue Λ is a random variable that depends on the random

friction coefficient ξμ. Then, the Generalized Polynomial Chaos
(GPC) allows to approximate Λ with a polynomial expansion
where the polynomials are orthogonal with respect to the PDF of
ξμ [30,31]. These polynomials are given by the Askey scheme
[32]. In the case of a uniform law, Legendre polynomials are
employed whereas for the case of a Beta distribution, Jacobi poly-
nomials are used. This series is convergent to L2 sense. For numer-
ical reasons, this series is truncated at the order P. It writes:

Λ(ξμ) =
∑P
k=0

αkΦk(ξμ) (3)

where (Φk) is the polynomial basis and (αk) is the unknown deter-
ministic coefficient. They can be computed with different non-
intrusive techniques such as the regression method [31]. Once the
coefficients (αk) are determined, the estimation of the stochastic
moments is straightforward. Indeed, the mean of Λ is given by
E[Λ] = α0 and the variance by σ2Λ =

∑P
k=0 α

2
k‖Φk‖2L2 .

3.1.2 Kriging. Let’s consider a function α that depends on the
vector x of variables xM1 and xM2 , the kriging approximates it with
the following [33,34]:

α(x) =K(x) =
∑q
i=0

gi(x)βi +Z(x) (4)

where the first part is the regression part and corresponds to the
trend of the kriging meta-model. It corresponds to the projection
on q functions that are often polynomials of low order. The
second part, namely Z(x), is a zero-mean Gaussian process charac-
terized by its covariance Cov[Z(x), Z(x′)] = σ2k(x, x′), where σ2 is
the process variance and k(x, x′) is the correlation function between
two input points x and x′. k(x, x′) depends on the Euclidean distance
h= ‖x− x′‖2 and on a vector of hyperparameters θ to be optimized.
If the input dimension is superior to 1, the correlation function is
constructed with a product of univariate correlation functions.

3.1.3 Hybrid Formulation. Each eigenvalue of the stability
analysis depends on the friction coefficient μ and on the caliper
mass modification. The hybrid surrogate model starts from the
Eq. (3) and considers that the PCE coefficients depend on the
mass modification, represented by the variable x. It would be
numerically impossible to create a PCE for all the mass modifica-
tions; hence, this epistemic uncertainty is modeled with a kriging
meta-model. For the m-th eigenvalue, it comes [23]:

λ(m)(x, ξμ) =
∑P
k=0

∑q
i=0

g(m)i (x)β(k),(m)i + Z(k),(m)(x)

( )
Φ(m)

k (ξμ) (5)

To create this meta-model, an experimental design (ED) is gen-
erated. An ED corresponds to a set of input and output, it is used
to compute the parameters characterizing a meta-model (i.e., the
regression coefficient for the PCE, and the regression coefficient
as well as the hyper-parameter for the kriging). For the input

space, two sets of points are generated. The first one is denoted Ξ =

ξ(1)μ , . . . , ξ(N)μ

{ }
and is composed of N values of the random friction

coefficient ξμ. The second one is denoted A = x(1), . . . x(M)
{ }

and is
composed of M mass couple values (M1, M2). The final ED is
obtained by combining these two sets in a full factorial experiment
(i.e., N×M configurations). The output set is obtained by evaluating
the function to be approximated. This is done by performing a CEA
for the N×M system configurations. It is worth emphasizing here
that the formulation of the hybrid meta-model makes impossible
to generate one ED with the three parameters together as for each
x, it is necessary to construct a PCE from N evaluations.
The objective is to create two surrogate models for each eigen-

value m: one for the real part, denoted M(m)
a and one for the imag-

inary part, denoted M(m)
ω . It is thus necessary to track each

Fig. 2 Considered probability laws for the random parameter
associated with the friction coefficient μ: (a) uniform, (b) B(8,2),
and (c) B(2,8)
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eigenvalue over the variations of the system configurations. This is
done by using a MAC criterion to track the associated mode shapes
[11,13,23,35]. However, as demonstrated in Ref. [13], the MAC cri-
terion is not enough to track the mode at the bifurcation point.
Indeed, large variations of the mode shapes are observed at the
bifurcation point, making the tracking difficult if the number of
points is limited. Moreover, the two complex modes involved in a
mode coupling converge to the same real mode at the bifurcation
point. It is then impossible, based on a MAC criterion, to differenti-
ate the two modes before the Hopf bifurcation.
Hence, the meta-models are created only when the real part of

their eigenvalue is non-zero and are valid only on this space. This
has a substantial impact on the ED as on the total number of avail-
able points, only a few will be available for the surrogate model cre-
ation. Moreover, each mode has its own experimental design that
corresponds to the part of the total experimental design where the
mode is (un)stable (i.e., with a strictly positive or negative real
part). Because it does not correspond to a pavement of the input
space, a third meta-model is built and acts as a test function to
check if the real part is equal to zero or not. The latter is denoted
M(m)

a0 and is built by completing artificially the experimental
design of M(m)

a with a zero output at the points where the mode
was not tracked [13]. This third meta-model takes zero values
when the mode has an eigenvalue with a zero real part, and a
non-zero value otherwise (equal to the real part of the eigenvalue),
and depending on its value, one can know if the considered mode is
stable or not, and so if the surrogate models are in their validity area
or not. So, before evaluating a meta-model M(m)

a or M(m)
ω at a new

point (x0, ξ0), the test-meta-model M(m)
a0 is evaluated to ensure that

the two meta-models are in their definition space. If not, one can
consider the mode is stable and has a zero-real part. A small thresh-
old equal to 5 is taken in practice to avoid any oscillatory effect.

Finally, for each mode m and for each mass couple (i.e., for each
x (k)∈A), a PCE is constructed based on the Nmodel evaluations for
which the mode is unstable. The PCE coefficients are the

α(k),(m)j

( )
j∈ 0,P{ }

. Once all the PCE are constructed, for each PCE

coefficient, a kriging meta-model of the PCE coefficient α(m)j

( )
is

build based on the available data (i.e., the M values where the
mode is unstable). The general workflow is illustrated in Fig. 3.

4 Application for Squeal Prediction
The section here is devoted to the use of the hybrid surrogate

model for the prediction of the squeal propensity of the brake
system. In a first time, the construction of the experimental
designs is explained, then the meta-models are created and finally
the hybrid meta-model is used for the prediction of squeal.

4.1 Construction of the Experimental Designs. As explained
previously, three uncertain parameters are considered in the present
study: the friction coefficient and two masses added to the bracket.
Since the friction coefficient is unknown, it is described by a
random law. Three laws are considered here, namely the uniform
law and two beta laws of shape parameters (2,8) and (8,2) repre-
sented in Fig. 2. The two masses M1 and M2 can vary between
0 g and 250 g. A first experimental design composed of 50
couples (M1,M2) is generated with a latin hypercube sampling
(LHS) for the kriging, and a second experimental design composed
of 15 points is generated by LHS for the friction coefficient for
the PCE. Finally, 50 × 15= 750 input points are used for the
hybrid-meta-model creation and the corresponding CEA are

Fig. 3 General workflow of the PCE–Kriging construction
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performed. For each considered friction law, an experimental
design is generated.
Figure 4 shows the stability analysis for the three different laws.

Each mode is tracked with an MAC criterion and identified by one
color in the complex plans. A large number of unstable modes
appear for each configuration with potentially complex crossover
phenomena between the different unstable modes. These results
show without any ambiguity the complexity of the phenomena
involved and consequently the potential difficulty to create an accu-
rate hybrid surrogate model for predicting the stability of a FEM
automotive brake system. The influence of the law on the squeal
propensity is obvious, and the unstable modes as well as their evo-
lution ranges are also impacted. For example, the mode at 4050Hz
is unstable only when the friction coefficient follows a B(2,8) law.
Or, the mode at 4300Hz has a real part that can reach about 2000
when the friction coefficient follows a uniform law or a B(8,2),
but reaches only 1100 for a B(2,8) law. In the following, only the
modes with a large enough experimental design are considered
for the creation of the hybrid meta-model (i.e., more than 50
points available). This is motivated by two things: first, to have a
surrogate model of good quality one needs enough training
points; second, if the mode is unstable only on a small part of the
experimental design, then one may neglect its unstable behavior
in a design process. The threshold of 50 points is arbitrary here,
to ensure enough points in the training set. The different modes
retained are summarized in Table 1, where for each mode one
gives its frequency, its nature, the maximum of the real part
(minimum if stable) and the number of points in the experimental
design for each law. Again, one can see that the uncertainty

related to the friction coefficient has a large impact on the system
stability: some modes are unstable only for one PDF, the stability
area depends on the PDF (directly related to the number of points
in the ED) and variation of the maximum (or minimum) value of
the real part of the eigenvalue.

4.2 Construction and Validation of the Meta-Models. Once
the experimental designs are generated, the hybrid meta-models are
constructed in two steps. First, the PCE is used to estimate the evo-
lution of the frequencies and the real parts of the eigenvalues with
respect to the friction coefficient μ. Thus, for each couple (M1,M2), a
PCE is constructed for each retained mode. For the uniform law and
the beta laws, Legendre and Jacobi polynomials are used, respec-
tively. The degree of each chaos is chosen to be the same for all
the modes in one case (same law and same surrogate model) and
to obtain the best quality of prediction. To do so, the average rela-
tive error between the PCE predictions and the exact values at the
points of the ED is minimized. These degrees are summarized in
Table 2. For each couple (M1,M2), the number of available points
in the experimental design related to the PCE might be small, espe-
cially if the mode is mostly stable on the considered interval which
explains the low degrees retained for the PCE. As an illustration, the
PCE prediction for the real part of the fifth eigenvalue is given in
Fig. 5(a). Red points correspond to the training set and the black
line to the PCE prediction. One can see the good accuracy of the
prediction. Similar results are obtained for the other modes.
Once the PCE are constructed, for each PCE coefficient, a meta-

model with the ordinary kriging method is built with a Matérn 5/2

Fig. 4 Experimental design from the mode tracking for the different laws: (a) uniform law, (b) B(8,2) law, and (c) B(2,8) law

Table 1 Modes involved in mode coupling for the different experimental designs with their frequency, real part, and the number of
points in each experimental design for each law

Mode no. Frequency (Hz) Nature

Uniform law B(8,2) law B(2,8) law

Real part No. pts ED Real part No. pts ED Real part No. pts ED

1 879.7 Unstable − − 27.5 112 22.9 100
2 1855.1 Unstable 248.3 403 248.3 475 217.0 324
3 2853.2 Unstable 131.1 168 131.1 220 89.5 80
4 3460.8 Unstable 124.1 601 387.8 696 96.5 459
5 3863.5 Unstable 670.2 741 774.2 750 406.4 678
6 4395.7 Unstable 1948.9 739 1948.9 750 1194.9 674
7 4879.5 Unstable 249.9 409 − − 82.6 275
8 5541.1 Unstable − − − − 54.9 144
9 879.7 Stable − − −27.5 112 −22.9 100
10 1855.1 Stable −248.3 403 −248.3 475 −217.0 324
11 2853.2 Stable −131.1 168 −131.1 220 −89.5 80
12 3460.8 Stable −124.1 601 −387.8 696 −96.5 459
13 3863.5 Stable −670.2 741 −774.2 750 −406.4 678
14 4395.7 Stable −1948.9 739 −1948.9 750 −1194.9 674
15 4879.5 Stable −249.9 409 − − −82.6 275
16 5541.1 Stable − − − − −54.9 144
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correlation kernel. The kriging predictions of the first two coeffi-
cients of the PCE of the Ma0 surrogate model of the mode 3 for
the three laws are given in Fig. 6. The red points are the learning
points, and the surface is the kriging prediction. The influence of
the chosen law is quite obvious, the surfaces are complex and
vary from one law to another. In the case of the coefficient 0,
which is directly related to the mean, the surfaces have similar
shapes but the numerical values are different. Indeed, the
maximum is equal to 90, 110, and 82 for the uniform law, the
B(8,2) law and the B(2,8) law, respectively. For the coefficient 1,
both the shapes and the values are strongly influenced by the law.
From this, its comes that the mean of the real part of the eigenvalue
of the mode at 2850Hz has a similar evolution (but more or less
higher values) for different PDF of the friction coefficient, but
that the variance will be strongly impacted. The different meta-
models have been validated by comparison of the hybrid meta-
model prediction to reference values. To do so, a set of 45 reference
points has been generated based on additional simulations. For each
mode, the PCE-kriging predictions are compared to these reference
values. The number of validation points depends not only on the
considered mode but also on the probability law as the surrogate
models are not valid on the full design space. As an illustration,
the comparison between the predictions for the real part of the
eigenvalue of the fifth mode and the reference values are given in
Fig. 5(b) where red circles are the reference values and black
crosses the predictions. The accuracy of the surrogate model is
obvious. This comparison is summarized for each real and imagi-
nary parts of each eigenvalue and for each law in Table 3, where
the average relative error �e for each mode is given by

�e =
1
n

∑n
k=1

y(pred)k − y(ref )k

y(ref )k

∣∣∣∣∣
∣∣∣∣∣ (6)

where y(pred)k is the prediction of the considered meta-model at the
kth validation point and y(ref )k the reference value. To be noted

that the quantities, y(pred)k and y(ref )k are associated with the real or
imaginary parts of the eigenvalue for one specific mode. n corre-
sponds to the number of points in the experimental design for
which the real part of the associated mode is superior to zero. Con-
sidering more specifically the average relative error �e for imaginary
parts, all the results indicate unambiguously the relevance and
validity of the PCE-kriging predictions. Considering results for
real parts, the level of error �e is always low giving confidence in
the different hybrid surrogate models except for some limited spe-
cific cases. These specific cases for which an important error �e is
detected correspond to modes for which we have both a very
small number of points n to calculate �e as well as positive real
parts very close to zero which has the consequence of increasing
the relative error �e.

4.3 Squeal Prediction. Once the meta-models are constructed,
it is possible to predict the evolution of the different eigenvalues.
The main interest of the present methodology is the estimation of
the PCE coefficients with the kriging. Since the PCE coefficients
are directly related to the stochastic moments, it is possible from
the kriging to predict straightforwardly the evolution of the mean
and the variance of the eigenvalues without any MCS as it would
have been the case if a unique kriging meta-model was built for
the three parameters [13]. Thus, means and variances with respect
to the masses M1 and M2 can be directly evaluated. For example,
the evolution of the mean and the variance of the real part of the
modes 3 and 4 are given in Figs. 7 and 8 for the three different laws.
Considering the stability behavior of the mode 3, looking at the

average of the real part of the eigenvalue (see in Fig. 7 upper
line), the behavior and the evolution is similar over the three differ-
ent PDF of the friction coefficient. Indeed, the mode is mostly
stable, and when M1 and M2 increase simultaneously, the mode
becomes unstable. This unstable area is slightly smaller for a
B(2,8) law. If the evolution is similar, the maximum mean value
of the real part is impacted by the friction PDF and larger mean
values are expected with a B(8,2) law for example. On the opposite,
the behavior of the variance is strongly impacted by the PDF (see in
Fig. 8 upper line). For a uniform law a large variance is observed on
the whole unstable part, for a B(8,2) law the variance is low and the
maximum is observed at the bifurcation area aroundM1=M2= 50 g
and for a B(2,8) law a large variance is observed only at the most
unstable area. The extremely large variance for the uniform law is
of importance, as it might imply a change in the stability behavior
of the mode depending on the friction coefficient value, and so

Table 2 Polynomial chaos order for the different laws and the
different surrogate models

Law Mω Ma Ma0

Uniform 4 5 7
B(8,2) 5 5 3
B(2,8) 3 3 3

Fig. 5 Real part of the eigenvalue of the mode 5: (a) comparison of the PCE prediction (black line) to reference points (red dot)
for (M1, M2)= (212.1, 137.3) g and (b) comparison of the PCE-Kriging prediction (black cross) to different validation points (red
circle) for different values of μ, M1, and M2 (Color version online.)
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depending on the environmental conditions a squeal instability at
this frequency can be observed or not. But if the friction coefficient
is described by a B(2,8) or a B(8,2) law, the variance on the unstable
part is low and the mode will always be unstable whatever the fric-
tion coefficient value and the environmental conditions.
Looking at the stability behavior of the mode 4, the evolution of

the mean of the real part is similar but it impacts the stability beha-
vior of the mode (see in Fig. 7 bottom line). First, the average real
part is always much higher when M1= 50 g. Then, a more or less
large stability area is observed for low values of M2 and large
values of M1. This stability area is almost non-existent for a
uniform friction law, and much larger when the friction coefficient
follows a B(2, 8) law. When the two masses have higher values, the
mode is also unstable but with lower values of the real part in
average for all cases. In this case, the PDF that describes the friction
coefficient has an impact on the average stability behavior of the
mode. As for mode 3, the variance is strongly impacted by the
PDF of the friction law (see in Fig. 8 bottom line). For the

uniform law, a large variance is observed in the bottom left part
(area where M1+M2 < 250 g). For low values of M2 and large
values of M1, it means that the mode is sometimes stable and so
that squeal event might take place, or not, depending on the envi-
ronment. For the B(8,2) case, the variance is always very low and
the stability behavior of the mode is not impacted. For the B(2,8)
case, the variance is always low except at M1= 50g and M2 > 50g.
So, if in average the mode has a higher real part at M1=M2= 50g
than at M1=M2= 200 g (and could be considered as “more
unstable”), it is also more fleeting considering the variance as the var-
iance is extremely low at M1=M2= 200 g.
Finally, it is possible to access directly the mean number of insta-

bility and the sum of the mean of the positive real parts with regards
to the masses M1 andM2, they are given in Fig. 9 for each law. The
influence of the law for the friction coefficient is obvious. Indeed,
when a uniform law is considered, from 2.5 to 5 instabilities are
observed in mean, whereas for a B(8,2) law, up to six instabilities
can be observed in average. Moreover, the location of the
maximum and minimum number of instabilities is different depend-
ing on the law. Indeed, for a uniform law, a mass M1 null and M2

equal to 250 g gives the lowest number of instabilities, whereas
for a B(2,8) law, the minimum is reached for both M1 null and
M2 inferior to 80 g. Also, the shape of the limits between the
average number of instabilities (see black lines in Fig. 9) is
completely different from one case to another.
A similar analysis can be done for the sum of the mean of the pos-

itive real parts, given in Figs. 9(d ), 9(e), and 9( f ). Indeed, the mean
values are highly impacted by the distribution: see the different
ranges of variations in Figs. 9(b), 9(d ), and 9( f ). For a B(2,8)
law, the highest value is equal to 700, whereas for a B(8,2), it is
equal to 2600. The locations of the maximum and minimum are
also impacted. Indeed, for a B(2,8) law, the minimum is reached
for M1= 50 g and M2= 40 g, whereas for a uniform law, it is
reached for M1= 75 g and M2= 240 g.
Results obtained here demonstrate the complex influence of the

design parameters on the system stability which illustrates the
necessity to conduct deep studies to end in a correct understanding
of squeal phenomenon. The evolution of the different modes is not
trivial which complicates the identification of the best set of design
parameters for an engineer. Moreover, the identification of the prob-
ability laws of the random parameters must be done beforehand and
precisely as it has a high impact on the system stability.

Fig. 6 Kriging prediction of the first two PCE coefficients for the real part of the mode 3 for the three laws with respect to the
masses M1 and M2—ED (•): (a,d) uniform law, (b,e) B(8,2) law, and (c,f) B(2,8) law (Color version online.)

Table 3 Average relative error �e of the PCE-kriging predictions
at validation points on the eigenvalues estimation for the
different laws

Error real part Error imaginary part

Uniform B(8,2) B(2,8) Uniform B(8,2) B(2,8)

Mode 1 − 8.51E-2 1.04 − 2.57E-4 5.07E-4
Mode 2 4.45E-2 1.95E-1 2.96E-1 1.01E-3 9.53E-3 2.34E-3
Mode 3 7.35E-2 0.42E-2 2.97E-1 6.38E-4 2.52E-4 2.1E-3
Mode 4 2.63E-1 1.31E-1 4.82E-1 1.12E-3 8.12E-4 7.00E-4
Mode 5 1.42E-2 2.59E-2 3.75E-2 1.74E-4 7.82E-4 4.17E-4
Mode 6 7.65E-2 6.28E-3 1.11E-1 1.32E-3 1.14E-3 1.33E-3
Mode 7 4.88E-1 − 7.65E-2 4.10E-4 − 8.28E-5
Mode 8 − − 4.48E-1 − − 2.87E-4
Mode 9 − 8.51E-2 1.04 − 2.57E-4 5.07E-4
Mode 10 4.51E-2 2.55E-1 2.96E-1 1.04E-3 9.53E-3 2.39E-3
Mode 11 7.35E-2 − 2.97E-1 6.38E-4 − 2.14E-3
Mode 12 3.61E-1 2.73E-1 4.69E-1 5.36E-2 1.66E-3 7.26E-4
Mode 13 1.42E-3 2.59E-2 3.44E-2 1.74E-4 7.82E-4 4.34E-4
Mode 14 7.65E-2 6.28E-3 1.1E-1 1.32E-3 1.15E-3 1.33E-3
Mode 15 4.88E-1 − 7.65E-2 4.10E-4 − 8.28E-5
Mode 16 − − 4.47E-1 − − 2.87E-4
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4.4 Discussion. The results presented give a concrete use of a
hybrid surrogate model for the prediction of stability of an industrial
brake system, but also raises some limitations:

– size of the ED (here 750): it is quite high and is definitely a lim-
itation related to the use of this method, but this high number is
related to different factors. The first reason is the full factorial
construction of the ED imposed by the formulation of the
hybrid surrogate model as the uncertainties are propagated
one after another, and work should be conducted to lift this
limitation. However, this high number of points is mostly

due to the physical problem under consideration. Indeed, due
to the high modal density and the important variation of the
mode shapes over the design space, the ED must be dense
enough to ensure a robust mode tracking, which implies a
minimal number of points. Moreover, as modes can be
tracked only when the eigenvalues real parts are non-zero,
the ED must be dense enough to ensure that each instability
is indeed detected, but it also implies that on the total
number of points, only a limited number is finally available
to create a surrogate model for a mode. So, when 750 simula-
tions are run, in some cases only 80 points are really available

Fig. 7 Evolution of the mean of the real part with regard to the massesM1 andM2 for the modes 3 (top) and 4 (bottom) for the
((a,d)) uniform law, (b,e) B(8,2) law, and (c,f) B(2,8) law

Fig. 8 Evolution of the variance of the real part with regard to the massesM1 and M2 for the modes 3 (top) and 4 (bottom) for
the (a,d) uniform law, (b,e) B(8,2) law, and (c,f) B(2,8) law
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(see mode 3) at the end for the construction of the hybrid meta-
model. So finally, the performances of the hybrid meta-model
should be considered with the effective number of available
points. And, finding a criterion more robust than a MAC crite-
rion for the mode tracking and able to pass the bifurcation
would be the solution to lift this difficulty.

– comparison with a kriging with all the parameters: one could
naturally consider using one kriging meta-model for the
three parameters [13] and then perform MCS for the propaga-
tion of the random law related to the friction coefficient. Using
this strategy represents a reduction of the initial number of
CEA to perform. However, the MCS to be performed at the
end takes time, several minutes as many modes are present
and as the validity of the surrogate models must be tested
each time. By using the hybrid surrogate model, this simula-
tion time is removed as the stochastic moments are directly
obtained from the PCE coefficients. In some cases, it might
be more convenient to have a more important simulation
time initially and get directly statistical moments at the end,
than having to run again MCS after the surrogate model crea-
tion. One last advantage, not illustrated here as only one
parameter is random, is that the Sobol indices can also be
directly accessed from the PCE coefficients.

– computational time: except the simulations related to the
CEA, the most computationally expensive part of the
method is the mode tracking part, with the computation of
many MAC matrices over the ED and represents a few
minutes in the present case. The construction of the hybrid
meta-models represents only 1.5 s on average, showing the
efficiency of the method. Once the surrogate models are con-
structed, obtaining the evolution of the mean and variance on
a 50 × 50 grid (Fig. 7) takes only 0.13 s for a mode, when a
few minutes would be required with a MCS on a single
kriging surrogate model.

5 Conclusion
The present study proposes the application of a hybrid surrogate

method for the prediction of the stability behavior of an industrial
brake system subjected to many instabilities. The main objective
is to demonstrate the validity and the interest of hybrid methods

when a system is put through different types of uncertainties.
Indeed, for many application epistemic and aleatory uncertainties
are present, and modeling them at the same time in the same surro-
gate model is not necessarily the best representation.
The CEA methodology is employed for the prediction of the sta-

bility behavior of the finite element model of the brake system and
three uncertain parameters are considered. First, the friction coeffi-
cient is described by three different probability laws, and two
design parameters corresponding to two small masses that might
be added to the caliper are described by an interval of possibility.
The friction coefficient is modeled via a PCE whereas the two
design parameters are modeled through the kriging method. Once
the meta-models are constructed and validated, the analysis of
the stability of the brake system can be performed. The work dem-
onstrates the applicability of such an approach for large models
where computational times are important and where the construc-
tion of the learning sets is limited due to the mode tracking,
which limits drastically the number of available points to construct
the meta-models.
From the PCE coefficients, it is possible to access without any

additional computations (i.e., no MCS) to the evolution of the
mean and the variance of each eigenvalue regarding the design
parameters allowing for a stochastic description of the system.
This would not be possible if a unique surrogate model for all
the uncertain parameters was created, since MCS simulations
would be performed to propagate the uncertainty related to the
random parameters. The approach used here may require more
simulations to create the surrogate models, but no cost is added
then for the UQ part. Considering the global process, this strategy
might be of interest in some cases when stochastic properties are
required.
Moreover, the strong impact of the probability law chosen for the

friction coefficient on the system stability is also observed and dem-
onstrates the necessity to identify it in advance.
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